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We consider a simple neutral model to describe the genealogy of chromosomes
by taking into account the effects of both recombination and coalescence. Seen
as a statistical physics problem, the model looks like an inverse problem: A
number of properties such as pair or three-point correlations can be computed
easily, but the prediction of global properties, in particular the average number
of ancestors, remains difficult. In the absence of exact solutions, these global
properties can nevertheless be estimated by the usual approximations: series
expansions, Monte Carlo simulations, mean-field theory. Simulations exhibit
also non-self-averaging properties similar to those of mean-field spin glasses.

KEY WORDS: Steady state; spin chain; random genealogies.

1. INTRODUCTION

One of the simplest questions one can ask about the genealogy of a living
population is: what is the number of ancestors of a given individual?

When the reproduction is asexual (as generally in bacteria), this ques-
tion has a trivial answer: each individual has a single parent, so in principle
if one looks back at an arbitrary time in the past, an individual has a single
ancestor.

For sexual reproduction, this question is much more complex: at first
sight, when one looks backward in history, at each generation, the number
of ancestors is doubled: we have 2 parents, 4 grand parents and so on. If
one extrapolates 2000 years ago with a new generation every 30 years, this
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would lead to 1020 ancestors at the time of the roman empire and about
1057 at Adam's time. Of course these numbers are totally unrealistic and
this is because a genealogical tree is not a true tree: some branches of the
tree coalesce, meaning that some ancestors at a given generation in the past
share a common ancestor one generation before. (Note that if the total
mass of earth was just human bodies, the total number of humans would
not exceed 1023).

The problem of understanding the properties of such a ``tree'' is easier
to consider in the simpler context of the genealogical tree of a single
chromosome (human beings have 23 pairs of chromosomes) or of a sequence
(a part of a chromosome). Mitochondrial DNA or the Y chromosome are
always inherited from a single parent and their genealogy is strictly of the
asexual type.(1) For the other chromosomes of mammals, however, the
genealogy is more complex: a chromosome is either inherited from a single
chromosome at the previous generation or produced by the recombination
between two homologous chromosomes (after a recombination event, also
called crossing-over, the new chromosome consists of one part coming
from one parent and the remaining part coming from the other parent, the
breaking point between these two parts being more or less random along
the sequence).

The simplest way to model this recombination event is to consider
that a chromosome consists of a sequence of L nucleotides (or sites). When
the chromosome is inherited from a single parental chromosome, it remains
unchanged (if mutations are neglected). On the other hand, during a time
dt, (dt is typically the time of one generation) there is a probability rdt that
the chromosome transmitted results from a recombination event with a
breaking between the i th site and the i+1th site, meaning that all the
nucleotides 1� j�i come from the first parental chromosome and all the
nucleotides i+1� j�L come from the second parental chromosome.

Under this process, if the population was infinite and if mating
between pairs of individuals in the population was done at random (this
random mating is called panmixia), the number Q(t) of ancestors, at time
t in the past, would be simply L in the limit t � � (by looking far enough
in the past one would always find a recombination event which would
make two consecutive nucleotides belong to different ancestors). However
the population is always finite. This has the effect that two individuals in
a genealogical tree have sometimes the same parent and so can inherit the
same chromosome. For simplicity, we will assume that the population size
remains constant in time, so that the chance that two individuals have a
common parent does not vary with time. To model this effect, we consider
that when we go backward in time, there is a probability dt that two
ancestors inherit the same chromosome from the same parent.
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We see that recombination and coalescence have opposite effects:
coalescence tends to decrease and recombination tends to increase the
number of ancestors of a chromosome. In the long time limit, the geneal-
ogy of a given chromosome reaches a dynamical steady state where these
two tendencies equilibrate.

Coalescence theory, the aim of which is to study the statistical laws of
genealogies of genes or sequences has been greatly developped(2, 3) since the
pioneering work of Kingman.(4) The genetic diversity of a population is
closely related to the rate of coalescence: the longer it takes the lineages of
two sequences to coalesce, the larger is the present genetic diversity
between the two sequences. Hudson(5) was the first to consider sequences
where recombination can occur randomly along the sequence. Hudson's
retrospective process considers a sample of n sequences, the genealogy of
which is studied backward in time until all the homologous sites of the
sample have a single ancestral site. The problem we study here, namely the
genealogy of a single chromosome or sequence, concerns in some sense
what happens in the past beyond the end of Hudson's process. This aspect
has received little attention until recently(6) because it is not directly related
to the observable genetic diversity of the population at present time.

The model we study here (which is very similar to the model con-
sidered recently by Wiuf and Hein(6)) is a simple formulation of the
problem of the genealogy of a chromosome (or of a sequence) as the
dynamics of a spin chain of L spins. At any given time, each spin can take
an arbitrary color. For example, a spin configuration of L=10 spins may
be

1 1 2 2 3 1 2 3 1 4 (1)

The only aspect which is relevant is the way the chain is partitionned into
different colors, i.e., which spins belong to the same color. So (1) means
only that sites 1, 2, 6, 9 carry the same color, sites 3, 4, 7 carry another
color, sites 5, 8 a third color and site 10 a fourth color.

The dynamics is the following:

1. coalescence: during every infinitesimal time interval dt, there is a
probability dt for any pair of colors : and ; present in the system to
coalesce, so that all the spins having color : or ; adopt a common color.
For example (1) becomes

1 1 1 1 2 1 1 2 1 3 with probability dt (2)

1 1 2 2 1 1 2 1 1 3 with probability dt (3)

1 1 2 2 3 1 2 3 1 1 with probability dt (4)
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1 1 2 2 2 1 2 2 1 3 with probability dt (5)

1 1 2 2 3 1 2 3 1 2 with probability dt (6)

1 1 2 2 3 1 2 3 1 3 with probability dt (7)

2. recombination: during every infinitesimal time interval dt, there is
a probability rdt that a recombination event occurs between site i and site
i+1 for any color present in the system. This means that if this event
occurs for color :, all the sites having color : at the left of i (including i)
keep their color : and all the sites at the right of i+1 (including i+1)
which had color : adopt a different color ; which was not yet present in
the system. So (1) becomes

1 2 3 3 4 2 3 4 2 5 with probability rdt (8)

1 1 2 2 3 4 2 3 4 5 with probability 4rdt (9)

1 1 2 2 3 1 2 3 4 5 with probability 3rdt (10)

1 1 2 3 4 1 3 4 1 5 with probability rdt (11)

1 1 2 2 3 1 4 3 1 5 with probability 3rdt (12)

1 1 2 2 3 1 2 4 1 5 with probability 3rdt (13)

We have now to explain why the dynamics of this spin chain can be
used to model the genealogical tree of a chromosome. The values of the
spins along the chain tell us how the nucleotides of a chromosome that
we observe now were distributed among the ancestors a time t ago. For
example (1) tells us that nucleotides at location 1, 2, 6 and 9 were carried
by one individual a time t ago (this individual whose name has no impor-
tance is called 1), nucleotides at location 3, 4, 7 were carried by another
ancestor (called 2), nucleotides at location 5, 8 by a third ancestor and the
nucleotide at location 10 by a fourth ancestor.

The coalescence event between two colors : and ; simply means that
between time t and time t+dt in the past, the two individuals : and ; have
inherited the same chromosome from their common parent.

The recombination event in color : between site i and i+1 on the
other hand means that ancestor : has inherited the part at the left of site
i from his first parent and the part at the right of site i+1 from his second
parent.

In the present work, we study the steady state (i.e., long time limit) of
this model. In Section 2, we define various quantities of interest, in par-
ticular the average number of ancestors and quantities which measure how
the nucleotides are distributed among these ancestors. In Section 3, we
show that these quantities can be computed exactly for small system sizes.
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This gives also (see Section 4) exact expressions of the pair or three point
correlations of systems of arbitrary size. In Section 5 we present the predic-
tions of a simple mean field approximation and we discuss possible ways
of improving it. In Section 6, we develop an expansion method valid in the
scaling limit where L is large and r is of order 1�L so that most quantities
of interest become functions of the product rL. Lastly in Section 7, we pre-
sent the results of numerical simulations, which allow a comparison with
the exact results obtained for small system sizes and with the mean field
predictions. We also show that some global properties remain non-self-
averaging even in the infinite size limit.

2. QUANTITIES OF INTEREST

The dynamics defined above for a chain of finite length L is a Markov
process with a finite number of states. In the long time limit, the system
reaches a steady state which does not evolve in time. Our goal is to
calculate various properties in this steady state.

An important quantity characteristic of a configuration is the number
ni of sites of the chain which have the same color as site i (as site i con-
tributes to ni , one always has ni�1). For configuration (1), one has
n1=n2=n6=n9=4, n3=n4=n7=3, n5=n8=2 and n10=1.

If Q is the total number of different colors (that is the total number
of ancestors of the chromosome), its expression in terms of the ni is

Q= :
L

i=1

1
n i

(14)

and one has Q=4 for configuration (1).
At least for finite L, this number of ancestor fluctuates and so one can

try to describe its probability distribution; in particular one can try to
calculate its average and its variance

(Q)= :
L

i=1 �
1
ni� (15)

(Q2) &(Q) 2= :
L

i=1

:
L

j=1
_� 1

ninj�&� 1
ni��

1
nj�& (16)

By analogy with spin glass problems, (7�10) one can define another
quantity Y which measures the relative weights of the different ancestors

Y= :
L

i=1

ni

L2 (17)
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If W: is the weight of ancestor : defined as the fraction of sites coming
from this ancestor, it is easy to check that

Y=:
:

[W:]2 (18)

Under this form, it is clear that Y is (for each configuration) the probabil-
ity that two sites (chosen at random among the L sites) belong to the same
ancestor. This number is itself random as it depends on the configuration:
for configuration (1), it takes the value Y=3�10.

One can try to calculate the successive moments of Y, in particular to
see whether as in other spin glass types of systems, (7�10) Y remains a non-
self-averaging quantity even in the large L limit (a non-self-averaging quan-
tity is by definition a quantity which fluctuates even in the thermodynamic
limit). From (17), it is clear that

(Y)=
1

L2 :
L

i=1

(n i) (19)

(Y2)&(Y) 2=
1

L4 :
L

i=1

:
L

j=1

[(ninj)&(n i)(nj)] (20)

Other global properties can be expressed in terms of correlations
between sites. If {i is the color at site i, the number S of segments (a seg-
ment is a set of contiguous sites belonging to the same ancestor) is clearly

S=L& :
L&1

i=1

${i , {i+1
(21)

($ is the Kronecker symbol). If we call li the length of the segment to which
belongs site i, one can also see that S can be rewritten as

S= :
L

i=1

1
li

(22)

For configuration (1) l1=l2=l3=l4=2, l5=l6=l7=l8=l9=l10=1 and
S=8.

With the lengths li , one can build a quantity Z similar to Y defined
in (17)

Z= :
L

i=1

l i

L2 (23)
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As in (18), if W$: is the weight of a segment : defined as the fraction of sites
belonging to this segment, one can rewrite Z as

Z=:
:

[W$:]2 (24)

For each configuration, Z is the probability that two sites chosen at
random belong to the same segment. In the example of configuration (1),
one has Z=7�50.

It is easy, using Jensen's inequality, to verify from (14, 17, 21, 23) that
for any configuration

Q�
1
Y

and S�
1
Z

(25)

Moreover, it is also rather obvious to see that

Q�S and Y�Z (26)

Apart from global quantities, one can also study correlations between
sites:

v the probability that sites i and j have the same color: Pi, j

v the probability that sites i, j and k have the same color: Pi, j, k

v the probability that sites i, j, k and l have the same color: Pi, j, k, l

v etc...

v the probability that sites i and j have the same color and k and l have
the same color, but these two colors are different: Pi, j; k, l

v and so on.

Some moments of global properties can be calculated from the
knowledge of these correlations. For example

(ni) = :
L

j=1

Pi, j (27)

(nink) = :
L

j=1

:
L

l=1

Pi, j, k, l+Pi, j; k, l (28)
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and this gives

(Y)=
1

L2 :
L

i=1

:
L

j=1

Pi, j (29)

(Y2) &(Y) 2=
1

L4 :
L

i=1

:
L

j=1

:
L

k=1

:
L

l=1

Pi, j, k, l+Pi, j; k, l&Pi, jPk, l (30)

Similarly one has

(${i , {i+1
) =Pi, i+1 (31)

and this implies that

(S) =L& :
L&1

i=1

P i, i+1 (32)

Most global properties (like (Q) ), however cannot be written in
terms of 2 or 4 point correlation functions but require the knowledge of
high order correlation functions and this makes the calculation of such
properties much more difficult.

3. SMALL SYSTEM SIZES

For small enough L, the number of possible configurations is suf-
ficiently small to allow an exact solution of the steady state.

It is easy to check that the total number 0L of configurations is
01=1, 02=2, 03=5, 04=15 and to establish the following recursions

0L= :
L

k=1

|L(k)

where |L(k) is the number of configurations of a system of L sites having
k different colors. Clearly, |L(k) satisfies the following recursion

|L(k)=k|L&1(k)+|L&1(k&1)

(this recursion is in fact the recursion of Stirling numbers of second
kind.(11)) This of course allows one to calculate all the 0L . This gives
05=52, 06=203, 07=877, 08=4140, 09=21147, 010=115975. The
dynamics of the spin chain defined in the introduction leads to a system of
0L linear equations for the weights of the configurations in the steady state.
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For example when L=2, one finds that the weights w11 and w12 of the
two possible configurations 11 and 12 evolve according to

dw11

dt
=&rw11+w12

(33)
dw12

dt
=rw11&w12

and in the steady state, where the left hand side of (33) vanishes, this leads
to

w11=1&w12=
1

1+r
(34)

For L=3, the system of five linear equations can still be solved
analytically(6) and this leads in the steady state for the weights of the five
possible configurations 111, 112, 121, 122, 123 to

w111=
3+5r

(1+r)(1+2r)(3+2r)

w112=w122=
3r+4r2

(1+r)(1+2r)(3+2r)
(35)

w121=
2r2

(1+r)(1+2r)(3+2r)

w123=
2r2+4r3

(1+r)(1+2r)(3+2r)

A full analytic solution of the system of 0L equations becomes very
quickly too difficult as L increases. It is however possible to determine
numerically, and with an arbitrary accuracy, the weights of the 0L con-
figurations for L up to 8 by solving numerically the system of 0L equa-
tions. The variations of (Q), (Q2) &(Q) 2, (Y) and (Y2)&(Y) 2 as
functions of rL are shown in Figs. 1 to 4 for 2�L�8.

By the same procedure, it is also possible numerically to generate, for
small enough L, the first terms of the expansion of all the desired quantities
in powers of r. One observes that the coefficients have usually a polynomial
dependence on the size L (the coefficient of rn is essentially a polynomial
of degree Ln) and so the computation of these coefficients for the very first

285The Genealogical Tree of a Chromosome



sizes determines them for all L. The fact that the coefficients are rationnal
in L could probably be established by generalizing the calculation of
Section 6 to the case of a discrete lattice.)

This leads to the following expressions, valid for all system sizes L, up
to terms of order r4 or higher.

(Q)=1+(L&1) r&
L2&1

3
r2+

13L3&12L2&L
54

r3+ } } }

(Q2) &(Q) 2=(L&1) r&
2(L&1)(L+1)

3
r2

+
L(L&1)(35L+11)

54
r3+ } } }

(Y)=1&
L2&1

3L
r+

L2&1
6

r2&
27L4&45L2+18

270L
r3+ } } }

(Y2) &(Y) 2=
2L4&2

15L3 r&
7L4&5L2&2

45L2 r2

+
779L6&952L4&259L2+432

5670L3 r3+ } } }

(Z)=1&
L2&1

3L
r+

L3+L2&L&1
9L

r2

&
23L4+45L3&25L2&45L+2

540L
r3+ } } }

(Z2)&(Z) 2=
2L4&2

15L3 r&
5L5+2L4&5L&2

45L3 r2

+
\346L6+420L5+91L4+105L3

&791L2&525L+354 +
5670L3 r3+ } } }

(S)=1+(L&1) r&(L&1) r2+(L&1) r3+ } } }

(S2) &(S) 2=(L&1) r+
L2&9L+8

3
r2

&
5L3+12L2&152L+135

27
r3+ } } }
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We see that for large L and for r of order 1�L, a scaling regime is
reached and all properties become a function of the reduced variable

R=Lr (36)

(Q) =1+R& 1
3R2+ 13

54R3+O(R4)

(Q2)&(Q) 2=R& 2
3 R2+ 35

54 R3+O(R4)

(Y) =1& 1
3R+ 1

6R2& 1
10R3+O(R4)

(Y2)&(Y) 2= 2
15 R& 7

45R2+ 779
5670R3+O(R4)

(37)
(Z) =1& 1

3R+ 1
9R2& 23

540R3+O(R4)

(Z2) &(Z) 2= 2
15 R& 1

9R2+ 346
5670R3+O(R4)

(S) =1+R+O(R4)

(S2) &(S) 2=R+ 1
3R2& 5

27R3+O(R4)

These results show that even in the large L limit (keeping the product rL
fixed at some arbitrary value R), all the global properties fluctuate and
therefore are non-self-averaging. We will see in Section 5 that the expan-
sions (37) can be recovered directly by considering a continuous version of
the model which becomes valid in the large L limit.

4. EXACT CORRELATION FUNCTIONS AND
THEIR CONSEQUENCES

An interesting aspect of the model is that pair or 3 point correlation
functions(6) are easy to calculate. The reason is that one can forget all the
remaining sites of the sequence.

The calculation of the pair correlation function is very similar to the
calculation of the steady state of a sequence of L=2 sites. The probabilities
Pi, j that sites i and j have the same color and Pi; j=1&P i, j that sites i and
j have different colors evolve according to

d
dt

Pi, j=&(r | j&i | ) Pi, j+1&Pi, j

and in the steady state, this leads to

Pi, j=
1

1+r | j&i |
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Similarly the calculation of three point functions reduces to solving a
system of 5 linear equations (similar to those of the steady state of a
sequence of L=3 sites) and one finds that for i� j�k

Pi, j, k=
3+4(r1+r2)+r2

1+3r1 r2+r2
2

(1+r1)(1+r2)(1+r1+r2)(3+r1+r2)

Pi, j; k=
r2(3+3r1+4r2+(r1+r2)2)

(1+r1)(1+r2)(1+r1+r2)(3+r1+r2)

Pi, k; j=
r1r2(2+r1+r2)

(1+r1)(1+r2)(1+r1+r2)(3+r1+r2)

Pi; j, k=
r1(3+4r1+3r2+(r1+r2)2)

(1+r1)(1+r2)(1+r1+r2)(3+r1+r2)

Pi; j; k=
r1r2(1+r1+r2)(2+r1+r2)

(1+r1)(1+r2)(1+r1+r2)(3+r1+r2)

where

r1=( j&i) r

r2=(k& j) r

In principle the calculation of four point functions or higher correla-
tions can be done in a similar way but the size of the linear system
increases very quickly (for the four point function, one has a system of
04=15 equations).

Using (29) and (32), one can obtain exact expressions of moments of
some global properties:

(Y)=
1

L2 :
L

i=1

:
L

j=1

1
1+r |i& j |

(38)

(S)=
1+Lr
1+r

(39)

and in the scaling limit L � � keeping Lr=R, this leads to the following
exact expressions

(Y) exact=2
(1+R) log(1+R)&R

R2 (40)
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and

(S) exact=1+R (41)

in agreement with the expansion results (37). The exact result (41) was
derived in ref. 6 where an expression for the variance of S was given
((S2)&(S) 2 &2R) which disagrees with (37), the disagreement being
due to the fact that (37) is valid for small R whereas the expression of ref. 6
seems to be valid for large R.

5. MEAN-FIELD APPROXIMATION

In absence of an exact solution, most properties can only be estimated
through approximate methods. We have seen in (14, 15) that the exact
expression of (Q) requires the knowledge of (1�ni).

Unfortunately, it is very hard to calculate (1�ni). What is much easier
to obtain (see Section 4), however, is (ni)

(ni) = :
N

j=1

1
1+r | j&i |

(42)

The simplest mean field approximation consists in replacing (1�ni) by
1�(ni) leading to

(Q) meanfield= :
L

i=1

1
(ni)

Because of the fact that

� 1
ni��

1
(ni)

(Q) meanfield gives always a lower bound

(Q) meanfield�(Q) exact

For large L and small r with Lr=R of order 1, one has

(ni) &
log(1+ri)+log(1+r(L&i))

r
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and this leads to

(Q) meanfield&|
R

0

dy
log(1+ y)+log(1+R& y)

(43)

which leads to the expansion

(Q) meanfield=1+
R
3

&
3R2

10
+O(R3)

which disagrees with the exact expansion (37) showing the limitations of
the mean field approach to predict some global properties. However, from
(17, 19), as (ni) is known exactly, the mean field expression (Y) mean field

coincides with the exact one given in (40)

(Y) exact=
1

L2 :
L

i=1

(ni)

A priori, with more and more efforts, one could try to calculate in
addition to pair and 3 point correlations, higher correlations. For example,
the knowledge of four point correlations would lead to exact expressions of
(ni nj) (and as (n2

i ) can be computed from 3 point functions) and this
would give the exact expression of (Y2).

The knowledge of higher correlations and therefore of higher moments
or correlations of the ni could also be used to develop improved mean field
approximations. When only (ni) is known, one can just approximate
(1�ni) by 1�(ni) (and as mentioned above one knows that this
approximation is a lower bound). Knowing a few higher moments of the
ni could be used to obtain better approximations as well as improved
(upper and lower) bounds (by looking for the distributions of integer ni

compatible with the known moments and which minimize or maximize
(1�ni) ).

6. CONTINUOUS THEORY

When r is very small at fixed L, the only configuration which has a
non negligible weight is the configuration where all sites have the same
color. If one takes the limit r � 0 and L � � keeping the product

R=Lr

fixed all configurations with a finite number of colors contribute. If in addi-
tion the product R=Lr is small, the weight of configurations with k
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segments is of order Rk&1, and therefore to calculate any quantity in
powers of R up to order Rk, one can ignore the contribution of all con-
figurations with k+2 segments or more. In this section, we show how the
calculations can be done up to order R3. Let us denote the probability of
all configurations with at most 4 segments by

A=Prob(1)

B(x)=Prob(1 | 2)

C(x, y)=Prob(1 | 2 | 3)

D(x, y)=Prob(1 | 2 | 1)

E(x, y, z)=Prob(1 | 2 | 3 | 4)

F(x, y, z)=Prob(1 | 2 | 1 | 3)

G(x, y, z)=Prob(1 | 2 | 3 | 1)

H(x, y, z)=Prob(1 | 2 | 3 | 2)

I(x, y, z)=Prob(1 | 2 | 1 | 2)

These notations simply mean that A is the probability of the configuration
with all spins being 1, B(x) dx is the probability of all configurations with
all sites being 1 on the first segment and all sites being 2 on the second
segment, the breaking point being located between Lx and L(x+dx),
C(x, y) dx dy is the probability of all configurations with 3 segments of
colors 1, 2 and 3, the first breaking point being located between poisitions
Lx and L(x+dx) and the second breaking point between Ly and
L( y+dy) and so on.

Then if one ignores all configurations of 5 or more segments, one finds
that these probabilities evolve according to

dA
dt

=&RA+|
1

0
dxB(x)+|

1

0
dy |

y

0
dxD(x, y)

+|
1

0
dz |

z

0
dy |

y

0
dxI(x, y, z)

dB(x)
dt

=&(R+1) B(x)+RA+|
x

0
dzC(z, x)++|

1

x
dzC(x, z)

+|
x

0
dy |

y

0
dzF(z, y, x)+|

1

x
dy |

1

y
dzH(x, y, z)
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dC(x, y)
dt

=&(R+3) C(x, y)+RB(x)+RB( y)+R( y&x) D(x, y)

+|
x

0
dzE(z, x, y)+|

y

x
dzE(x, z, y)+|

1

z
dzE(x, y, z)

dD(x, y)
dt

=&(R+R( y&x)+1) D(x, y)+C(x, y)+|
1

y
dzF(x, y, z)

+|
x

0
dzG(z, x, y)+|

y

x
dzG(x, z, y)

+|
1

y
dzG(x, y, z)+|

x

0
dzH(z, x, y)

(44)
dE(x, y, z)

dt
=&6E(x, y, z)+RC(x, y)+RC(x, z)+RC( y, z)

dF(x, y, z)
dt

=&3F(x, y, z)+E(x, y, z)+RD(x, y)

dG(x, y, z)
dt

=&3G(x, y, z)+E(x, y, z)+RD(x, z)

dH(x, y, z)
dt

=&3H(x, y, z)+E(x, y, z)+RD( y, z)

dI(x, y, z)
dt

=&I(x, y, z)+F(x, y, z)+H(x, y, z)

The steady state solution is then

A=1&R+ 2
3 R2& 23

54 R3+ } } }

B(x)=R& 4
3R2+ 5

18R3(x2+(1&x)2)+R3+ } } }

C(x, y)= 2
3R2+ 2

9R3( y&x)&R3+ } } }

D(x, y)= 2
3R2& 7

9R3( y&x)&R3+ } } }

E(x, y, z)= 1
3R3+ } } }

F(x, y, z)= 1
3R3+ } } }

G(x, y, z)= 1
3R3+ } } }

H(x, y, z)= 1
3R3+ } } }

I(x, y, z)= 2
3R3+ } } }
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From these weights, one can calculate all properties in power series of R
(of course up to the order R3). For example

(Q) =A+2 _|
1

0
B(x) dx+|

1

0
dx |

1

x
dy D(x, y)

+|
1

0
dx |

1

x
dy |

1

y
dz I(x, y, z)&

+3 _|
1

0
dx |

1

x
dy C(x, y)+|

1

0
dx |

1

x
dy |

1

y
dz(F(x, y, z)

+G(x, y, z)+H(x, y, z))&
+4 |

1

0
dx |

1

x
dy |

1

y
dz E(x, y, z)=1+R& 1

3R2+ 13
54R3+O(R4)

and one recovers this way the expressions (37) guessed in Section 3.

7. SIMULATIONS

The dynamics of the spin chain defined in Section 1 is easy to simulate
by a Monte Carlo method for rather large L. The results obtained for
L=5, 20, 80, 320, 1280 after 107 updates are shown in Figs. 1�4. We see
that as L increases, all these quantities become a function of the product

Fig. 1. Figure 1 shows the average number of ancestors (in the steady state) (Q) as a func-
tion of R=rL. The dashed lines represent exact calculations for small system sizes 2�L�8
(the L dependence is monotonous and L=2 is the lower curve). The diamonds represent the
results of the Monte Carlo calculation for L=5, 20, 80, 320, 1280. Lastly the plain line
represents the mean field prediction (43).
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Fig. 2. Figure 2 shows the variance (Q) 2&(Q) 2 as a function of R=rL. The dashed lines
represent exact calculations for small system sizes 2�L�8 (the L dependence is monotonous
and L=2 is the lower curve). The diamonds represent the results of the Monte Carlo calcula-
tion for L=5, 20, 80, 320, 1280.

rL=R as expected when R is of order 1 (see Sections 3 and 5). For L=5,
the agreement with the exact result of Section 3 is perfect and this gives
confidence in the Monte Carlo procedure.

When compared to the mean field predictions in Figs. 1 and 3, the
Monte Carlo results agree very well with the mean field prediction of (Y) ,
as expected since for (Y) the mean field theory is exact. On the other
hand, for (Q) , the mean field prediction is clearly unaccurate and there-
fore better approximation schemes are needed.

Fig. 3. Figure 3 shows (Y) as a function of R=rL. The dashed lines represent exact
calculations for small system sizes 2�L�8 (the L dependence is monotonous and L=2 is
the lower curve). The diamonds represent the results of the Monte Carlo calculation for
L=5, 20, 80, 320, 1280. Lastly the plain line, hardly visible because it coincides with the
Monte Carlo data for the largest sizes, represents the mean field prediction (40) which is exact
for L � �.
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Fig. 4. Figure 4 shows the variance (Y) 2&(Y) 2 as a function of R=rL. The dashed lines
represent exact calculations for small system sizes 2�L�8 (the L dependence is monotonous
and L=2 is the lower curve). The diamonds represent the results of the Monte Carlo calcula-
tion for L=5, 20, 80, 320, 1280.

In Monte Carlo simulations, it is of course easy to measure with good
statistics a large number of properties. As we know from (37) that Y
defined by (17) is non-self-averaging, one can try to measure its distribu-
tion 6(Y ). When L becomes large, (here we choose L=1000), we have
measured the distribution 6(Y ) for several values of the product rL=R.
Figures 5�8 show the results of our simulations for R=1, 4, 7 and 10.
Clearly, Y is a non-self-averaging quantity and its distribution 6(Y )
exhibits, as in many other systems (spin glasses, random maps, random
trees...)(8, 9, 12, 13) clear singularities at Y=1�2, Y=1�3 on top of a very large
peak at Y=1 not shown on the figures to keep the rest of the distribution
visible. Therefore, one expects as in many of these other systems, (9, 14) the
distribution of Y to be singular at all values Y=1�n.

Fig. 5. Figure 5 shows the distribution 6(Y ) for R=1 for a sample of 105 values of Y.
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Fig. 6. Figure 6 shows the distribution 6(Y ) for R=4 for a sample of 105 values of Y.

Fig. 7. Figure 7 shows the distribution 6(Y ) for R=7 for a sample of 105 values of Y.

Fig. 8. Figure 8 shows the distribution 6(Y ) for R=10 for a sample of 105 values of Y.
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8. CONCLUSION

In this paper we have seen how a simple model combining the effects
of coalescence and recombination (without mutations) can be formulated
as a dynamical spin chain.

From the point of view of statistical physics, this problem is interesting
because some quantities like correlations involving a small number of sites
can be calculated exactly, although most global properties like the distribu-
tion of the number of ancestors are difficult to obtain. It poses the impor-
tant question of finding the optimal approximate schemes consistent with
the correlations which are calculated exactly. We have seen in Section 5
that the average (ni) is easy to calculate from the known pair correlation.
The calculation of higher moments of ni is not impossible as it reduces to
the calculation of higher correlations (finding the correlations between k
points is equivalent to solving a system of 0k linear equations with 02=2,
03=5, 04=15, 05=52...). If we knew a few higher moments of ni , one
could improve the mean field predictions of (Q). One could for example
estimate (Q) using a maximum entropy principle consistent with the
known moments. With more moments of the ni , one could also, as men-
tioned earlier, obtain improved bounds for (Q).

An interesting aspect of the model is that in the whole range where
R=rL is of order 1, most global properties (Q, Y,...) defined in Section 2
exhibit non-self-averaging effects reminiscent of spin glasses and random
genealogical trees.(8, 10, 12)

The model discussed here is of course an extreme simplification of the
biological reality(6) where there is no selection and the population has a
constant size and no structure. Moreover, the mechanism of recombination
is usually more complex than totally random along the sequence (with
interferences), (15, 16) with the possibility of more than one recombination at
each generation.(17)

The parameter r is the ratio between the rate of recombination
between two adjacent sites and the rate of coalescence between two
lineages. One can estimate rt10&8N for a population of N individuals(5)

and the number L of nucleotides of a human chromosome is of order
108.(6) The product R=rL is therefore usually very large. This means that
our results, valid for R of order 1, could be only relevant for rather small
populations or rather short sequences.

The number of ancestors Q is clearly an important parameter from a
biological point of view. However it does not describe the full reality, in
particular it does not tell us how equally the nucleotides are distributed
among the ancestors. In this work, we have proposed to consider other
quantities, in particular Y coming from spin glass theory, which give a
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measure of the repartition of the nucleotides among the ancestors. Interesting
enough, (Y) can be calculated exactly.
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