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Abstract 

We present the results of zero temperature Monte Carlo simulations of the q-state Potts model 
on a square lattice with either four or eight neighbors, and for the triangular lattice with six 
neighbors. In agreement with previous works, we observe that the domain growth process gets 
blocked for the nearest-neighbor square lattice when q is large enough, whereas for the eight 
neighbor square lattice and for the triangular lattice no blocking is observed. Our simulations 
indicate that the number of spins which never flipped from the beginning of the simulation up to 
time t follows a power law as a function of the energy, even in the case of blocking. The exponent 
of this power law varies from less than 1/2 for the Ising case (q = 2) to 2 for q ---* o0 and seems 
to be universal. The effect of blocking on this exponent is invisible at least up to q = 7. 

PACS: 02.50; 05.20 

Spinodal decomposi t ion is the phase separation process if  initially one has a random 

mixture and the temperature is such that in equilibrium two or more phases coexist 

[ 1 - 5 ] .  Small domains form randomly and then grow in a self similar way until the 

domain size becomes of  the order of  the system size. This effect can be studied at 

zero temperature, where the dynamics reduces to that of  a system trying to minimize its 

energy [6-11 ]. The growth of  domains at zero temperature dynamics may be relevant for 

problems as different as soap froths [ 12,13 ], polycrystals [ 14] or spin glasses [ 6,15,16 ]. 

The goal of  the present work is to measure the q dependence of  the exponents governing 

the time decay of  the number of  spins which never flip during the growth process for 

two-dimensional systems. Recently, these exponents have been calculated exactly for 
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the one-dimensional q-state Potts model [ 17] and have been measured in Monte Carlo 

simulations for the Ising model in higher dimensions [ 10,9]. For the Ising model, it was 

found that the fraction F ( t )  of the spins which have never flipped up to time t decays 
like a power law 

F ( t )  ~ t  - ° ,  (1)  

with 0 = 3/8 in one dimension, 0 ~ 0.22 in two, and smaller values (possibly blocking) 

in higher dimensions. This power law is valid for intermediate times corresponding to 

many Monte Carlo steps per site but to domain sizes much smaller than the lattice size. 

For the one-dimensional Ports model, 0 is known exactly for all q: it varies from 0 

to 1 as q varies continuously from 1 to ~ [ 17,18]. Here we repeat the Monte Carlo 

simulations tbr the general q-state Potts model [ 19,7,8,20,21] in dimension two. 

Monte Carlo simulations of the zero temperature dynamics of the Potts model are 

very easy to perform. One starts with a configuration where each spin is given a random 

color between 1 and q and one lets the system evolve according to a zero temperature 

dynamics. Basically when a spin is updated, it always changes its orientation if this 

lowers the energy, never changes it if this would increase the energy, and makes a 

random choice if the energy stays constant. Then one measures the fraction F(t)  of the 

spins which have never flipped up to time t. 

One difficulty with zero temperature dynamics is that the system cannot overcome 

tinite energy barriers and that the growth process can be completely stopped or at least 

greatly slowed down by the existence of blocked configurations. Previous simulations 

on the two-dimensional q-state Potts model have shown that for the Ports model on a 

square lattice with nearest neighbor interactions (NN), such blocking effects do occur 

when q is large enough [7,8,20]. However, no blocking was seen when simulations are 

done on the square lattice with nearest and next nearest neighbor interactions (NNN) 

or on the triangular lattice (TR). 

In the present work, in order to test universality, we report the results of simulations 

clone on these three two-dimensional lattices (NN, TR, NNN) tbr q varying from 2 and 

~ .  We used different random number generators and different updating orders (regular 

or random), but the asymptotic exponents seem to be the same. Also the exponents 

seem to be the same whether the spin always selects the color dominating among its 

neighbors, or compares its present energy with that obtained by flipping to a randomly 

selected color. We used lattice sizes up to 3000 × 3000 and up to 105 sweeps through 

the lattice (which measure the time t). Both one-word-per-spin and multispin coding 

techniques [23] were used, and in total of the order of 103 workstation hours were 

spent. 
Fig. 1 illustrates the main behavior, for q = 3,7, and ~ ,  for the three lattices. Only 

the square lattice with nearest neighbor interactions (NN), for large enough q shows 

blocking, i.e. a flattening of the decay of F ( t )  towards zero 0. For q = 3 no evidence for 

blocking is seen in the case of the NN square lattice. For the other two lattices (TR and 

NNN), even high q values showed no indication of blocking, for millions of sites and 
thousands of Monte Carlo steps. (For q = 4 on the NN lattice, the effective exponent 
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Fig. I. Frozen fraction versus time for the square lattice with nearest neighbor interactions (NN) ,  the triangular 
lattice (TR) and the square lattice with nearest and next to nearest neighbor interactions (NNN) .  The system 
size is L = 1000. Parts ( a ) , ( b ) , ( c )  correspond to q = 3, 7, oo. 

decreased smoothly with increasing time, possibly towards zero, with t < 4 × 104 in a 
2000 × 2000 lattice; from q = 5 the blocking looks similar up to q = co.) 

Naively one might think that the three-state Potts model should lead to a rapid 
blocking of the phase separation, for the square lattice with four neighbors: if the upper 
part of the lattice has color I, and the lower half is vertically divided into the left half 
with color 2 and the right half with color 3, then each of the spins has at least two 
neighbors of its own color, and at most one neighbor for each of the other two colors. 
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Fig. 1 --continued. 

Thus nothing moves at zero temperature. Apparently, such blocking configurations only 

occur for q > 4. For q = 3, they are constantly removed by disturbances coming from far 

away. This is similar to bootstrap percolation [22] (where an empty square surrounded 

by a fully occupied plane is completely stable if sites remain occupied only if at least 

three of their tour neighbors on the square lattice are occupied). There too, disturbances 

fi-om far away remove the blocking, and the apparent blocking concentration for finite 
lattices vanishes logarithmically if the lattice size goes to infinity. 

If t --~ w at fixed linear lattice dimension L, finite-size effects appear if the domain 

size approaches the order of L. Fig. 2 illustrates that finite-size corrections become 
visible at about t ~ L2/10. Fig. 3 shows, however, that for L = 1000 and more and 

t < 104 such effects can be neglected: the blocking for q > 4 on the NN lattice does 

not seem to be a finite-size effect. Of course, we cannot exclude that blocking would 
occur also in the other cases if we would look at longer times for larger lattices. 

The difference between q < 4 and q > 4 in the nearest-neighbor square lattice 

(unblocked versus blocked, respectively), which is not seen for the other two lattices, 
shows universality for 0 to be invalid. For the other two lattices (TR and NNN), our data 

lead, nevertheless, to the same estimate of 0 given in Table 1. However, as q increases, 

the data, in a log-log plot, show some curvature, indicating that the asymptotic regime 

has not yet been reached, so that the estimates of 0 given in Table 1 are just effective 
exponents valid for the range t < 10 4. 

An important property of domain growth problems is obviously the time dependence 
of the linear size of domains D (t) [ 7,6,8,20,21 ]. Under the assumption that the structure 
of the domain boundaries is not fractal, this domain size can be related to the energy 
(per site) E ( t )  by 

D ( t )  ~_ E - I  ( t )  , (2) 
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Fig. 2. Finite size effects for q = 7 and L = 2 0 , 4 0 , 8 0  (averaged over many samples) for the two lattices 
( N N  and  N N N ) .  

because at zero temperature there is no contribution to the energy coming from the bulk 
of the domains [6]. We measured the energy E ( t )  versus time and found results very 

similar to those obtained for F ( t ) ,  

E ( t )  ~ t - O  , (3) 

with blocking effects for the NN square lattice and only effective exponents (due to 
curvature) for the other two lattices. This is in full agreement with previous works 
[8,20] who found that the effective exponent n of the domain size D ( t )  ,-~ t n is 
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test for size effect: q=3 (decay) and q =  10 (plateau), L = 501, 1000, 2000, 3000 
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Fig. 3. Comparison of F(t) for L = 1000,2000,3000 for NN (the square lattice with nearest neighbor 
interactions). (Small dots: L = 501; solid line and squares: L = 1000; crosses and diamonds: L = 2000 
and 3000.) q = 3 leads to decay (negative slope) and q = 10 to blocking (approach towards plateau), both 
independently of L. Only for L = 500 are size effects visible. 

Table I 
The exponents O, ~b, and ~b as a function of q 

q 0 ~p ~b 

2 .21 .51 .44 
3 .29 .48 .65 
4 (.36) (.49) .77 
5 (.39) (.45) .86 
7 (.44) (.44) 1.01 
12 (.56) (.45) 1.17 
50 (.66) (.45) 1.57 
oo (.86) (.46) 2.0 

The values in parentheses are just effective exponents, as the log-log plots showed some curvature. 

less than 1 /2  whereas  one  expects  n = 1 /2  in the asymptot ic  regime.  We did a long 

s imula t ion  for  q = 7, and this conf i rmed that the effect ive exponent  ~O increases steadily 

with t ime, in full  compat ib i l i ty  with ~p = 1 /2  asymptotically.  

Surpris ingly,  universal i ty  can be part ial ly restored i f  instead o f  t ime t we use energy 

E ( t )  as the variable  to express a power  law for the frozen fraction F ( t ) ,  

F ~ E ~b . (4)  

The  data show much  less curvature  than in the case o f  0 or  o f  ~ and the exponent  ~b 

measured  that way is given in Table 1. For  q < 7, all the data corresponding to the 

three latt ices give roughly  compat ib le  values for ~b whereas for q larger than 7, one  can 

see a d i f fe rence  in the long t ime l imit  be tween the blocked ( N N )  and the unblocked 
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Fig. 4. Log-log plot of F(t) versus E( t )  for the three lattices when q = 3, 7, oc. Except for HN at infinite q, 

we do not regard the minor differences in the slopes as asymptotically significant. 

(TR and N N N )  cases (Fig. 4) .  When blocking effects are visible, (q > 7 on the NN 
lattice), the range of  variation of  the energy is too small to allow a reliable prediction 

of  an exponent. 
The values of  ~b given in Table 1 represent the main result of  this work. Of course 

it would be interesting to develop a theory able to predict these exponents. So far we 
could only prove that ~b > 2 for q = o~: if the size of  domains is D(t), certainly 
F(t) < D(t)-2 since (for q = oc)  there is at most one spin in each domain which 
never flipped since the beginning of  the simulation. Then using the fact that at zero 
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Fig. 4 - -  continued. 

temperature D ( t )  - I  <_ E ( t ) ,  one finds that ~b > 2. It is remarkable that 2 seems to be 

the right value, meaning probably that domains do not move much while they grow. 

For large q, our data suggest that & is different in the blocked (NN) and in the 

unblocked (TR and NNN) case. Certainly, the growth due to the motion of  defects 

in blocked configurations would deserve more attention. In particular, since the growth 

mechanisms are completely different in the unblocked and in the blocked case, it would 

be interesting to know whether properties other than time dependences are sensitive to 
this difference. 

Several approximate schemes have been discussed to describe growth processes [ 1,3- 

5,21 ]. Some of  them give a remarkable agreement with the results of  simulations. It 

would be an additional test on their quality if they were able to predict ~b accurately. 

Lastly, it would be interesting to attack the problem at finite temperature. Obviously 

at finite temperature, the number of  spins which never flip decreases exponentially with 

time. However, it is meaningful to ask what fraction of  the volume remains always in the 

same phase (at least when the size of  domains is much larger than the bulk correlation 

length). The main problem is to define the microscopic quantity allowing to measure 

that property in Monte Carlo simulations. 

PMCO and DS thank H.J. Herrmann for hospitality at ESPCI, and the Brazilian 

agencies FAPERJ, CNPq, CAPES and FINEP for partial support of  PMCO. 
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