
HAL Id: hal-03285433
https://hal.science/hal-03285433

Submitted on 24 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extracting Context-Free Grammars from Recurrent
Neural Networks using Tree-Automata Learning and A*

Search
Benoît Barbot, Benedikt Bollig, Alain Finkel, Serge Haddad, Igor

Khmelnitsky, Martin Leucker, Daniel Neider, Rajarshi Roy, Lina Ye

To cite this version:
Benoît Barbot, Benedikt Bollig, Alain Finkel, Serge Haddad, Igor Khmelnitsky, et al.. Extracting
Context-Free Grammars from Recurrent Neural Networks using Tree-Automata Learning and A*
Search. ICGI 2021 - 15th International Conference on Grammatical Inference, Aug 2021, New York
City / Virtual, United States. pp.113-129. �hal-03285433�

https://hal.science/hal-03285433
https://hal.archives-ouvertes.fr

Journal of Machine Learning Research 1–19

Extracting Context-Free Grammars from Recurrent Neural
Networks using Tree-Automata Learning and A* Search∗

Benôıt Barbot benoit.barbot@u-pec.fr
Université Paris-Est Créteil, France

Benedikt Bollig bollig@lsv.fr
Alain Finkel alain.finkel@lsv.fr
Serge Haddad haddad@lsv.fr
Igor Khmelnitsky khmelnitsky@lsv.fr
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, Gif-sur-Yvette, France

Martin Leucker leucker@isp.uni-luebeck.de
Institute for Software Engineering and Programming Languages, Universität zu Lübeck, Germany

Daniel Neider neider@mpi-sws.org
Rajarshi Roy rajarshi@mpi-sws.org
Max Planck Institute for Software Systems, Kaiserslautern, Germany

Lina Ye linaye@lri.fr

Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, Inria, Gif-sur-Yvette, France

CentraleSupélec, Université Paris-Saclay, France

Abstract

This paper presents (i) an active learning algorithm for visibly pushdown grammars and
(ii) shows its applicability for learning surrogate models of recurrent neural networks
(RNNs) trained on context-free languages. Such surrogate models may be used for ver-
ification or explainability. Our learning algorithm makes use of the proximity of visibly
pushdown languages and regular tree languages and builds on an existing learning algo-
rithm for regular tree languages. Equivalence tests between a given RNN and a hypothesis
grammar rely on a mixture of A* search and random sampling. An evaluation of our
approach on a set of RNNs from the literature shows good preliminary results.

1. Introduction

Context-free languages (CFLs), which are generated by context-free grammars (CFGs),
abound in many application areas, for example when facing formal languages and applica-
tions such as programming languages and compilers, but especially also when processing
natural language or controlled natural language. Visibly pushdown languages (VPLs), intro-
duced by Alur and Madhusudan (2004, 2009), are a robust subclass of CFLs with interesting
closure and decidability properties, as explained in further detail below—and are the class
of languages studied in this paper. The idea is that the underlying pushdown automata are
input-driven (Mehlhorn, 1980), i.e., every letter from the given alphabet is assigned a type
among push, pop, and internal (we therefore deal with a visibly pushdown alphabet).

∗ Extended version with appendix. This work was partly supported by the PHC PROCOPE 2020 project
LeaRNNify (number 44707TK), funded by Campus France and DAAD, and by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) grant number 434592664.

© B. Barbot, B. Bollig, A. Finkel, S. Haddad, I. Khmelnitsky, M. Leucker, D. Neider, R. Roy & L. Ye.

Learning representations or models such as (neural) networks, grammars, or automata
from given examples or by querying underlying systems is an important tool when working
with such languages. It has been considered in the field of machine learning for sequence-
processing tasks such as time-series prediction or sentiment analysis, but also in the field of
grammatical inference (Vaandrager, 2017). While in the first setting, typically, a finite set
of words is given as a training set from which a model such as a recurrent neural network
(RNN) is derived, in the second setting, further queries to a so-called minimally adequate
teacher (MAT) may be asked to shape the learning result. A prominent MAT learning
algorithm is Angluin’s L∗ for regular word languages (Angluin, 1987).

In this paper, as a first contribution, we present a novel learning algorithm for VPLs,
given a minimally adequate teacher.

An important application area of such a learning algorithm, as pursued in this paper,
is to derive so-called surrogate models, also known as approximation models, of recurrent
neural networks (RNNs). RNNs play an important role in natural-language processing or
time-series prediction, amongst others. While a neural network is often difficult to analyze
and to understand, the surrogate model shares essential features of the underlying network
but allows for simpler means for its analysis and explainability.

As a second contribution, we show that our algorithm can indeed be used for deriving a
so-called visibly pushdown grammar (VPG) usable for explaining the language accepted by
an underlying RNN. To this end, we perform queries to the network and infer an automaton
model which is then translated into a grammar. The latter provides structural information
of the underlying network which can hardly be obtained from the network directly.

Our Approach. As mentioned above, our learning algorithm is for the class of VPLs.
Alur and Madhusudan (2004) established a close relationship between VPLs and regular tree
languages. We exploit this relationship and use an existing learning algorithm for regular
tree languages (Sakakibara, 1992; Drewes and Högberg, 2007) to derive a grammar-based
representation of a VPL, resulting in a MAT learning algorithm.

This is similar to Sakakibara’s algorithm (Sakakibara, 1992), which infers CFGs in
terms of tree automata learned using structural queries. In our case, we also adopt tree
interpretations of the words that are queried, but with not exactly the same structure.

In fact, Kumar et al. (2006) and Isberner (2015) had already pointed out that it would
be possible to use the algorithm of Sakakibara (1992) for learning regular tree languages
to obtain a tree representation of a VPL, albeit mentioning two potential obstacles for
this. First, the final visibly pushdown automaton is non-deterministic, requiring thus the
exponential cost in obtaining a deterministic one. Furthermore, certain structural properties
cannot be guaranteed that are expected from recursive programs. Our work focusing on
practical learning of VPLs shows that these critical issues can be well handled by adapting
the improved version of (Sakakibara, 1992) by Drewes and Högberg (2007) and by leveraging
the computational power of RNNs.

One advantage of our algorithm as opposed to other algorithms for classes of CFLs is
that it is easier to understand as it is based on the case for tree languages. Moreover, its
correctness essentially follows from the correctness of the tree-learning algorithm so that,
in principle, we can plug-in any other tree-automata learning algorithm having the same

2

interfaces. Another advantage is its extensibility to non-context-free languages, insofar as
they have a representation as tree languages (Madhusudan and Parlato, 2011).

Application to RNNs. Our work is inspired by Yellin and Weiss (2021a), who infer
CFGs from RNNs by extracting a sequence of deterministic finite automata (DFAs) using
the algorithm proposed by Weiss et al. (2018), and exploiting the notion of pattern rule sets
(PRSs), from which the CFG rules are derived. Experiments show that many interesting
CFLs can be learned. There are nevertheless some difficulties to overcome. For example,
a sequence of extracted DFAs often contains some noise, either from the RNN training or
from the application of the L∗ algorithm. Consequently, incorrect patterns are frequently
inserted into the DFA sequence, which can deviate from the PRS. To handle this, a voting
and threshold scheme has been proposed such that the languages of the given RNNs were
mostly recovered in terms of CFGs, while several others were partially or incorrectly learned.

The class of VPLs is incomparable to the language class handled by Yellin and Weiss
(2021a) (cf. Example 2 in Section 2). It must be fairly noted that our algorithm relies
on a partitioning of the input alphabet into push, pop, and internal symbols, which is not
required by Yellin and Weiss (2021a). However, it turns out that all the 15 benchmark
languages considered by Yellin and Weiss (2021a) are VPLs.

In Yellin and Weiss (2021a), checking equivalence between the given RNN and a hy-
pothesis grammar relies on an orthogonal learned abstraction of the RNN. In our case, the
equivalence query relies on two complementary tests to look for words belonging to their
symmetric difference, i.e., words in only one of the two corresponding languages.

Apart from two exceptions, the languages from Yellin and Weiss (2021a) are very well
learned with our approach, even some of the languages that are only partially generalized by
applying the other approach. This demonstrates that our algorithm may be a worthwhile
alternative when dealing with structured data (annotated linguistic data, programs, XML
documents, etc.), i.e., in presence of a visibly pushdown alphabet.

Further Related Work. There are a wide range of learning algorithms for regular lan-
guages. Let us mention some of them. Angluin (1982) used reversibility to identify a class of
regular languages from positive data alone using DFAs. Then, Angluin (1987) showed that
the class of all regular languages could be learned using the L∗ algorithm in the MAT model,
where the teacher can answer both membership queries and equivalence queries. Rivest and
Schapire (1993) proposed binary search to determine a single suffix of a counterexample that
causes refinement, while Kearns and Vazirani (1994) suggested constructing a discrimina-
tion tree instead of the observation table. Then, Balcázar et al. (1997) provided a unified
view on these learning algorithms, resulting in the observation pack framework such that
one can construct an automaton from them. Isberner et al. (2014) presented the TTT algo-
rithm, which is extremely efficient, especially in presence of long counterexamples, thanks
to a refined counterexample-analysis and redundancy-free organization of observations.

Some researchers adapted learning algorithms for regular languages to learn CFLs. For
example, Clark and Eyraud (2007) presented an exact analogue of that proposed by Angluin
(1982) for a limited class of CFLs by combining the correspondence of non-terminals to the
syntactic congruence class with weak substitutability. Then, Clark (2010) expanded this
approach by adopting an extended MAT to answer equivalence queries where the hypothesis
may not be in the learnable class. Yoshinaka and Clark (2010) extended the syntactic

3

congruence to tuples of strings to learn efficiently some sorts of multiple CFGs. Even
though the above algorithms for learning CFLs have shown some promising results, they
are limited to some constrained class. The learnability of the whole class of CFLs is widely
believed to be intractable (de la Higuera, 2005).

Since decades, some approaches have been developed to extract simpler and explainable
surrogate models from a neural network to facilitate comprehension and verification (Thrun,
1994; Omlin and Giles, 1996). New algorithms for extracting (weighted or unweighted)
DFAs from RNNs have been proposed recently, with promising applications in verification
(Weiss et al., 2018; Mayr and Yovine, 2018; Ayache et al., 2018; Rabusseau et al., 2019; Weiss
et al., 2019; Mayr et al., 2020). They may also turn out to be useful for generalizations to
other, more complex classes of languages. Up to now, however, there has been little research
on extracting CFGs from RNNs. With the exception of (Yellin and Weiss, 2021a), existing
approaches rely on an RNN augmented with external stack memory, either continuous or
discrete (Das et al., 1992; Sun et al., 1997). In such a hybrid system, besides the classical
input symbols, the input includes also what is read from the top of the stack.

Outline. Section 2 recalls basic notions such as CFLs, CFGs, and VPLs. Trees and tree
automata are presented in Section 3. In Section 4, we recall the tree-automata learning
algorithm that we exploit, in Section 5, to learn grammars for VPLs. In Section 6, we apply
our algorithm to inferring grammars from RNNs. We conclude in Section 7.

2. Context-Free and Visibly Pushdown Grammars

In this section, we recall standard concepts such as context-free languages and grammars.
We also present their subclass of visibly pushdown languages.

2.1. Context-Free Languages and Grammars

Let Σ be an alphabet, i.e., a nonempty finite set. A word over Σ is a finite sequence
w = a1 . . . an of letters ai ∈ Σ. The length |w| of w is n. The unique word of length 0 is the
empty word, denoted by ε. By Σ∗, we denote the set of all finite words over Σ.

Any set L ⊆ Σ∗ is called a language. For two languages L1, L2 ⊆ Σ∗, we let L1 ⊕ L2

denote their symmetric difference, i.e., the language (L1 \ L2) ∪ (L2 \ L1).
For a finite set U , we denote by P(U) its powerset and by |U | its size.

Definition 1 A context-free grammar (CFG) over Σ is a tuple G = (N,S,→) where N
is a finite set of nonterminal symbols with N ∩ Σ = ∅, S ∈ N is the start symbol, and
→ ⊆ N×(Σ∪N)∗ is the finite set of rules. A rule (A,w) ∈ → is usually written as A→ w.

The language L(G) ⊆ Σ∗ of G is defined using a global rewrite relation⇒ ⊆ (Σ∪N)∗×
(Σ∪N)∗ defined by uAv ⇒ uwv for all rules A→ w and u, v ∈ (Σ∪N)∗. With this, we let
L(G) = {w ∈ Σ∗ | S ⇒∗ w} where ⇒∗ denotes the reflexive transitive closure of the binary
relation ⇒.

We say that L ⊆ Σ∗ is a context-free language (CFL) if there is a CFG G over Σ such that
L(G) = L. It should be noted that the class of CFLs enjoys equivalent characterizations,
e.g., via pushdown automata.

4

Example 1 For n ≥ 1, consider the grammar Gn given by S → ε | piSqiS (for all
i ∈ {1, . . . , n}) over the alphabet Σn = {p1, . . . , pn, q1, . . . , qn}. Hereby, as usual, | separates
several possible right-hand sides of rules. Then, L(Gn) is the Dyck language of order n of
well-bracketed words, where pi is an opening and qi its corresponding closing bracket.

2.2. Visibly Pushdown Languages and Their Grammars

The class of visibly pushdown languages has been introduced by Alur and Madhusudan
(2004, 2009). It was originally defined in terms of visibly pushdown automata, but can
be equivalently characterized by a subclass of CFGs. VPLs constitute a robust class that,
unlike the class of CFLs, is closed under complement.

The idea is to assign to every letter from an alphabet a precise role. Speaking in terms
of automata, every letter is either a push, a pop, or an internal symbol. This clearly is a
restriction: A pushdown automaton for the CFL {anban | n ∈ N} has to perform a certain
number of push operations while reading the first n occurrences of a before the b, and pop
operations when reading the remaining letters a. On the other hand, {anbn | n ∈ N} can be
recognized by a pushdown automaton where a stack symbol is pushed when reading an a
and a stack symbol is popped when reading a b. Accordingly, a visibly pushdown alphabet is
an alphabet Σ = Σpush]Σpop]Σint that is partitioned into push, pop, and internal letters.

For the rest of the paper, Σ will always denote a given visibly pushdown alphabet.

Definition 2 A visibly pushdown grammar (VPG) over Σ is a CFG (N,S,→) such that
every rule has one of the following forms (where A,B,C ∈ N): A → ε, or A → cB with
c ∈ Σint, or A→ aBbC with a ∈ Σpush and b ∈ Σpop.

A language L ⊆ Σ∗ is called a visibly pushdown language (VPL) over Σ if there is a
VPG G over Σ such that L(G) = L.

Example 2 For n ≥ 1, consider again the grammar Gn from Example 1. In fact, Gn
is a VPG for Σpush = {p1, . . . , pn}, Σpop = {q1, . . . , qn}, and Σint = ∅ so that L(Gn) is a
VPL. Another example of a VPL is {anxbn | n ∈ N} where Σpush = {a}, Σpop = {b}, and
Σint = {x}. This language is not captured by the PRS-formalism presented by Yellin and
Weiss (2021a) (cf. (Yellin and Weiss, 2021b, Section C.3)).

We observe that, due to the form of permitted rules, a VPL L can only contain words
w ∈ Σ∗ that are well-formed in a certain sense. The set WΣ of well-formed words over Σ is
defined as the language L(GΣ) of the “most permissive” VPG: GΣ = ({S}, S,→) with set
of rules {S → ε} ∪ {S → cS | c ∈ Σint} ∪ {S → aSbS | a ∈ Σpush and b ∈ Σpop}.

The general framework by Alur and Madhusudan (2004, 2009) can also cope with words
that have unmatched push or pop positions. For simplicity, we restrict here to well-formed
words. However, the algorithms can be extended straightforwardly to the general case.

With w = a1 . . . an ∈ WΣ, we can associate a unique binary relation y ⊆ {1, . . . , n} ×
{1, . . . , n} connecting a push with a unique pop position: For i, j ∈ {1, . . . , n}, we let iy j
if i < j, ai ∈ Σpush, aj ∈ Σpop, and ai+1 . . . aj−1 is well-formed. We call the pair (w,y)
(with w ∈ WΣ) a nested word. A nested word over Σ with Σpush = {a, b}, Σpop = {a, b},
and Σint = {c} is depicted in Figure 1. We do not exploit nested words in this paper, but
it is helpful to think of well-formed words as nested words when we encode them as trees.

5

a a c b b a b

Figure 1: A nested word

a

a

b

b

�

c �

b

�

a �

Figure 2: Its encoding as a tree

3. Trees and Regular Tree Languages

The reason why VPLs are so robust is that they are close to tree languages. In fact, nested
words as introduced in the previous section can be represented as trees. Trees are defined
over a ranked alphabet, i.e., an alphabet Γ = Γ0] Γ1] . . .] Γkmax that is partitioned into
letters of arity k ∈ {0, . . . , kmax} where kmax ∈ N is the maximal arity. Unless otherwise
stated, we let Γ be a fixed ranked alphabet.

A tree t over Γ is a term that is generated according to the grammar t ::= a(t1, . . . , tk),
where k ranges over {0, . . . , kmax} and a over Γk. Figure 2 depicts a syntax-tree-based
representation of the tree a(a(c(�()), b(b(�(), a(�())))), b(�())) over the ranked alphabet
given by Γ0 = {�}, Γ1 = {a, b, c}, and Γ2 = {a, b}.

The size |t| of t is the number of its nodes, i.e., the number of occurrences of symbols
from Γ. Let Trees(Γ) denote the set of all trees over Γ.

The algorithm by Drewes and Högberg (2007), on which our approach is based, infers
regular tree languages in terms of tree automata (later, when a tree automaton represents
a VPL, we will be able to extract a corresponding VPG representation).

Definition 3 A nondeterministic finite (bottom-up) tree automaton (NTA) over Γ is a
tuple B = (Q, δ, F) where Q is the nonempty finite set of states, F ⊆ Q is the set of final
states, and δ :

⋃
k∈{0,...,kmax}(Γk × Q

k) → P(Q) is the transition function. We will write
δ(a(q1, . . . , qk)) instead of δ(a, q1, . . . , qk).

We call B deterministic (a DTA) if |δ(a(q1, . . . , qk))| = 1 for all arguments a, q1, . . . , qk.
Then, δ can also be seen as a total (i.e., complete) function δ :

⋃
k∈{0,...,kmax}(Γk×Q

k)→ Q.
We let DTA(Γ) denote the set of DTAs over Γ.

From δ :
⋃
k∈{0,...,kmax}(Γk × Q

k) → P(Q), we obtain a function δ̂ : Trees(Γ) → P(Q)

letting, for an arity k ∈ {0, . . . , kmax}, a ∈ Γk, and t1, . . . , tk ∈ Trees(Γ), δ̂(a(t1, . . . , tk)) =⋃
q1∈δ̂(t1),...,qk∈δ̂(tk) δ(a(q1, . . . , qk)). We can now define the tree language recognized by B as

T (B) = {t ∈ Trees(Γ) | δ̂(t) ∩ F 6= ∅}.
We call a tree language T ⊆ Trees(Γ) regular if it is recognized by some NTA over Γ.

We now state some important and well-known facts about tree automata. For more
details, we refer the reader to (Comon et al., 2007).

Fact 1 (minimal DTA) For every NTA B = (Q, δ, F), there is a unique (up to isomor-
phism) minimal DTA B′ = (Q′, δ′, F ′) such that T (B′) = T (B). We can assume |Q′| ≤ 2|Q|.

6

The index of a regular tree language T is the number of states of the minimal DTA
recognizing T .

While DTAs capture the class of regular tree languages, deterministic top-down finite
tree automata (Comon et al., 2007), which we do not define here, are strictly less expressive.

Fact 2 (membership and emptiness) (i) Given an NTA B and a tree t ∈ Trees(Γ),
one can decide in polynomial time whether t ∈ T (B). For DTAs, there is a linear-time
algorithm. (ii) For a given NTA B, one can decide in polynomial time whether T (B) 6= ∅.

4. Learning Deterministic Tree Automata

In her seminal work, Angluin (1987) provided the algorithm L∗, which can infer a deter-
ministic finite automaton for a given regular word language that can only be accessed via
two types of queries: membership queries (MQs) and equivalence queries (EQs). The al-
gorithm has later been extended, first by Sakakibara (1992) to CFGs and then by Drewes
and Högberg (2007) to tree automata. The latter algorithm, called TL∗ in this paper, can
infer a DTA over a fixed ranked alphabet Γ for a given (unknown) regular tree language T .
Hereby, T can be accessed through membership queries and equivalence queries, which are
implemented by “oracle” mappings MQtree : Trees(Γ) → {yes, no} and EQtree : DTA(Γ) →
{yes} ∪ Trees(Γ):

• We say that MQtree is sound for T if, for all t ∈ Trees(Γ), MQtree(t) = yes iff t ∈ T .

• We say that EQtree is counterexample-sound for T if, for all B ∈ DTA(Γ) and t ∈
Trees(Γ) such that EQtree(B) = t, we have t ∈ T ⊕ T (B) (i.e., t is a counterexample).

• We call EQtree equivalence-sound for T if, for all B ∈ DTA(Γ) such that EQtree(B) =
yes, we have T = T (B).

These queries act as “oracles” and their answers are delivered instantaneously. Ideally,
one assumes that EQtree, which checks the current hypothesis computed by the learning
algorithm, is both counterexample- and equivalence-sound. In practice, this is not always
the case. In fact, in our experiments, we will make weaker assumptions on EQtree.

The algorithm TL∗ by Drewes and Högberg (2007) takes as input a ranked alphabet Γ
and two functions MQtree : Trees(Γ) → {yes, no} and EQtree : DTA(Γ) → {yes} ∪ Trees(Γ).
If TL∗(Γ,MQtree,EQtree) terminates, it outputs a DTA over Γ.

Fact 3 (Drewes and Högberg (2007)) Let T ⊆ Trees(Γ) be a regular tree language, say
with index n (the minimal DTA for T has n states). Suppose MQtree is sound for T and that
EQtree is both counterexample- and equivalence-sound for T . Then, TL∗(Γ,MQtree,EQtree)
terminates and outputs the unique minimal DTA B with n states such that T (B) = T . The
overall running time is polynomial in |Γ|, nkmax , and the maximal size of a counterexample
returned by EQtree.

Note that, in the next sections, kmax will be fixed. However, unlike in the case of word
automata, the size of a smallest counterexample tree returned for an equivalence query may
be exponential in the size of the target automaton.

7

5. Learning Visibly Pushdown Grammars

In this section, we exploit tree-automata learning for the inference of VPLs in terms of
VPGs. The derived algorithm will then be exploited to extract grammars from RNNs.

5.1. Encoding Nested Words as Trees

The main link between words and trees is provided by an encoding of well-formed words as
trees over a suitable ranked alphabet (Alur and Madhusudan, 2004, 2009).

Let Σ = Σpush] Σpop] Σint be a visibly pushdown alphabet. To encode words from
WΣ as trees, we introduce a suitable ranked alphabet Γ = Γ0] Γ1] Γ2 letting Γ0 = {�},
Γ1 = Σpop ∪ Σint, and Γ2 = Σpush. That is, the maximal arity is 2. For the rest of this
section, we fix Σ and the associated ranked alphabet Γ.

To a well-formed word w ∈ WΣ, we inductively assign a (parse) tree ⟪w⟫ ∈ Trees(Γ) as
follows: (i) ⟪ε⟫ = �(). (ii) If w = aw1bw2 such that a ∈ Σpush, b ∈ Σpop, and w1 and w2

are well-formed, then ⟪w⟫ = a(⟪w1⟫, b(⟪w2⟫)). (iii) If c ∈ Σint and w is well-formed, then
⟪cw⟫ = c(⟪w⟫). The encoding of the word from Figure 1 is illustrated in Figure 2.

Given L ⊆ WΣ, we let ⟪L⟫ = {⟪w⟫ | w ∈ L} ⊆ Trees(Γ). Moreover, we let TΓ = ⟪WΣ⟫
be the set of trees that encode a well-formed word. Note that ⟪.⟫ : WΣ → TΓ is injective
and, therefore, a bijection. Indeed, its inverse mapping, which we denote by J.K, is given by
J�()K = ε, Ja(t1, b(t2))K = aJt1KbJt2K and Jc(t)K = cJtK. For T ⊆ TΓ, let JT K = {JtK | t ∈ T}.

Let us state some known facts on the relation between VPGs and NTAs/DTAs due to
Alur and Madhusudan (2004, 2009).

Fact 4 For every VPL L over Σ, there is an NTA (or DTA) B over Γ such that T (B) =
⟪L⟫. In particular, there is a DTA Bparse over Γ with a constant number of states such that
T (Bparse) = TΓ.

As we will extract grammars from tree automata, the following is particularly important:

Fact 5 Let B be an NTA over Γ such that T (B) ⊆ TΓ. One can compute, in polynomial
time, a VPG nta2vpg(B) over Σ such that L(nta2vpg(B)) = JT (B)K.

We give the translation of an NTA into a VPG, as the latter will yield the representation
of a VPL learned in terms of the NTA. Suppose B = (Q, δ, F) is an NTA over Γ such that
T (B) ⊆ TΓ. We define nta2vpg(B) = (N, I,→) as follows. In fact, instead of just one start
symbol, we assume a set of start symbols I ⊆ N . This is no more expressive than having
one single start symbol, as we can always introduce a fresh start symbol, leading to all the
right hand sides of rules associated with symbols from I. Intuitively, the grammar derives
a run of the NTA top-down, where states are successively replaced with input letters. So
we let N = Q and I = F . Moreover, the set of rules contains (i) q̂ → ε for all q̂ ∈ δ(�());
(ii) q̂ → cq for all c ∈ Σint, q ∈ Q, and q̂ ∈ δ(c(q)); (iii) q̂ → apbq for all a ∈ Σpush, b ∈ Σpop,
and p, q, q′, q̂ ∈ Q such that q′ ∈ δ(b(q)) and q̂ ∈ δ(a(p, q′)).

For completeness, let us mention some connections with visibly pushdown automata
(VPAs), which are effectively equivalent to VPGs w.r.t. expressive power so that we could
also learn VPAs instead of VPGs (cf. Appendix A or (Alur and Madhusudan, 2004, 2009)

8

Algorithm 1 Implementing MQtree in
terms of MQvpl

1 MQtree(t):

2 if t ∈ T (Bparse)
3 then return MQvpl(JtK)
4 else return no

Algorithm 2 Implementing EQtree in terms
of EQvpl

1 EQtree(B):

2 if T (B) ⊆ T (Bparse)
3 then return EQvpl(B)

4 else

5 pick t ∈ T (B) \ T (Bparse)
6 return t

for the definition of VPAs). For an NTA B over Γ such that T (B) ⊆ TΓ, one can compute,
in polynomial time, a VPA A over Σ such that L(A) = JT (B)K. Conversely, for a VPA A
over Σ, one can compute, in polynomial time, an NTA B over Γ such that T (B) = ⟪L(A)⟫.
Hence, there is also a DTA for ⟪L(A)⟫ of exponential size. In general, this exponential
blow-up cannot be avoided even when we start from a deterministic VPA.

5.2. Learning VPLs in Terms of VPGs

Recall that Σ is a fixed visibly pushdown alphabet and Γ is the derived ranked alphabet.
We now present an algorithm, called VPL∗ in the following, that learns a VPL L ⊆ WΣ

in terms of a DTA for the tree language ⟪L⟫ ⊆ TΓ that can then be translated into a VPG
according to Fact 5. In particular, the equivalence query will take a DTA as argument,
rather than a VPA. Essentially, we rely on the algorithm TL∗. However, equivalence and
membership queries are now answered w.r.t. the VPL L. More precisely, we deal with a
mapping MQvpl : WΣ → {yes, no} and a partial mapping EQvpl : DTA(Γ) → {yes} ∪ TΓ

whose domain is the set of DTAs B ∈ DTA(Γ) such that T (B) ⊆ TΓ:

• We call MQvpl sound for L if, for all w ∈ WΣ, we have MQvpl(w) = yes iff w ∈ L.

• We say that EQvpl is counterexample-sound for L if, for all B ∈ DTA(Γ) such that
T (B) ⊆ TΓ and all t ∈ TΓ, EQvpl(B) = t implies JtK ∈ L⊕ JT (B)K.

• We say that EQvpl is equivalence-sound for L if, for all B over Γ such that T (B) ⊆ TΓ,
EQvpl(B) = yes implies L = JT (B)K.

Our algorithm VPL∗ for learning VPLs uses TL∗ as a black-box. Therefore, we define a
mapping MQtree : Trees(Γ)→ {yes, no} and a mapping EQtree : DTA(Γ)→ {yes} ∪ Trees(Γ)
that implement the membership and equivalence queries for tree languages, respectively
(cf. Algorithms 1 and 2). The algorithm VPL∗ (Algorithm 3) then simply calls TL∗ with
parameters (Γ,MQtree,EQtree) and translates the resulting DTA into a VPG.

Algorithm 1. Membership query MQtree(t) with t ∈ T (Bparse) = TΓ is answered in terms
of MQvpl(JtK) (line 3). If, on the other hand, t 6∈ T (Bparse), the query returns no (line 4).

Algorithm 2. Recall that we are looking for a tree automaton for the language T =
⟪L⟫, which is included in T (Bparse). We will, therefore, first check whether this inclusion
also applies to the current hypothesis DTA B, i.e., whether T (B) ⊆ T (Bparse). If not,

9

Algorithm 3 VPL∗

1 B ← TL∗(Γ,MQtree,EQtree) /∗ MQtree and EQtree from Algorithms 1 and 2 ∗/
2 return nta2vpg(B)

then we can find a tree t ∈ T (B) \ T (Bparse), which serves as a counterexample to the
equivalence query (line 5). So suppose that T (B) ⊆ T (Bparse). Let us assume that EQvpl

is both counterexample- and equivalence-sound. If it returns a tree t = EQvpl(B), then
JtK ∈ L ⊕ JT (B)K so that t can indeed be used to refine the hypothesis B. If, on the other
hand, EQvpl(B) = yes, then L = JT (B)K, i.e., T (B) = ⟪L⟫, so that we can return B as a
suitable tree-language representation. Algorithm 3 then returns the VPG G = nta2vpg(B).
According to Fact 5, we have L(G) = JT (B)K = L.

Theorem 4 Let L be a VPL and B̂ be the minimal DTA such that T (B̂) = ⟪L⟫. Assume
MQvpl is sound for L and that EQvpl is both counterexample- and equivalence-sound for L.
Then, VPL∗ (Algorithm 3) terminates and eventually returns a VPG G of size polynomial
in the size of B̂ such that L(G) = L. The overall running time is polynomial in |Σ|, the index
of B̂, and the maximal size of a counterexample returned in lines 3 and 6 of Algorithm 2.

See Appendix B for the proof of Theorem 4. Note that, like in TL∗, a smallest coun-
terexample tree returned for an equivalence query may be of exponential size. Also note
that the size of the returned VPG G is at most exponential in the size of a minimal (non-
deterministic) VPA recognizing L.

6. Experiments

We applied Algorithm 3 to recurrent neural networks (RNNs) in order to extract VPGs. We
implemented it in Python 3.6, using the Numpy library.1 Since we are comparing our ex-
tractions to those done in (Yellin and Weiss, 2021a, https://github.com/tech-srl/RNN_
to_PRS_CFG), we use the 15 RNNs they trained, and a modified version of the interface they
wrote to communicate with these RNNs. All benchmarks were performed on a computer
equipped by Intel i5-8250U CPU with 4 cores, 16GB of memory, and Ubuntu Linux 18.03.

The experiments done for this paper are preliminary, yet they show promise and moti-
vate a more in-depth investigation. We describe some ideas for some more in-depth exper-
imentation in the end of the section.

Recurrent Neural Networks. RNNs can be seen as language acceptors. For the purpose
of this paper, it is enough to think of an RNN R as an infinite automaton with infinite state
space Q (e.g., Q = Rdim for some dimension dim ≥ 1), initial state q0 ∈ Q, transition
function δ : Q × Σ → Q, and a mapping score : Q → R (e.g., indicating a probability of
acceptance or of an “end of sequence” token). As usual, δ is extended to δ̂ : Q × Σ∗ → Q
over words by applying δ letter by letter. Then, R computes a (score) function R : Σ∗ → R
by R(w) = score(δ̂(q0, w)). Moreover, given a threshold τ ∈ R, one can associate with R a
language letting L(R) = {w ∈ Σ∗ | R(w) ≥ τ} or using different threshold criteria.

1. The code is available here: https://github.com/LeaRNNify/VPA_learning

10

https://github.com/tech-srl/RNN_to_PRS_CFG
https://github.com/tech-srl/RNN_to_PRS_CFG
https://github.com/LeaRNNify/VPA_learning

Table 1: Definition of some CFLs (X and Y are finite sets of words)

L(X,Y):

S → ε | xSy
(for all x ∈ X and y ∈ Y)

RE -Dyck(X,Y):

S → xAy

A→ xAy | AA | ε
(for all x ∈ X and y ∈ Y)

Dyck1 / X:

S → p1Aq1

A→ p1Aq1 | AA | ε | x
(for all x ∈ X)

Dyckn:

S → piAqi

A→ piAqi | AA | ε
(for all i ∈ {1, . . . , n})

Alternating :

S → A | B
A→ (B) | ε
B → [A] | ε

Dyck2 / X:

S → piAqi

A→ piAqi | AA | ε | x
(for all i ∈ {1, 2} and x ∈ X)

In fact, Yellin and Weiss (2021a) use language-model RNNs where, in addition, every
letter gets a dedicated score in a given state. They define the semantics L(R) as the locally
τ -truncated support where “acceptance” is subject to the condition that the score of every
letter (including “end of sequence”) has a score greater than τ (cf. (Hewitt et al., 2020)).

Several well-known architectures are available to effectively represent RNNs, such as
(simple) Elman RNNs, LSTM (Hochreiter and Schmidhuber, 1997), and GRUs (Cho et al.,
2014). Generally, depending on the architecture, the expressive power of RNNs goes beyond
the regular languages. So it is worthwhile to study extraction methods for classes of CFLs.

Methodology and Results. The 15 CFLs considered by Yellin and Weiss (2021a) are
given in Table 2, together with the CFGs from Table 1. For conciseness, they are defined
in terms of general CFGs. However, it turns out that all of them are VPLs. In most cases,
there is arguably a canonical partition of the alphabet into a visibly pushdown alphabet.
For all these VPLs, we considered the RNNs provided by Yellin and Weiss (2021a), which
were trained on sample sets generated by a probabilistic version of a corresponding CFG.

In our experiments, we used a Kearns-Vazirani variation of TL∗ (cf. Drewes et al. (2011)).
A query MQvpl(w) for a well-formed word w was answered according to the given RNN R,
i.e., MQvpl(w) = yes iff w ∈ L(R). To answer a query EQvpl(B), we used two independent
subroutines that look for counterexample words (of length under 30):

(i) We chose 1500 random words in the current hypothesis language JT (B)K.
(ii) We noticed that the 15 languages represented by the RNNs from (Yellin and Weiss,

2021a) are very sparse (similarly to a lot of other examples of RNN languages from
the literature). Therefore, taking only random samples from the RNN would most
likely produce an empty language. In order to avoid this, we implemented a type of
A∗ exploration (cf. (Russell and Norvig, 2020)) in the rooted directed tree of all words
Σ∗, where each vertex is a word w ∈ Σ∗ and its children are wa for a ∈ Σ. This
word-exploration technique relies on an evaluation function f : Σ∗ → R where the
higher the score of a word the higher its priority to be explored first. The function
we chose for this depended on two things: 1) The average score given to the word by
the RNN and its neighborhood (where the assumption is that the higher the score the
closer we are to a word in the RNN language), and 2) The length of the word, where

11

we preferred shorter words. The function we chose is
f(w) = 1

|w|2
∑

w′∈Σ∗ s.t. |w′|≤dR(ww′)

where R(·) is the score given to the word by the RNN, and the size of the neigh-
borhood was chosen to be d = 4. Using this type of exploration, we generated a set
P (performed once in the beginning of the run) of positive examples from the RNN
language (only well-formed words; timeout of 60 seconds).

Note that EQvpl is counterexample-sound for L(R) but not necessarily equivalence-
sound. It was sufficiently precise on our small set of examples, which leads us to believe
that there is a reasonable chance that a further investigation might reveal that it is well
performing in a more general environment. Though the given trained RNNs have imperfec-
tions, the intended languages are learned in most cases. Table 2 indicates the time needed
to learn a VPG, averaging across five runs, and the number of rules extracted. In most
runs, the extracted VPGs are equivalent to the respective CFGs the RNNs were trained
on. Exceptions are L14 and L15 for which we obtain grammars approximating the respec-
tive languages. This happens due to structural errors in the given RNNs w.r.t. the target
languages.

To give a (successful) example, Table 3 depicts the grammar that was output for L10.

Fixing Mistakes Variation. The previous result can easily be ruined by a wrong sample
of words. For example, we could pick a word that is in the RNN language but not in the
original language. To mitigate this problem, one can do the following: Denote by P the set
of positive examples generated from the RNN, let H be the current hypothesis grammar,
and let pos(H) = |P ∩L(H)|

|P | . Assume that H comes with a counterexample wc and a new

hypothesis H ′. If pos(H ′) < pos(H), then we keep refining both of them, but making sure
that wc cannot be used as a counterexample for H. In the end, we return the hypothesis
which is “closest” to the RNN language, i.e., the one with largest pos(H). For example,
by increasing the sampling length from the RNN (30→ 40) and the size of the sample set
(1500 → 2000), we ruined (most of the RNN have some errors in them, it is just a matter
of time to find them) the extraction of language L8, but using the procedure above, we
manage to fixed this issue.

Agnostic Learning. Some criticism might be given to the fact that we assume the visibly
pushdown alphabet to be known. To solve this issue, we generated a set P of positive
words from the RNN like before. Using P , we examined all the possible visibly pushdown
alphabets (there may be several), picked the best suited alphabet (with the least number
of internal symbols), and continued learning. We succeeded in 8 of the 13 languages that
were successful in the non-agnostic case.

Further experiments and optimizations. As mentioned in the beginning of the section,
there is a strong need for further experimentation and evaluation of this algorithm. Here is
a preliminary list of ideas towards these goals:

• Larger pool of RNNs representing different visibly pushdown languages.
• In this paper, the number of queries taken while checking equality was chosen to be very
small. This was done in order to reproduce the exact CFLs, since L∗ type of algorithms are
inherently sensitive to errors. Even one error can produce a completely different VPG. If

12

Table 2: Results for learning RNNs

Visibly Pushdown Alphabet

Language Push Pop Int #Rules Time

L1 L({a}, {b}) {a} {b} 3 1s

L2 L({a, b}, {c, d}) {a, b} {c, d} 9 23s

L3 L({ab, cd}, {ef, gh}) {a, b, c, d} {e, f, g, h} 13 74s

L4 L({ab}, {cd}) {a, b} {c, d} 4 1s

L5 L({abc}, {def}) {a, b, c} {d, e, f} 5 1s

L6 L({ab, c}, {de, f}) {a, c} {d, f} {b, e} 10 49s

L7 Dyck2 {p1, p2} {q1, q2} 19 69s

L8 Dyck3 {p1, p2, p3} {q1, q2, q3} 28 74s

L9 Dyck4 {p1, . . . , p4} {q1, . . . , q4} 37 79s

L10 RE -Dyck({(abcd}, {wxyz)}) {(, a, b, c, d} {w, x, y, z,)} 10 7s

L11 RE -Dyck({ab, c}, {de, f}) {a, c} {d, f} {b, e} 27 59s

L12 Alternating {(, [} {),]} 5 2s

L13 Dyck1 / {a, b, c} {p1} {q1} {a, b, c} 19 66s

L14 Dyck2 / {a, b, c} {p1, p2} {q1, q2} {a, b, c} – 65s

L15 Dyck1 / {abc, d} {p1} {q1} {a, b, c, d} – 51s

Table 3: Learned VPG for L10 with start symbol A1

A1 → (A2) A0

A0 → ε
A2 → a A3 z A0

A3 → b A4 y A0

A4 → c A5 x A0

A5 → d A0w A0

A5 → d A1w A0

A5 → d A6w A0

A6 → (A2) A1

A6 → (A2) A6

the goal had been to produce a VPG whose language is statistically close to the original one,
then one could have taken a more probabilistic approach using, for example, the Chernoff-
Hoeffding bound (cf. (Khmelnitsky et al., 2021)).
• Testing this technique on RNNs that represent a language which is not necessarily a CFL
(e.g., the Amazon sentiment analysis, which was previously unlearnable with this type of
method due to the sparseness of the language).
• Currently, in order to learn a VPG representing the given language, we learn a DTA
and then translate it into a VPG. Instead, one may try to use an approach to learning the
VPG/VPA (well-formed and not well-formed) directly.

7. Conclusion

We presented an algorithm to learn VPLs in the MAT framework. As an application,
we focused on the extraction of grammars from RNNs. Our experiments suggest that the
algorithm is a suitable alternative to current approaches when we deal with structured data.

13

Learning VPLs has potential applications in formal verification (Alur and Madhusudan,
2004, 2009), so it would be worthwhile to conduct an evaluation in that domain, too.

Acknowledgment. We would like to thank the reviewers for their helpful remarks, which
led to an improved presentation of the paper.

References

Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László Babai, editor,
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL,
USA, June 13-16, 2004, pages 202–211. ACM, 2004. doi: 10.1145/1007352.1007390. URL
https://doi.org/10.1145/1007352.1007390.

Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3):16:1–
16:43, 2009. doi: 10.1145/1516512.1516518. URL https://doi.org/10.1145/1516512.

1516518.

Dana Angluin. Inference of reversible languages. J. ACM, 29(3):741–765, 1982.

Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75
(2):87–106, 1987.

Stéphane Ayache, Rémi Eyraud, and Noé Goudian. Explaining black boxes on sequential
data using weighted automata. In Olgierd Unold, Witold Dyrka, and Wojciech Wiec-
zorek, editors, Proceedings of the 14th International Conference on Grammatical Infer-
ence, ICGI 2018, Wroc law, Poland, September 5-7, 2018, volume 93 of Proceedings of
Machine Learning Research, pages 81–103. PMLR, 2018.

José L. Balcázar, Josep Dı́az, and Ricard Gavaldà. Algorithms for learning finite automata
from queries: A unified view. In Advances in Algorithms, Languages, and Complexity -
In Honor of Ronald V. Book, pages 53–72. Kluwer, 1997.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations us-
ing RNN encoder-decoder for statistical machine translation. In Proc. EMNLP, pages
1724–1734. ACL, 2014.

Alexander Clark. Distributional learning of some context-free languages with a minimally
adequate teacher. In José M. Sempere and Pedro Garćıa, editors, Proc. of ICGI 2010,
volume 6339 of LNCS, pages 24–37. Springer, 2010. doi: 10.1007/978-3-642-15488-1\ 4.
URL https://doi.org/10.1007/978-3-642-15488-1_4.

Alexander Clark and Rémi Eyraud. Polynomial identification in the limit of substitutable
context-free languages. J. Mach. Learn. Res., 8:1725–1745, 2007.

H. Comon, M. Dauchet, F. Jacquemard, R. Gilleron, C. Löding, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available on: http://www.

grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

14

https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1007/978-3-642-15488-1_4
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

Sreerupa Das, C. Lee Giles, and Guo-Zheng Sun. Using prior knowledge in a {NNPDA}
to learn context-free languages. In Advances in Neural Information Processing Systems
5, [NIPS Conference, Denver, Colorado, USA, November 30 - December 3, 1992], pages
65–72. Morgan Kaufmann, 1992.

Colin de la Higuera. A bibliographical study of grammatical inference. Pattern Recognit.,
38(9):1332–1348, 2005.

Frank Drewes and Johanna Högberg. Query learning of regular tree languages: How to avoid
dead states. Theory Comput. Syst., 40(2):163–185, 2007. doi: 10.1007/s00224-005-1233-3.
URL https://doi.org/10.1007/s00224-005-1233-3.

Frank Drewes, Johanna Högberg, and Andreas Maletti. MAT learners for tree series: an
abstract data type and two realizations. Acta Informatica, 48(3):165–189, 2011. doi:
10.1007/s00236-011-0135-x.

John Hewitt, Michael Hahn, Surya Ganguli, Percy Liang, and Christopher D. Manning.
Rnns can generate bounded hierarchical languages with optimal memory. In Bonnie Web-
ber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, Novem-
ber 16-20, 2020, pages 1978–2010. Association for Computational Linguistics, 2020. doi:
10.18653/v1/2020.emnlp-main.156.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9
(8):1735–1780, 1997.

Malte Isberner. Foundations of active automata learning: an algorithmic perspective. PhD
thesis, Technical University Dortmund, Germany, 2015. URL http://hdl.handle.net/

2003/34282.

Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT algorithm: A redundancy-free
approach to active automata learning. In Borzoo Bonakdarpour and Scott A. Smolka,
editors, Proc. of RV 2014, volume 8734 of LNCS, pages 307–322. Springer, 2014. doi: 10.
1007/978-3-319-11164-3\ 26. URL https://doi.org/10.1007/978-3-319-11164-3_

26.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, 1994.

Igor Khmelnitsky, Daniel Neider, Rajarshi Roy, Xuan Xie, Benôıt Barbot, Benedikt Bollig,
Alain Finkel, Serge Haddad, Martin Leucker, and Lina Ye. Property-directed verification
and robustness certification of recurrent neural networks. In Proceedings of the 19th
International Symposium on Automated Technology for Verification and Analysis (ATVA
2021), 2021. To appear.

Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Minimization, learning, and
conformance testing of boolean programs. In Proc. of CONCUR 2006, volume 4137
of LNCS, pages 203–217. Springer, 2006. doi: 10.1007/11817949\ 14. URL https:

//doi.org/10.1007/11817949_14.

15

https://doi.org/10.1007/s00224-005-1233-3
http://hdl.handle.net/2003/34282
http://hdl.handle.net/2003/34282
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/11817949_14
https://doi.org/10.1007/11817949_14

P. Madhusudan and Gennaro Parlato. The tree width of auxiliary storage. In Thomas
Ball and Mooly Sagiv, editors, Proc. of POPL 2011, pages 283–294. ACM, 2011. doi:
10.1145/1926385.1926419. URL https://doi.org/10.1145/1926385.1926419.

Franz Mayr and Sergio Yovine. Regular inference on artificial neural networks. In Proc. of
CD-MAKE 2018, volume 11015 of LNCS, pages 350–369. Springer, 2018.

Franz Mayr, Ramiro Visca, and Sergio Yovine. On-the-fly black-box probably approximately
correct checking of recurrent neural networks. In Proc. of CD-MAKE 2020, volume 12279
of LNCS, pages 343–363. Springer, 2020. doi: 10.1007/978-3-030-57321-8\ 19. URL
https://doi.org/10.1007/978-3-030-57321-8_19.

Kurt Mehlhorn. Pebbling moutain ranges and its application of dcfl-recognition. In J. W.
de Bakker and Jan van Leeuwen, editors, Automata, Languages and Programming, 7th
Colloquium, Noordweijkerhout, The Netherlands, July 14-18, 1980, Proceedings, vol-
ume 85 of LNCS, pages 422–435. Springer, 1980. doi: 10.1007/3-540-10003-2\ 89. URL
https://doi.org/10.1007/3-540-10003-2_89.

Christian W. Omlin and C. Lee Giles. Extraction of rules from discrete-time recurrent neural
networks. Neural Networks, 9(1):41–52, 1996. doi: 10.1016/0893-6080(95)00086-0.

Guillaume Rabusseau, Tianyu Li, and Doina Precup. Connecting weighted automata
and recurrent neural networks through spectral learning. In Kamalika Chaudhuri and
Masashi Sugiyama, editors, The 22nd International Conference on Artificial Intelligence
and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, volume 89 of
Proceedings of Machine Learning Research, pages 1630–1639. PMLR, 2019.

Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing se-
quences. Inf. Comput., 103(2):299–347, 1993.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (4th Edi-
tion). Pearson, 2020.

Yasubumi Sakakibara. Efficient learning of context-free grammars from positive structural
examples. Inf. Comput., 97(1):23–60, 1992.

Guo-Zheng Sun, C. Lee Giles, and Hsing-Hen Chen. The neural network pushdown au-
tomaton: Architecture, dynamics and training. In Adaptive Processing of Sequences and
Data Structures, International Summer School on Neural Networks, ”E.R. Caianiello”,
Vietri sul Mare, Salerno, Italy, September 6-13, 1997, Tutorial Lectures, volume 1387 of
LNCS, pages 296–345. Springer, 1997.

Sebastian Thrun. Extracting rules from artifical neural networks with distributed repre-
sentations. In Advances in Neural Information Processing Systems 7, [NIPS Conference,
Denver, Colorado, USA, 1994], pages 505–512. MIT Press, 1994.

Frits W. Vaandrager. Model learning. Commun. ACM, 60(2):86–95, 2017. doi: 10.1145/
2967606.

16

https://doi.org/10.1145/1926385.1926419
https://doi.org/10.1007/978-3-030-57321-8_19
https://doi.org/10.1007/3-540-10003-2_89

Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural
networks using queries and counterexamples. In Proc. of ICML 2018, volume 80 of
Proceedings of Machine Learning Research, pages 5244–5253. PMLR, 2018.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Learning deterministic weighted automata
with queries and counterexamples. In Proc. of NeurIPS 2019, pages 8558–8569, 2019.

Daniel M. Yellin and Gail Weiss. Synthesizing context-free grammars from recurrent neural
networks. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Proc. of TACAS
2021, Part I, volume 12651 of LNCS, pages 351–369. Springer, 2021a. doi: 10.1007/
978-3-030-72016-2\ 19. URL https://doi.org/10.1007/978-3-030-72016-2_19.

Daniel M. Yellin and Gail Weiss. Synthesizing context-free grammars from recurrent neural
networks (extended version). CoRR, abs/2101.08200, 2021b. URL https://arxiv.org/

abs/2101.08200.

Ryo Yoshinaka and Alexander Clark. Polynomial time learning of some multiple context-
free languages with a minimally adequate teacher. In Proc. of FG 2010, volume 7395
of LNCS, pages 192–207. Springer, 2010. doi: 10.1007/978-3-642-32024-8\ 13. URL
https://doi.org/10.1007/978-3-642-32024-8_13.

17

https://doi.org/10.1007/978-3-030-72016-2_19
https://arxiv.org/abs/2101.08200
https://arxiv.org/abs/2101.08200
https://doi.org/10.1007/978-3-642-32024-8_13

Appendix A. Visibly Pushdown Automata

Though we are principally interested in inferring grammars, we give here the definition of
visibly pushdown automata, which also constitute a characterization of the class of VPLs.

Definition 5 A visibly pushdown automaton (VPA) over Σ is a tuple A = (Q,S, δ, ι, F)
containing a finite set of control states Q, a nonempty finite set of stack symbols S, an
initial state ι, and a set of final states F ⊆ Q. Moreover, δ = (δpush, δpop, δint) is a collection
of transition functions δpush : Q × Σpush → P(Q × S), δpop : Q × Σpop × S → P(Q), and
δint : Q×Σint → P(Q). We call A deterministic if all transition functions map all arguments
to singleton sets.

A VPA recognizes a language L(A) ⊆ Σ∗. Intuitively, it is the language of an infinite
automaton whose states (we actually say configurations) are pairs (q, σ) where q ∈ Q is the
current control state and σ ∈ S∗ is the current stack contents. With this, in the infinite
automaton, we have a transition (q, σ)

a−→ (q′, σ′) if there is A ∈ S such that one of the
following holds:

• a ∈ Σpush and (q′, A) ∈ δpush(q, a) and σ′ = σ ·A

• a ∈ Σpop and q′ ∈ δpop(q, a,A) and σ = σ′ ·A

• a ∈ Σint and q′ ∈ δint(q, a) and σ′ = σ

We call (q, σ) a final configuration if q ∈ F and σ = ε. Moreover, (ι, ε) is the only
initial configuration. Finally, we define L(A) to be the language recognized by this infinite
automaton in the expected way.

Fact 6 (Alur and Madhusudan (2004, 2009)) Let L ⊆ Σ∗. Then, L is a VPL over Σ
iff there is a VPA A over Σ such that L(A) = L.

Appendix B. Proof of Theorem 4

Proof By Fact 5, we have to show that calling TL∗(Γ,MQtree,EQtree) returns, in polynomial
time, a DTA B such that T (B) = T (B̂). We will show that MQtree is sound for T (B̂) and
EQtree is counterexample- and equivalence-sound for T (B̂). By Fact 3, this implies that
TL∗(Γ,MQtree,EQtree) returns a DTA B such that T (B) = T (B̂). The running time is
due to the fact that all additional operations in Algorithms 1 and 2 can be performed in
polynomial time wrt. the input parameters (cf. Fact 2).

To show that MQtree is sound for T (B̂), let t ∈ Trees(Γ). Assume MQtree(t) = yes. By
Algorithm 1, this implies t ∈ T (Bparse) and MQvpl(JtK) = yes. As MQvpl is sound for L, we

have JtK ∈ L. Since T (B̂) = ⟪L⟫, we get t ∈ T (B̂). Conversely, assume MQtree(t) = no. If
t 6∈ T (Bparse), then t 6∈ T (B̂). So suppose t ∈ T (Bparse) and MQvpl(JtK) = no. As MQvpl is

sound for L, we have JtK 6∈ L, which implies t 6∈ T (B̂).

Let us show that EQtree is counterexample-sound for T (B̂). Suppose B ∈ DTA(Γ) and t ∈
Trees(Γ) such that EQtree(B) = t. There are two cases. First, suppose t ∈ T (B) \ T (Bparse).
As T (B̂) ⊆ T (Bparse), we have t ∈ T (B)\T (B̂) and, hence, t ∈ T (B)⊕T (B̂). Second, assume

18

T (B) ⊆ T (Bparse). As EQvpl is counterexample-sound for L, this implies JtK ∈ L ⊕ JT (B)K.
Due to T (B̂) = ⟪L⟫, we get t ∈ T (B̂)⊕ T (B).

Finally, we show that EQtree is equivalence-sound for T (B̂). Suppose B ∈ DTA(Γ) such
that EQtree(B) = yes. Then, T (B) ⊆ T (Bparse) and EQvpl(B) = yes. As EQvpl is equivalence-

sound for L, we get L = JT (B)K, which implies T (B̂) = T (B).

19

	Introduction
	Context-Free and Visibly Pushdown Grammars
	Context-Free Languages and Grammars
	Visibly Pushdown Languages and Their Grammars

	Trees and Regular Tree Languages
	Learning Deterministic Tree Automata
	Learning Visibly Pushdown Grammars
	Encoding Nested Words as Trees
	Learning VPLs in Terms of VPGs

	Experiments
	Conclusion
	Visibly Pushdown Automata
	Proof of Theorem 4

