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Abstract.
In this paper we propose a representative simulation test-case of E×B discharges

accounting for plasma wall interactions with the presence of both the Electron
Cyclotron Drift Instability (ECDI) and the Modified-Two-Stream-Instability (MTSI).
Seven independently developed Particle-In-Cell (PIC) codes have simulated this
benchmark case, with the same specified conditions. The characteristics of the different
codes and computing times are given. Results show that both instabilities were
captured in a similar fashion and good agreement between the different PIC codes
is reported as main plasma parameters were closely related within a 5% interval.
The number of macroparticles per cell was also varied and statistical convergence was
reached. Detailed outputs are given in the supplementary data, to be used by other
similar groups in the perspective of code verification.
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1. Introduction

Many devices, such as Hall Effect Thrusters (HET) [1, 2, 3] and magnetron discharges
[4, 5] operate in the regime of partially magnetized E×B plasmas. Though it is generally
understood that plasma fluctuations are responsible for the enhanced electron transport,
typically larger than what would be expected from the classical collisional theory [6],
the exact nature of the instabilities resulting in anomalous electron current is not fully
understood. A recent overview of different mechanisms of the instabilities and their
interactions can be found in [7].

One such mechanism is the Electron Cyclotron Drift Instability (ECDI) or Electron
Drift Instability (EDI) driven by the E × B electron drift. Over the past decade, this
instability has attracted an intense interest as an important source of the anomalous
transport in Hall thruster [8, 9, 10, 11, 12]. The instability occurs for the wave
propagating in the E × B direction, perpendicular to the magnetic field. When the
wave can also propagate along the magnetic field lines, it may trigger another kind of
instability: the Modified Two-Streams Instability (MTSI). Finite value of the electric
field perturbation along the magnetic field results in significant electron heating in this
direction [13, 14]. Overall, it may result in comparable electron and ion heating [15],
but in different directions. The unmagnetized ions are primarily heated up in the E×B

direction, whereas electron heating occurs along B. Such anisotropic heating may have
important consequences for E×B discharges. For instance, in the case of magnetically
shielded HETs, ion heating might increase the erosion near magnetic poles because of
local magnetic field lines parallel to the walls [16]. In a non-magnetically shielded HET,
the magnetic field lines are essentially radial at the channel exit and so the electron
heating along B tends to enhance the flux toward the walls [17]. As a consequence,
secondary electron emission (SEE) might increase [18]. Although SEE has a modest
impact on electron transport [19], it might lead to other sheath instabilities [20, 21].

The nonlinear coupling of ECDI and MTSI in the presence of plasma-wall
interaction poses significant challenges to correctly evaluating the transport properties.
The analytical treatment of the kinetic equations provides useful insights but remains
difficult to conduct [11, 13]. Thus, it is common to study them numerically with Particle-
In-Cell (PIC) simulations. These instabilities are intrinsically multidimensional, so 2D
or 3D simulations are required [22]. Unfortunately, most of the time, 3D simulations
remain computationally too costly. For instance, only Taccogna et al. [23] have captured
both the ECDI and the MTSI in 3D PIC simulation using geometrical scaling factors.
So, most of the PIC simulations of E×B discharges are performed in 2D. In particular,

https://doi.org/10.1088/1361-6595/ac0a4a


2D radial-azimuthal PIC benchmark for E×B discharges 3

radial azimuthal simulations are appropriate to study the effects of the plasma-wall
interaction in HETs. Geometrical effects play a key role in this configuration since the
curvature at the walls was found to greatly affect SEE yields, that can be coupled with
the ECDI [9]. The setup can be further simplified by neglecting curvature effects while
still providing relevant physics insights. By using a Cartesian grid, Croes et al. [24]
could verify that the ECDI was one important factor explaining electron anomalous
transport. Besides, even with no curvature, Tavant et al. [21] observed a coupling
between the ECDI and SEE. Different regimes of sheath saturation were found possible
depending on the choice of the wall material.

In 2D PIC simulations, in addition to the ECDI, the MTSI was identified by
Janhunen et al. [25] and observed in Petronio et al. [26]. Similarly, Hara et al.
[27] have found the typical radial patterns resembling the MTSI. It was found in
[25] that the ECDI and MTSI had the expected two dimensional structure and that
both instabilities seemed coupled demonstrating an inverse cascade towards the long
wavelengths azimuthally and showing radial structures in the axial current. However,
this study was limited to the first microseconds of simulation due to strong electron
heating, partially amplified by the absence of the heating saturation mechanism in
the simulations. Indeed, in order to capture the appropriate physics, a 2D3V radial-
azimuthal simulation setup uses an off-plane axial electric field to maintain a E×B cross-
drift current in the azimuthal direction. Therefore, with periodic boundary conditions
in the azimuthal direction, the energy of particles keeps increasing in time due to the
imposed axial electric field. This is not the case in a real HET with a finite length
between the anode and cathode. One way to circumvent this difficulty and mimic
the finite axial length of the discharge is to use a virtual axial length model in the
axial/off-plane direction [28, 11]. In this model, the axial displacement of particles is
tracked and particles are replaced with cold ones after having traveled the distance
corresponding to the effective length of the discharge. The re-injection of particles
however has to be handled carefully. For example, Tavant [29] showed that the use
of a virtual axial model with random position re-injection effectively results in large
numerical instabilities, which can dramatically impact the simulation results. This
drawback has already been observed in 1D-azimuthal simulations [10, 30, 31].

Therefore, PIC simulations in the radial-azimuthal plane remain intricate and
require a careful analysis of the physics mechanisms of the instabilities as well as a
careful treatment of numerical issues. We note here that, in spite of constant progress,
the current time and spatial resolution of experimental measurements in E×B discharges
in HET conditions do not allow a detailed validation of the different instabilities observed
in simulations [7].

At this stage, the verification of the physics and numerical implementations are
important to provide confidence in the numerical results via code benchmarking, i.e.
performing a code-to-code comparison. For low temperature plasmas, the 1D discharge
benchmark by Turner et al. [32] has become a reference for PIC codes, as a way to verify
main features such as Monte Carlo algorithms and Poisson solvers. However, this 1D
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benchmark case does not capture all the physics of the E×B discharges, which is more
complex due to the presence of the magnetic field and instabilities triggered by the E×B
drift. Recently, a 2D axial-azimuthal benchmark has been carried out by Charoy et al.
[33] within the framework of the LANDMARK project [34]. In this work, the axial-
azimuthal plane of a HET was modeled and seven independent PIC codes successfully
reproduced the same ECDI characteristics and representative plasma parameters. In
addition to benchmarking the numerical implementations of the independent codes, it
also provided information on the existence and effects of the ECDI on the cross-field
electron transport.

In the present work, as part of the LANDMARK project, we propose a 2D PIC
benchmark for the radial-azimuthal plane of a HET. Our goal is, with a relatively simple
configuration, to include both the MTSI and the ECDI physics, compare the predictions
of six independent codes, and characterize the nonlinear features of fluctuations and
structures arising in simulations. These simulations have been performed by six
independent research groups to provide a reference benchmark for the community. In
Section 2, the numerical setup is detailed. Then, in Section 3 the discharge behavior is
described to study the underlying physics. In Section 4 the results obtained by different
codes are compared, and the instabilities characteristics and plasma parameters are
verified. Finally, the statistical convergence is discussed.
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2. Methodology and numerical setup

2.1. Numerical setup

For the radial-azimuthal PIC simulations presented in this work, we consider a square
2D Cartesian grid, with square cells, as shown in Figure 1. The azimuthal direction y
is periodic and the curvature is neglected. In a real HET, a dielectric layer would cover
the walls in the radial z direction, but for this benchmark, the simulation domain is
instead bounded by two grounded walls with an imposed potential φ0 = 0 V. The time
step ∆t and cell size ∆y = ∆z are chosen ato comply to the PIC stability conditions
[35], 

∆y <
λD
2
,

∆t <
0.2

ωpe

,
(1)

where λD =
√
ε0kBTe/(nee2) is the Debye length and ωpe =

√
nee2/(meε0) the plasma

frequency. Here, ε0 is the vacuum permittivity, kB the Boltzmann constant, ne the
electron density, e the elementary charge and me the electron mass. With ne = n0 =

5× 1016 m−3 and Te = Te,0 = 10 eV, we find λD = 100 µm, ωpe = 1.26× 1010 rad · s−1
and we set ∆y = 50 µm and ∆t = 1.5× 10−11 s.

Figure 1: 2D radial-azimuthal (z, y) setup.

We consider only electrons and singly charged xenon ions, Xe+, in a collisionless
plasma. Collisions were not accounted for in this work because both the ECDI and MTSI
can occur without them [25]. Besides, the collisionless assumption makes the simulations
running faster, which is advantageous for benchmarking. Initially, the particles are
distributed uniformly in the domain with a density n0 = 5× 1016 m−3 and a velocity
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sampled from a Maxwellian distribution at temperature Te,0 and Ti,0, for electrons and
ions, respectively. The simulation is initialized with Nppc,ini = 100 macroparticles per
cells (for each species) which gives approximately Nppc,fin = 212 macroparticles per cell
at steady-state. We use a constant and uniform radial magnetic field Bz in the radial z
direction in addition to an off-plane axial electric field Ex perpendicular to the simulation
domain, which produces an E×B current along the azimuthal y direction. The particles
reaching the walls are removed from the simulation. The electrons are magnetized,
while the ions are not. The diagnostic data are averaged during the computation over
Na = 1000 time steps and the output files are generated every Na. Numerical and
physical parameters are summarized in Table 1.
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Table 1: PIC simulations parameters.

Parameters Symbol Value Unit

Simulation domain

Cell size ∆y = ∆z 50 µm

Azimuthal length Ly 1.28 cm

Radial length Lz 1.28 cm

Number of cells Ncell 256× 256

Initial conditions

Plasma density n0 5× 1016 m−3

Ion temperature Ti,0 0.5 eV

Electron temperature Te,0 10 eV

Number of particles/cell Nppc,ini 100

Physical parameters

Potential at walls φ0 0 V

Radial magnetic field Bz 200 G

Axial electric field Ex 10 kV m−1

Virtual axial length Lx 1 cm

Computational parameters

Time step ∆t 1.5× 10−11 s

Average time range Na 1000∆t s

Final time tmax 30 µs



2D radial-azimuthal PIC benchmark for E×B discharges 8

2.2. Virtual axial model

Although we perform a 2D simulation of the radial-azimuthal (z, y) plane, in order to
retrieve the behavior of an HET, a constant electric field Ex is set in the axial x direction.
Note that the Poisson equation is solved only in the (y, z) plane at x = 0. As it is, the
modeled system would not reach a steady state due to a constant input of energy, as
observed in previous PIC studies [25, 9]. To reach a steady state, a virtual axial model
inspired from 1D azimuthal [10, 27, 30] and 2D radial-azimuthal [21, 24, 18] simulations
is used and shown in Figure 2.

Figure 2: Virtual axial model used for the 2D radial-azimuthal simulation. The
plasma dynamics take place in the y − z plane.

All particles are initialized in the plane located at x = 0. The x location of
each particle is updated and monitored whether it reaches the virtual axial boundaries
situated at x = ±Lx. The imposed axial electric field accelerates the ions towards the
+Lx boundary while the magnetized electrons drift in the azimuthal direction. Although
electrons tends to be located in th e x < 0 space, they gyrate around the magnetic field
lines and some may be energetic enough to reach the +Lx boundary.

Any particle crossing the x > |Lx| boundaries is reinjected in the plane at x = 0,
with the same y and z. The injection velocity is sampled from a Maxwellian distribution
at the initial temperatures, Te,0 and Ti,0 for electrons and ions, respectively. In this work,
Lx is set to 1 cm. We chose this value to obtain a typical steady state that can take place
in a HET. Too small values of Lx refresh velocities too often, which prevents any relevant
physical phenomena to develop as the system is constantly reset to its initial state. Too
high values of Lx can end up in large electron temperatures (> 50 − 100 eV), which is
consistent with 1D simulation results [10]. As an example, going from Lx = 1 cm to
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Lx = 2 cm, increases both the total energy of ions and electrons of ∼ 15 − 20 eV at
steady state.

2.3. Ionization

Particle losses at the walls also need to be compensated to reach a steady state. In this
work, we consider a collisionless case generating new particles with a constant source
term mimicking ionization, as in previous investigations [36, 33, 12]. Similarly to a real
HET, the ionization profile is higher in the center of the channel than at the walls. We
have assumed the ionization is uniform in the azimuthal direction and that its radial
profile is given by

S(z) = S0 cos
(
π
z − zM
z2 − z1

)
for z1 ≤ z ≤ z2,

S(z) = 0 for z > z2 or z < z1,
(2)

with S0 the maximum value of the source term and z2 − z1 the width of the ionization
zone. The coordinates z1 and z2 are symmetric with respect to zM = Lz/2. The
width of the ionization zone is chosen to be 1.1 cm (∼ 86%Lz). The maximum of the
ionization profile is chosen to be symmetric with respect to the centerline and its width
is chosen considering the typical sheaths’ dimensions in HET [37]. Using the simulation
parameters described above, z1 = 0.09 cm and z2 = 1.19 cm. At steady state, the total
current exiting at the walls must be equal to the current injected into the system by the
ionization term. We can calculate the injected current density Jm as

Jm = e
∫ Lz

0
S(z)dz =

2

π
(z2 − z1)eS0. (3)

From Equation 3, we enforce the exiting density current to be 100 A ·m−2 by setting the
maximum value of the source term: S0 = 8.9× 1022 m−3 · s−1. For a practical numerical
implementation, one should first compute the numberNXe+/e− of physical pairs of X+

e /e
−

to be injected in the domain at each iteration given by

NXe+/e− = Ly∆t
∫ Lz

0
S(z)dz. (4)

The new particles are injected in the plane x = 0. The in-plane location (yi, zi) of each
NXe+/e− pair is randomly chosen according to the ionization profile given in Equation 2.
Explicitly, we used two random numbers α and β between 0 and 1, as

yi = βLy,

zi = arcsin (2α− 1)
z2 − z1
π

+ zM .
(5)

Finally, the velocity of each particle is sampled from a Maxwellian distribution at Te,0
and Ti,0, for electrons and ions, respectively.

3. Results for the reference case with the code by CERFACS

In this section, we present in detail the dynamics of the discharge and of ECDI and
MTSI instabilities using the code by CERFACS (detailed in section 4.1.1).
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3.1. Simulation timeline

Figure 3: CERFACS code: Temporal profiles of ion density ni and total ion energy
Ei (a) and radial Te,z and azimuthal Te,y electron temperatures (b). In (a), the left y
axis in blue corresponds to ni and the right one in orange refers to Ei. Blue arrows in

(b) indicate local extrema of Te,z at 11.7 µs (max) and 17.5 µs (min).

We show in Figure 3 the temporal profiles of ion density ni, total ion energy Ei

and electron radial and azimuthal temperatures (Te,z and Te,y, respectively). At the
beginning of the simulation, for ∼ 1 µs, the ion density increases linearly, because of the
imposed ionization source term. Ions gain energy under the effect of the axial electric
field for ∼ 1.5 µs. Then, most of the ions have reached the virtual boundary Lx = 1 cm,
which brutally dissipates their mean energy. The electron azimuthal temperature Te,y
remains at its initial value for 0.5 µs but then it increases by a factor of 3 between
0.5 µs and 1.7 µs. The radial electron temperature Te,z first decreases because the most
energetic electrons leave the computational domain. Yet, it eventually sharply rises
in 0.2 µs. After t = 2 µs, ni, Ei, Te,z and Te,y reach an oscillatory plateau and only
at t = 17 µs the oscillations get damped. This situation results in a radial electron
temperature drop and in a small increase of ion density. In contrast, Ei and Te,y seem
unaffected by the underlying physics and do not experience any clear drop or increase.
Finally, after t = 20 µs, the oscillations seem to be mostly damped and a steady state
is reached. These results show that the constant ionization source term successfully
compensates particles losses at the walls and that the virtual axial model prevents an
accumulation of energy in the system.

In order to understand more precisely the discharge behavior, we focus on specific
times of interest. 2D snapshots of relevant parameters are displayed in Figure 4.
First, at t = 0.53 µs, the azimuthal electric field exhibits a purely azimuthal instability
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Figure 4: CERFACS code: 2D snapshots of azimuthal electric field Ey, radial
electron temperature Te,z, axial electron current Je,x and radial electron current Je,z at

times t = 0.53 µs, t = 0.75 µs, t = 11.70 µs and t = 17.50 µs. Local extrema of Te,z
shown in Figure 3 correspond to times t = 11.70 µs and t = 17.50 µs.

with a wavelength of the order of 800-900 µm. Another instability, with both radial
and azimuthal components has a lower growth rate and develops ∼ 0.2 µs later, as
noticeable at t = 0.75 µs, and also revealed in the axial electron current. Janhunen
et al. [25] identified these instabilities as the ECDI and the MTSI, respectively. The
numerical evidence of two instability mode coexistence and their characteristics will
be discussed in detail later. Interestingly, the radial electron current only contains
the azimuthal component of the MTSI. The growth of the MTSI actually coincides
with the significant increase of the radial electron temperature Te,z observed in Figure
3. The 2D snapshots show that the electrons first heat up in the near-wall sheath at
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periodic locations in the azimuthal direction, which was also clearly observed in [25].
In the present simulation, the azimuthal wavelength is around 4 mm while only a half-
wavelength fits in the radial direction with a radial wavenumber kz = π/Lz. The fast
radial electron temperature increase enhances the loss of particles, which explains why
the density stops growing linearly, as already noticed in temporal profiles in Figure 3.
Moreover, these 2D snapshots can be related to the oscillations observed in the temporal
profiles. Indeed, the system oscillates between two distinct states: the first one is seen at
t = 11.7 µs when the MTSI is strong with well defined radial-azimuthal patterns. As a
consequence, electrons heat up, which generates a local maximum of the radial electron
temperature. Thus, particles leave the domain and the density starts decreasing. The
second state is seen at t = 17.5 µs with a local minimum of the temperature related to
a mitigated MTSI. Thus particles tend to fill the domain, leading to a density increase.

3.2. Spectral characteristics of the instabilities

In this section, we provide more information on the spectral characteristics of the
instabilities described in the previous section which clearly identify them as ECDI and
MTSI. The ECDI is driven by the overlapping beam mode and cyclotron resonances
[38, 39] so the resonant condition in 2D is

ky ≈ m
Ωce

v0
, with m = 1, 2, ... (6)

where v0 = Ex/Bz is the electron drift velocity in the azimuthal direction and Ωce is
the electron cyclotron frequency. Its discrete character as harmonics of the fundamental
mode k0 = Ωce/v0 has been observed in a number of simulations [40, 25, 41]. The MTSI
is a long wavelength 2D instability typically with a characteristic wavenumber ky � k0
[38, 25]. We note also that its growth rate is smaller than that of the ECDI. Despite its
lower growth rate, it becomes very pronounced in simulations at later stages [25].

In the present work, we perform a spectral analysis using the Fast Fourier Transform
(FFT) function from the Python package Numpy. In Figure 5, we present a spectral
analysis of the results obtained in the previous section. In Figure 5 (a), the 2D FFT
on the azimuthal electric field at t = 0.4 µs shows that the simulation starts with three
discrete modes. Two of them have no radial component and only have an azimuthal
wavenumber multiple of k0. They correspond the first two ECDI resonances according to
Equation 6. The last one has a wavenumber ky ∼ 0.2k0 below the first ECDI resonance
and a non-zero radial wavenumber. This mode was identified theoretically consistent
with MTSI, as described by Janhunen et al. [25]. As noted in previous investigations
[42, 43], plasma sheath effects make possible the existence of shorter wavenumbers below
the geometrical constraint kz = 2π/Lz. In the present work, the radial wavenumber of
the MTSI kz ≈ π/Lz (kzλD ∼ 2.19× 10−2) corresponds to a half wavelength between
the walls, which agrees with results obtained by Janhunen et al. [25].

In Figure 5 (b-c), we show temporal profiles for the MTSI and the first ECDI
resonance. These profiles have been obtained by performing first a 1D FFT in the
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Figure 5: CERFACS code: Spectral analysis of the azimuthal electric field Ey. (a)
2D FFT at linear stage when both ECDI and MTSI start developing. (b) and (c)
temporal evolution of the amplitude of the MTSI and ECDI modes in the Ey

spectrum. The amplitude has been integrated over kz components. In (b) the dotted
lines mark the linear growth of the modes obtained from a least-square method.

azimuthal direction at each radial location, then inferring a mean FFT profile in
the azimuthal direction and then finally repeating this process for every output file,
distinguishing each FFT coefficient.

From Figure 5 (b), we identify the linear stage for both instabilities, that is ∼
0.3-0.73 µs for MTSI and 0.3-0.50 µs for the first resonance of ECDI. During this period,
the growth is driven by the exponential factor exp (2γt) and the growth rate γ can be
obtained from a least square method. As noted by Janhunen et al. [25], the ECDI
has a faster growth rate than the MTSI, except that here, the MTSI does not start
growing after the ECDI saturation. In order to get further confidence in the numerical
results, we can compare PIC measurements with theoretical results given by the linear
dispersion relation ω(k), assuming cold ions [44],

1 + k2λ2D +
ω − k ·Vd√

2kzρωce

e−b
∞∑

m=−∞
Z

(
ω − k ·Vd −mωce√

2kzρωce

)
Im(b)

−
k2λ2Dω

2
pi

(ω − kxvp)2
= 0,

(7)

where kx, ky, kz are the components of the wavevector k, b = k2⊥ρ
2
e, k2⊥ = k2x + k2y,

ρ2e = v2the/ω
2
ce, v2the = kBTe/me, λ2D = kBε0Te/n0q

2
e , vp is the ion beam velocity, Vd is the

electron drift velocity relative to the ions, ωce is the electron cyclotron frequency, ωpi

is the ion plasma frequency, Z(ξ) is the plasma dispersion function, and Im(x) is the
modified Bessel function of the 1st kind. For this 2D case, kx = 0 and the numerical
solution of this relation was achieved through the algorithm developed by Cavalier et al.
[44] via a fixed point iteration. The theoretical solver was employed using simulation
data from 0.4 µs, the time just before the linear growth stage of the instabilities, for which
ne = 6.37× 1016 m−1 and Te = 9.19 eV. The theoretical growth rates are compared with
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PIC measurements in Figure 6.

Figure 6: Theoretical growth rates, obtained from Stanford and USASK, using
simulation values at the beginning of the linear stage when both ECDI and MTSI
start developing for kzλD = 2.19× 10−2, set up by the plasma diffusion toward the
walls. Symbols represent PIC measurements for MTSI (diamond) and first ECDI

resonance (circle) from Figure 5.

From the theoretical dispersion relation, at kzλD = 2.19× 10−2, MTSI should feature a
resonance at kyλD = 0.127, and ECDI should feature a first resonance at kyλD = 0.714.
Overall, both azimuthal wavenumbers and maximum growth rates are in excellent
agreement with the instabilities seen in the simulation during the linear stage of growth.
This suggests that the initial diffusion toward the radial walls sets up a finite-kz mode,
and the MTSI seen in this study is initiated by this plasma-wall interaction.

At the end of its linear stage, Figure 5 (b) shows that the MTSI is briefly stronger
than the ECDI around t = 0.75 µs, which is coherent with radial-azimuthal patterns
appearing in the 2D snapshots at the same time on Figure 4. From Figure 5 (c), it is
interesting to notice that the ECDI seems to get weaker when the MTSI strengthens,
suggesting that both are coupled. Moreover, we count ten clear peaks in the MTSI FFT
temporal profile that precede the same number of radial temperature peaks in Figure 3
(b). Thus, it seems the MTSI drives Te,z, which is consistent with observations made
on the 2D snapshots in the previous section. Between t = 15 − 20 µs, the MTSI is
significantly damped, which coincides with the observed increase of density in Figure 3
(a). At steady state, between t = 25− 30 µs, the MTSI stabilizes at a lower level than
in the first 10 µs of the simulation. It is not clear why the level is lower and what caused
the initial damping in the 15 − 20 µs time range. Necessary investigations will be left
for a future work.
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4. Benchmark results

4.1. Code presentations

Seven independent research groups have participated to this benchmark. No code is
open source and a detailed description of each of them is provided below.

4.1.1. CERFACS The PIC variant of AVIP was used for this work. AVIP [45, 46] is
a 3D unstructured-grid plasma solver aimed to handle massively parallel computations.
It was developed from AVBP, a well-known fluid solver for reactive gases in industrial
geometries [47, 48]. Written in Fortran 90, the code features parallelization with MPI
and demonstrates excellent computational performances at high number of processors
[49]. For the present simulations, the computational domain consists of square cells
sliced into two isosceles right-angled triangles. Therefore the mesh has twice as many
cells as the other groups. Displacement of particles is performed by the Haselbacher
algorithm [50] and no subcycling is used. Random numbers are generated with the built-
in function of Fortran 90 with a hard-coded seed to make runs deterministic. Electrons
and ions speeds are respectively updated by the standard Boris and leap-frog schemes.
Domain decomposition relies on the external library PARMETIS [51] and it is updated
if excessive load unbalance is detected among the processors. The in-plane potential
is self-consistently calculated with the Poisson solver MAPHYS developed by INRIA
[52, 53] that will soon be available in the PETSc library [54, 55]. MAPHYS returns the
potential with an accuracy of the second order and the electric field is computed with a
second order accurate Green-Gauss formulation. Double floating point precision is used
in the code. AVIP-PIC was verified with the 1D discharge benchmark of Turner et al.
[32] and the 2D axial-azimuthal benchmark of Charoy et al. [33].

4.1.2. LPP The 2D3V particle-in-cell code used in the present work is LPPic. This
Fortran90 code uses a structured Cartesian mesh and is parallelized using MPI domain
decomposition. The initial distribution of particles is obtained using a random number
generator seed provided by the internal clock of every CPU. All numerical variables are
double precision floating points. The Poisson equation is solved using the PFMG solver
of the open-source HYPRE [56] library. The potential is obtained with a second order
accuracy, while the electric field is calculated from the plasma potential by a centered
difference scheme with first order accuracy. The classical leap-frog and Boris schemes
are used to move the particles. The code has been verified using the 1D He benchmark
by Turner et al. [32] and the 2D axial-azimuthal benchmark by Charoy et al. [33].

4.1.3. USASK The code is a 2D3V PIC based on the explicit leap-frog algorithm. The
code uses the Boris scheme to solve particle motion equations. To reduce numerical cost,
subcycling of electrons relative to ions is applied [57]. The random number generator
is the Maximally Equidistributed implementation [58] of Well Equidistributed Long-
period Linear generator WELL19937a [59]. The 2D Poisson’s equation in a rectangular
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domain periodic in one direction is solved using FFT transformation along the periodical
direction, with the FFT procedure based on [60]. The code is written in Fortran 90
and is parallelized with MPI. The particle processing algorithm of the code combines
both domain and particle decomposition. The whole simulation domain is split into
subdomains of the same size, the number of the subdomains is several times smaller
than the total number of MPI processes. Particles belonging to the same subdomain
may be shared between several processes. The balance of particle load between all MPI
processes is achieved by changing the numbers of processes advancing particles in the
subdomains. Double floating-point precision is used for all calculations in the code.

4.1.4. Stanford The PIC code is written in C++ using MPI as the means of
parallelization. Particle decomposition is used to split the number of macroparticles as
evenly as possible between the different processors. Domain decomposition is used by the
Poisson solver, HYPRE [56], with a symmetric SMG method as the preconditioner and
a GMRES solver. A structured, rectangular grid is used. Double precision is used for
all numerical variables. Random numbers are generated using the C Standard General
Utilities Library by initializing different seed values for each individual processor. This
benchmarking effort motivated the implementation of code acceleration techniques to
speed up data management. This code has been benchmarked with other codes through
the 2D axial-azimuthal benchmark by Charoy et al. [33] and tested for other instability
cases [36, 61]

4.1.5. ISTP The 2D PIC code [18] developed at ISTP is a combination of previous
1D-radial [62, 63, 64] and 1D-azimuthal [30] PIC codes. The code is written in Fortran90
and it uses a structured, uniform, rectangular grid. The version used for the present
benchmark is serial and performances reported in Table 2 refer to double precision
option. The long period (> 2× 1018) random number generator RAN2 of Numerical
Recipes [60] is implemented. Linear functions are used to interpolate particles onto the
grid and the Poisson equation is solved by the cyclic reduction algorithm implemented
in the routine PWSCRT of the open-source FISHPACK90 library [65]. The leap-frog
with Buneman-Boris scheme is used as solver of particle equation of motion.

4.1.6. RUB The PIC code used in the present benchmark differs from our group’s
implicit energy-conserving code utilized in the axial-azimuthal benchmark [33]. It was
now based on the standard explicit leapfrog time integration scheme. By employing
the same approach as for the other codes but a different parallelization means, the
intention was to demonstrate the latter’s benefits. Except for the field solver, the
code was parallelized on a graphics processing unit using the CUDA extension of the
C programming language and a two-dimensional analog of the fine-sorting algorithm
described in [66]. The field solver was implemented on a CPU using a combination of the
FFT algorithm in the azimuthal direction and a tridiagonal solver in the radial direction
for each of the azimuthal harmonics. The latter was based on the Thomas algorithm.
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Only one thread on CPU was utilized for the field solver. Such an implementation was
balanced as the CPU and the GPU parts demonstrated comparable execution time for
the typical parameters. The long-period xorshift128 algorithm proposed in [67] has been
used as a random number generator, with each thread starting initially with a randomly
chosen seed.

4.1.7. LAPLACE The 2D3V particle-in-cell code used in the present work is written
in Fortran90 and uses a structured Cartesian mesh. To exploit the modern architecture
of processors, an hybrid technique that combines distributed memory (MPI libraries)
between cores and shared memory with Open Multi-Processing (OpenMP) between
threads is considered [68, 12]. A particle decomposition is employed, the initial
particles being equally distributed between MPI cores and OpenMP threads. To reduce
computational time during array accessibility due to random positions of particles
with respect to the meshes of the simulation domain, a sorting algorithm has been
implemented [69]. The Poisson’s equation is solved with the parallel sparse direct linear
solver (PARDISO) subroutine included in the Intel®Math kernel Library (Intel®MKL)
[70].The classical leap-frog and Boris schemes are used to move the particles. The code
has been verified using the 2D axial-azimuthal benchmark by Charoy et al. [33].

4.2. Code comparisons

The six groups have simulated the test-case presented in Section 3. In Table 2, this
reference case is referred as Case A. Four groups have also simulated two supplementary
cases with a higher initial number of particles per cell (Nppc,ini = 200 or 400, which
correspond respectively to Case B and Case C) to study the statistical convergence
which will be analyzed in details in Section 4.5. The main code characteristics are also
given in Table 2, along with the corresponding simulation times.

The average computing times show that results for all codes were rather obtained
quickly, which is greatly beneficial for benchmarking. Moreover, the comparison of
elapsed times on the cases A, B and C highlights the importance of parallel scalability
for each particular code. For this particular benchmark, using a particle decomposition
along with GPU seems especially effective. The presented runtimes cannot be directly
compared between codes as each team used different machines and compilers; besides,
GPU and purely CPU based codes remain difficult to compare in terms of computing
performances. Yet, the present diversity of the codes provides a reference point for other
codes similar to one used in the benchmark.

4.3. Comparison of main plasma parameters

First, we study the reference case (case A) simulated by all the groups. We see in
Figure 7 (a-c) that all temporal profiles of density and radial electron temperature are
in very good agreement during the first 3 µs. The linear increase of density displays the
same slope while the sharp rise of radial electron temperature occurs around the same
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Table 2: Code characteristics. Explicit pusher refers to the standard Leap-frog/Boris
algorithm. ? and ?? symbols respectively refer to the particles (speed, position and

weight) and to the fields (potential and electric field).

CERFACS LPP USASK Stanford ISTP RUB LAPLACE

Code implementation

Language Fortran Fortran Fortran C++ Fortran CUDA C + C Fortran

Parellization MPI MPI MPI MPI No CUDA MPI/OpenMP

Decomposition Domain Domain Domain Particle No Particle Particle

Grid type Unstructured Structured Structured Structured Structured Structured Structured

CPU/GPU type Intel Skylake Intel Haswell Intel Skylake Intel Sandy Bridge Intel Ivy-Bridge NVIDIA Volta (GPU) + Intel Skylake (CPU) Intel Skylake

2x18 cores/node 2x12 cores/node 2x20 cores/node 32 cores/node 2x12 cores/node 5120 cores (GPU) + 10 cores (CPU) 2 x 18 cores/node

@ 2.3GHz - 96 GB @ 2.6GHz - 64 GB @ 2.4GHz - 202 GB @ 2.6GHz - 32 GB @ 2.4GHz - 256 GB @ 1.5GHz - 32 GB (GPU) + @ 2.2GHz - 96 GB (CPU) @ 2.30GHz - 64 GB

Code module

Pusher Explicit Explicit Explicit Explicit Explicit Explicit Explicit

Poisson solver MAPHYS HYPRE FFT HYPRE Fishpack FFT+Thomas PARDISO

Order of accuracy

Potential 2 2 2 2 2 2 2

Electric field 2 1 2 2 1 1 1

Floating-point

precision
Double Double Double Double Double

Single?

Double??
Single?

Double??

Simulation time for 30 µs (elapsed time)

Case A

Nppc,fin ≈ 212

35 h

(288 CPU)

64 h

(144 CPU)

51 h

(256 CPU)

168 h

(64 CPU)

306 h

(1 CPU)

11 h

(1 GPU + 1 CPU)

12 h

(180 CPU)

Case B

Nppc,fin ≈ 424

50 h

(540-900 CPU)

205 h

(72 CPU)

98 h

(256 CPU)
NA NA

14 h

(1 GPU + 1 CPU)

17 h

(180 CPU)

Case C

Nppc,fin ≈ 848

77 h

(540-900 CPU)

152 h

(216 CPU)

122 h

(256 CPU)
NA NA

29 h

(1 GPU + 1 CPU)

27 h

(180 CPU)

instant and experiences a similar growth. Therefore, all groups seem to describe the
same discharge dynamics at early times, including the MTSI onset and growth.

After the first 3 µs, we see in Figure 7 (b-d) that the electron density and
temperature exhibit a complex oscillatory behavior and discrepancies between the
results of the different codes are observed. One of the major factors explaining these
discrepancies is the use of different Random Number Generators (RNG) at initialization.
Indeed, in a supplementary test (not presented here) each group tried to use the
same initial locations for macroparticles to mitigate the effect of RNG. The obtained
transients for both temperature and density were then extremely close and discrepancies
were within statistical uncertainties. For t > 20 µs, Figure 7 (b-d) shows that both
temperature and density reach an oscillatory quasi-steady-state.

In order to compare more precisely the results, the ion density and electron
temperature are averaged both azimuthally and in time. These radial profiles are shown
in Figure 8. The time interval for averaging is set to be 25-30 µs to average over several
small oscillations. Both ion density and total electron temperature profiles exhibit an
excellent agreement between all codes. The most significant differences appear in the
centerline but they remain in a ±2.5% interval around the mean profile. Thus, in spite of
the oscillations observed on Figure 7 (b-d), we show here that similar plasma parameters
are obtained for all the codes using different RNG.
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Figure 7: Case A: Temporal profiles of plasma density (a) up to 3 µs and (b) for the
whole simulation time. (c) and (d) Temporal profiles of radial electron temperature on

the same time ranges.

4.4. ECDI-MTSI coupling

We have seen in Section 3.2 that the observed oscillations are related to a coupling
between ECDI and MTSI. The presence of both instabilities for all the codes is confirmed
in Figure 9, with 1D FFT performed in the azimuthal direction. The azimuthal
component of the MTSI is retrieved with a wavenumber ky ≈ 0.07k0, while we observe
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Figure 8: Mean radial profiles of ion density (a) and total electron temperature (b),
averaged over 25-30 µs. A zoom on the centerline highlights the discrepancies between
the codes. On (b) several profiles are superimposed. The shaded gray area indicates

the range ±2.5% around the averaged radial profiles of all the groups.

the first two ECDI resonances at ky ≈ k0 and ky ≈ 2k0.

Figure 9: 1D azimuthal FFT of the azimuthal electric field Ey, averaged over all radial
positions and over three temporal intervals: (a) 5-10 µs, (b) 15-20 µs, (c) 25-30 µs.

MTSI and ECDI resonances are indicated by arrows.
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Although both the ECDI and the MTSI appear distinctly, Figure 9(a) points out
that the MTSI is more important at the beginning of the simulation (between 5-10 µs)
and then becomes weaker with time, which echoes with the previous observation on
temporal profiles in Section 4.3: at some point, the radial electron temperature is
decreasing for all codes, which leads to a density increase. Besides, we can notice
some intermediate peaks between the MTSI wavenumber and the first ECDI resonance,
especially at the beginning of the simulation. Their nature was not clearly identified and
is left for further work. Finally, after the first ECDI resonance, the k-spectra decrease
exponentially. The second resonance is still observable with a much lower amplitude and
is surrounded by what seems to be numerical noise. At high frequencies, LPP, ISTP,
LAPLACE and USASK seem to have lower noise levels that might be related to the use
of different Poisson solvers and subsequent implementations.

Overall, we have found that the 1D FFT profiles are also very similar in the different
codes, throughout the whole simulation.

4.5. Statistical convergence

In PIC simulations, the use of macroparticles can generate numerical noise. Okuda and
Birdsall [71] have shown that this noise can be viewed as numerical collisions with a
frequency given by

νnum =
πωp,e

16NDe

, (8)

withNDe the number of macroparticles in a Debye sphere. These numerical collisions can
have a significant impact on the discharge behavior, which may lead to misinterpretation
of the simulation results. At steady state, the Debye length is around 125 µm in
most of the domain. For the reference Case A, the mean number of numerical
particles per squared cell at steady state being 212, we can roughly estimate the ratio
νnum/ωp,e ≈ 4.72× 10−5. According to [72], this ratio must be below 10−4 to ensure
negligible numerical collisions, which is the case here for all groups.

However, to further confirm that numerical collisions are truly negligible and that
statistical convergence is reached, tests with different numbers of particles per cell have
been performed by five groups. The initial number of macroparticles Nppc,ini per cell
was varied from 6, 12, 25, 50, 100, 200, 400 up to 800 particles. Then, the mean density
at steady state was computed by taking the averaged density between 25 and 30 µs and
shown in Figure 10 (a) depending on the final number of particles per cell.

We see that when a too low number of macroparticles per cell is used, the density
can increase by more than 10% if Nppc,fin is multiplied by two, which means that the
statistical convergence has not been reached. From 100-200 macroparticles per cell, the
mean ion density becomes much less sensitive to Nppc,fin and a plateau at approximately
ni ≈ 2.17n0 is reached. The curves fluctuate around this value because of the natural
variability around the mean ion density. In Figure 10 (b), radial profiles of the ion
density is displayed for the CERFACS’s code and we can see that convergence also
appears for a number of macroparticles around Nppc,fin = 100-200. We note that the
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Figure 10: Assessment of statistical convergence between 25-30 µs: (a) mean value of
ion density for five groups and (b) averaged radial profiles of density for CERFACS’s
code for various final number of macroparticles per square cells. In (a) error bars for
CERFACS indicate the standard deviation around the mean value. The baseline case

has around 212 particles per squared cell at steady state. In (b) radial profiles
converge from light/green colors towards dark/blue colors.

reference case presented in the previous sections is well converged with more than 200
macroparticles per cell. The criteria of 100-200 particles per cell to reach statistical
convergence agrees with previous conclusions from Charoy et al. [33].

5. Conclusion and prospective

In this paper, a 2D radial-azimuthal benchmark for E × B discharges was presented.
For this benchmark, collisionless 2D3V-PIC models were used with a virtual axial re-
injection model and a fixed ionization source term. The virtual axial model limits the
energy growth by removing the high energy tail of the energy distribution functions.
Besides, particle losses at the walls are compensated by imposing an ionization source
term, similarly to Refs. [33, 12]. These two features provide a framework for
benchmarking by allowing the discharge to reach a steady-state. Despite its apparent
simplicity, this test-case was chosen as it captures two important instabilities: the ECDI
and the MTSI. Both exhibit characteristics that are in agreement with the linear theory
and, moreover, they are found to be coupled, which was also noticed by Janhunen et al.
[25].

Six independent PIC codes have simulated the same test-case. In spite of their
differences, all the codes retrieved the ECDI and the MTSI at wavenumbers predicted
by the theory. They also converged within a 5% interval on relevant plasma parameters.
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Transients are important in this configuration because they directly give an assessment
of the ECDI and the MTSI growth and coupling. From temporal profiles and 1D FFTs,
all the codes captured a similar development and interaction between both instabilities.
Because of the use of different RNG, the transients can be shifted but the main steps
of the simulation were eventually retrieved. Finally, the statistical convergence of the
results was assessed. It appeared that at least 100-200 macroparticles per cell are needed.
A similar conclusion was found in [33] and this criteria could be used for future 2D PIC
simulations.

The main goal of this work was to provide confidence on radial-azimuthal
simulations, in which the results can be difficult to analyze due to the coupling between
ECDI and MTSI or the use of artificial models to deal with the axial direction. Thanks
to the benchmark presented in this paper, every radial-azimuthal code can be verified,
which paves the way to further investigations accounting for wall and sheath effects.
Moreover, even if we made some simplifying assumptions, such as neglecting the presence
of neutrals or not accounting for self-consistent ionization, this case can also be used
for insightful parametric studies. For instance, by varying the ionization source term,
we can define the plasma density at steady-state, a parameter which plays a role in the
instability dispersion relations. Hence, the role of this parameter on the ECDI or MTSI
onset could be more easily studied.
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