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Abstract

In the standard definition of the classical gambler’s ruin game, a persistent

player enters in a stochastic process with an initial budget b0, which is, round

after round, either increased by 1 with probability p, or decreased by 1 with

probability 1 − p. The player wins the game if the budget reaches a given

objective value g, and loses the game if the budget drops to zero (the gambler

is ruined). This article introduces the decisional gambling process, where the

parameter p is hidden, and the player has the possibility to stop the game at any

round keeping earnings. In this case, the best a player can do is to maintain an

estimate of p based on the observed outcomes, and use it to decide whether is

better to stay or quit the game. The main contribution of this article is to bring

the question of finding the optimal stopping time to the gambler’s ruin game.

Different heuristics are analyzed and evaluated according to their performance

in maximizing the gambler’s expected final budget.
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1. Introduction

The gambler’s ruin game is a fundamental problem in the domain of stochastic

processes [1, 2, 3, 4, 5]. The earliest known mention of it dates back to a 1656

letter from Blaise Pascal to Pierre de Fermat, followed by the books of Christiaan

Huygens (1657), Jacob and Nicolaus Bernoulli (1713), Pierre de Montmort5

(1708), and Abraham de Moivre (1718), inaugurating the mathematical study of

probabilities [6, 7, 8, 9, 10].

Despite such a long history in the literature, the gambler’s ruin is still an

actively studied problem [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. It is also used as

a model for diverse applied problems, such as business risk [21, 22, 23], quantum10

mechanics [24, 25], anomaly detection [26], material properties [27, 28, 29], or yet

other physical [30, 31], biological [32, 33], and even social phenomena [34]. The

gambler’s ruin has recently been associated with a survival version of multiarmed

bandits [35, 36, 37], which in turn is an essential model for studying sequential

decision and learning problems [38].15

In the standard setting, the player enters the game with an initial budget b0,

which must be positive and integer, and the goal is to increase the budget to a

given objective value g. At each round t ∈ N+, the player either earns 1 unit

with probability p, increasing the current budget, or conversely loses 1 unit with

probability q = 1− p, decreasing the current budget. The process stops the first20

time the budget reaches 0 or g: the gambler either lost everything and is ruined,

or earned as much as wanted and won the game. The probability of success p is

stationary, i.e. identical at every round.

Different variations of the problem can be found in the literature. A common

alternative is to consider the objective budget g to be infinite [1, 39, 40]. In such25

a scenario, depending on the initial budget b0 and on the probability of success

p, the process will either stop, with the gambler getting ruined, or, conversely,

will run indefinitely, with the gambler becoming arbitrarily rich. Other modified

versions of the game include variable or asymmetric rewards for success and

failure [41, 42, 43, 44, 45], non-stationary probabilities [46], multiple players or30
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dimensions [47, 48, 49, 50, 51, 52], possibility of ties [1, 53], catastrophes and

windfalls [54], intermediate absorption [55, 56], delayed rewards [57], continuous

vectors [58], etc.

This article addresses an original variation of the gambler’s ruin game, called

a decisional gambling process, where the parameter that regulates the distribution35

function from which the results are drawn is hidden, i.e. the probability of success

p is unknown to the player. In addition, at each round, the gambler must decide

between two options: either to continue playing the game in the next round,

or to quit it and stop gambling, in this case keeping the current budget. An

agent facing this alternative setting seeks to maximize its expected final budget,40

either by playing until winning if the context is favorable, or by avoiding ruin,

quitting the game as soon as possible, if the context seems adverse. The agent

can estimate the underlying parameter p from its previous observations, and,

round by round, based on that, decide whether it is preferable to continue or to

quit the game.45

Terminology and notation can vary in different references. In this article, we

use “gambler” and “player” interchangeably, and generally to refer to someone

who plays the gambler’s ruin game (GRG). We adopt the term “agent” to refer

to an automatic method which plays a decisional gambling process (DGP), since

it must actively participate in the game by choosing an action at each round.50

We prefer to use the term round instead of “time”, “cycle”, or “step”, to refer to

the discrete temporal evolution of the process. Some authors employ the terms

“fortune”, “wealth”, and “bankroll” to refer to the budget. Others make reference

to an “adversary”, while we prefer to consider that the game is played against

an impersonal process. The objective budget g is sometimes called the “total55

fortune inside the game”. Also, some authors refer to the stopping rule (i.e. the

conditions for winning and losing) as the “stopping strategy”. Because in our

work the agent can decide to quit the game before that, we reserve the term

strategy to the policy of actions (in the case of a DGP, the criterion adopted by

the agent for deciding, at each round, whether to play or to quit the game).60

In contrast with the classical gambler’s ruin, which is a pure stochastic game
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where the flow of events does not depend on any player’s decision, the decisional

gambling process constitutes a sequential decision problem in which the agent

must choose an action (either to continue or to quit the game) at each round,

based on the previous observations, and guided by an objective optimization65

function: to maximize its expected final budget. Similar to [59], the agent

searches for an optimal stopping time, but here without knowing p.

The problem involves a kind of exploration-exploitation dilemma: on the

one hand, when the agent chooses to abandon the game, it knows the amount

of its current budget, compared to the estimated future earnings that could be70

obtained if it had kept playing; on the other hand, that estimate comes from

the observations, and playing another round brings more information about the

underlying parameter, which allows to improve the estimation precision, but

implies the risk of having additional losses.

In addition to introducing the decisional gambling process as an original75

problem, another contribution of this article is the definition and evaluation of

a set of heuristics for deciding when to stop playing the game. The expected

utilities of three straightforward heuristics (bold, timid, and naive) are analytically

demonstrated, and those methods are redefined in terms of tolerable loss. The

theoretical optimal behavior (oracle), which indicates the best decision to take if80

the parameter p could be known, is also defined, serving as a reference to calculate

the regret of other strategies. From a broader point of view, the scenario studied

in this article brings together two classical problems: the gambler’s ruin game

and the search for the optimal stopping time in stochastic processes [60, 61].

In the rest of the article, Section 2 formally states the definition of a decisional85

gambling process, explains the similarities and differences in relation to the

classical gambler’s ruin game, and presents some of its properties. Section 3

introduces a set of heuristic methods supported by theoretical analysis. Section 4

compares the methods and discusses the results, and Section 5 concludes the

article, pointing out the limits of this research, and indicating possible future90

work.
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2. Decisional Gambling Process

The first contribution of this article is defining a modified version of the

classical gambler’s ruin game (GRG) in which the parameter p is not known,

and the gambler can decide to stop the game at any time. We call this variation95

of the problem a decisional gambling process (DGP), into which the gambler

becomes an agent.

DGPs and GRGs share the same parameters. Both models can be seen as

discrete stochastic machines. At each successive round, the agent’s budget can

be either increased or decreased by 1 with respective stationary probabilities p100

and 1− p. The parameter b0 defines the initial budget and g defines the goal or

objective budget.

Definition 1. A DGP is constituted of a Bernoulli process into which p is the

constant probability of success in a trial. An initial natural budget b0 evolves by

steps of size +1 or −1 depending on the trial result at each round. The process105

stops when the budget attains either 0 or g, or when a stopping decision is made

by the policy π.

Formally, let b0, g, and p be the parameters of a DGP, such that:
b0 ∈ N+ is the initial budget,

g ∈ N | g > b0 is the goal or objective budget,

p ∈ [0, 1] is the probability of success in a single round.

(1)

From the parameter p we can state two other derived parameters:q := 1− p is the probability of failure in a single round,

r := 1−p
p is the failure-success ratio.

(2)

At each round t, the gambler can observe either a success, represented by

Xt = 1, which returns a constant reward Rt = +1, or a failure, represented by

Xt = 0, which returns a constant reward Rt = −1. It means that the immediate

reward received by the agent only depends on the result of the corresponding
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trial:

∀t ∈ N+ :

Xt ∈ {0, 1} is the trial result at round t,

Rt := 2Xt − 1 is the reward received at round t.

(3)

In this way, executing a DGP (as well as a GRG) corresponds to running a

series of rewarded Bernoulli trials where each observation comes from the real-

ization of the random variable Xt at round t, and where each trial is independent

and identically distributed, drawn from a stationary Bernoulli distribution:

∀t ∈ N+ : Xt ∼ Bern(p) =

1 with probability p,

0 with probability q = 1− p.
(4)

As a model, the DGP extends the GRG, which in turn extends the Bernoulli

process [62], defined as a stochastic process {Xt}t∈N+ over the sample space

Ω = {0, 1}N+

.110

Let Kt, Zt, St and Bt be the state of the game after t rounds, such that:

∀t ∈ N :



Kt :=
t∑
i=1

Xi is the number of observed successes,

Zt := t−Kt is the number of observed failures,

St :=
t∑
i=1

Ri = Kt − Zt is the cumulated reward,

Bt := b0 + St is the agent’s budget at round t,

(5)

with K0 = Z0 = S0 = 0, and B0 = b0.

Let the stopping time τ ∈ N be a random variable indicating when the

considered DGP stops (i.e. the last played round). The difference between DGP

and GRG lies in their stopping rules. A GRG stops in the earliest round at

which the budget reaches either 0 or g. A DGP, in addition, can stop when the

agent decides to quit the game. For this reason, in a DGP, the action chosen by

the agent at each round, Dt ∈ {>,⊥}, must be taken into account:

∀t ∈ N : Dt =

⊥ if the agent decides to quit the game after round t ,

> if the agent decides to play the round t+ 1 .

(6)
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Since the value of τ depends on the realization of Bt and Dt, the stopping

time is also a random variable:

τ := inf
t∈N

[
(Bt = 0) ∨ (Bt = g) ∨ (Dt = ⊥)

]
. (7)

By analogy with GRG [62, 63, 64], because g is finite, and since the DGP

stopping rule is more restrictive than the GRG stopping rule, it can be demon-

strated that the probability for a game to run indefinitely tends to zero as time

approaches infinity:

lim
t→∞

P(τ≥ t) = 0 , (8)

which means that a DGP will almost always stop (i.e. eventually the agent wins

the game, quits it, or is ruined), and the finiteness of τ holds almost surely,

independently of the adopted policy.

Let π(b0, g, t,Kt, Zt, Bt) → {>,⊥} be the decision function, or policy of115

actions, that defines the agent’s behavior to produce the sequence {Dt}t∈N. Note

that π can depend on the initial budget b0, on the number of played rounds t, on

the number of successes Kt and failures Zt observed until the current round, on

the current budget Bt, and on the objective budget g, but does not have access

to p. The decision is made by the agent without knowing this parameter. The120

only information related to p comes, indirectly, from Kt and Zt. Also note that

the agent makes its first decision at round t = 0, i.e. before the effective start of

the game at round t = 1.

Let E [Bτ ] be the expected final budget, which is kept when the game

eventually stops, and which the agent would like to maximize. Thanks to Eq. (8),

it can be defined as:

E [Bτ ] =
∑
t∈N

[
P(τ = t) · E[Bt | τ = t]

]
. (9)

Let Π be the set of all possible policies. An optimal strategy π∗ is a pol-

icy of actions that maximizes the agent’s expected final budget for any game

configuration:

π∗ := arg max
π∈Π

E
[
Bτ | π

]
. (10)
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Nevertheless, even if the value of p is hidden, two important characteristics

are assumed to be true: first, the parameter is stationary (i.e. p does not change

over time):

∀x ∈ {0, 1}, ∀t ∈ N+ : P(Xt = x) = P(X1 = x) , (11)

and second, it has a uniform prior (i.e. there is no assumed predefined tendency,

and p has a priori equal chances to assume any real value between 0 and 1,

inclusive). It is equivalent to say that p is the realization of a random variable θ,

drawn from a uniform distribution when the game starts [65]:

θ ∼ U(0, 1) = Beta(1, 1) . (12)

3. Analyzing Theoretically Grounded Strategies

Another contribution of this article is formally analyzing the expected per-

formance of different intuitive heuristic methods: bold (which always plays),

timid (which always quits), radical (a combined version of the previous two),

and naive (which estimates p). Their performance is compared to the theoretical

performance of an oracle policy, i.e. an optimal method that can see the hidden

parameter p. The difference between the oracle’s expected final budget, and the

expected final budget of a given strategy corresponds to its expected regret :

λπ := E[Bτ | πoracle]− E[Bτ | π] . (13)

These four mentioned strategies are described in the next subsections. A125

comparison between them is shown in Figures 7 and 8. We also show that these

strategies can be generalized in the form of a single parametric `-strategy, where

` represents the maximal tolerable loss.

Let π be the strategy adopted by the agent, Bt, its current budget, g, the

objective budget, and p, the underlying DGP parameter. The probability that

the process will stop with the agent quitting the game is defined as:

{
Pquit
π | Bt, g, p

}
:= P

(
∃h ∈ N :

[
(τ=h) ∧ (Dh=⊥)

] ∣∣ Bt, g, p, π) ; (14)
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The probability that the agent will win the game is define as:

{
Pwin
π | Bt, g, p

}
:= P

(
∃h ∈ N :

[
(τ=h) ∧ (Bh=g)

] ∣∣ Bt, g, p, π) ; (15)

And the probability that the agent will lose the game is defined as:

{
Plose
π | Bt, g, p

}
:= P

(
∃h ∈ N :

[
(τ=h) ∧ (Bh=0)

] ∣∣ Bt, g, p, π) . (16)

3.1. Bold Strategy

A DGP can be reduced to a GRG by the adoption of a bold policy, indicated

in Eq. (17), which never quits the game. This “everything or nothing” strategy

makes the agent play until either winning or getting ruined, which is equivalent

to the classical gambler’s ruin routine:

πbold := > =⇒ ∀ b0, g, t,Kt, Zt, Bt ∈ N : {Dt | πbold} = > . (17)

While a general DGP can be described in the form of an MDP, as shown130

in Figure 1, the bold strategy can be represented as a finite terminating one-

dimensional Markov chain [66] on the state space {0, ..., g}, as shown in Figure 2,

where each node corresponds to a possible budget. The two barrier nodes, 0 and

g, are absorbing, and all the other nodes, between 0 and g, are transient.

Figure 1: A decisional gambling process can be modeled as a Markovian decision process.

Each node in the top of the graph corresponds to a possible budget while the game is running.

The nodes 0 and g are absorbing (self-loop with probability 1), corresponding, respectively, to

the losing and winning situations. The nodes in the bottom of the graph are also absorbing,

corresponding to stopping the game with an intermediate budget, following the agent’s decision

to quit the game. The initial state is b0.
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Figure 2: The gambler’s ruin game can be modeled as a Markov chain, and the course of

the game as a random walk. It also corresponds to the decisional gambling process when the

player never wants to quit the game (bold strategy). Each state corresponds to a possible

budget. The process starts on b0 and, from each transient node, probabilities p and q define,

respectively, the chance to step into the right, and into the left neighbor. The probability

of winning or losing can be deduced by looking at the limiting distribution as time goes to

infinity (steady state probabilities) of the chain, since the probability of being in a transient

node tends to 0.

Since the bold strategy never chooses to quit the game, observing a quitting

decision at any round is impossible when using that strategy:

Pquit
bold = 0 . (18)

Then, if the process stops (which eventually happens, almost surely), the

final budget cannot be other than 0 or g, independent of any other parameter:

∀h ∈ N :
(
τ = h −→ {Bh | πbold} ∈ {0, g}

)
. (19)

Thanks to the reducibility of the bold strategy to a GRG, it can also be

demonstrated [1, 10] that a bold gambler with current budget Bt in a game

where the objective budget is g has the following probability to win:

{
Pwin
bold | Bt, g, p

}
=



0 if p = 0 ,

1 if p = 1 ,

1−( 1−p
p )

Bt

1−( 1−p
p )

g if p ∈ (0, 1) | p 6= 1
2 ,

Bt

g if p = 1
2 .

(20)

Since the probability that the game will run forever (Eq. (8)) tends to 0, and

because the bold strategy never asks to quit it (Eq. (18)), then the probability

of losing the game, being ruined at the end, is complementary to the probability

of winning it: {
Plose
bold | Bt, g, p

}
= 1−

{
Pwin
bold | Bt, g, p

}
. (21)
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Figure 3 illustrates the probabilities of winning a game in different scenarios135

using the bold strategy.

Since a bold gambler always plays until winning (Bτ = g) or losing the game

(Bτ = 0), and because these probabilities are known for any given value of p,

the gambler’s expected final budget corresponds to:

E
[
Bτ | Bt, g, p, πbold

]
= g ·

{
Pwin
bold | Bt, g, p

}
+ 0 ·

{
Plose
bold | Bt, g, p

}
= g ·

{
Pwin
bold | Bt, g, p

}
.

(22)

It is possible to determine a general expectation for Bτ , independent of

p, based on the fact that the a priori probability distribution of p is uniform.

Thanks to the lotus theorem, the general expectation, denoted by ξ, corresponds

to the definite integral between 0 and 1 of Eq. (22) [67, p.2]. That value indicates

the expected final budget of a bold gambler playing a DGP, without knowing p,

which has been drawn from a uniform distribution. We call this expectation the

utility of the method:

ξbold(b0, g) :=

∫ 1

0

E
[
Bτ | b0, g, p, πbold

]
dp

=

∫ 1

0

g ·
{
Pwin
bold | b0, g, p

}
dp

= g

∫ 1

0

{
Pwin
bold | b0, g, p

}
dp

= g

∫ 1

0

1−
(

1−p
p

)b0
1−

(
1−p
p

)g dp .

(23)

The expected duration of the game for a bold gambler can be obtained by

first-passage distribution analysis [64, 42]:

E
[
τ | b0, g, p, πbold

]
=


b0

1−2p −
g

1−2p ·
1−( 1−p

p )
b0

1−( 1−p
p )

g if p 6= 1
2 ,

b0(g − b0) if p = 1
2 .

(24)

3.2. Timid and Radical Strategies

In contrast to the bold strategy, the timid strategy, indicated in Eq. (25),

always chooses to quit the game:

πtimid := ⊥ =⇒ ∀ b0, g, t,Kt, Zt, Bt ∈ N : {Dt | πtimid} = ⊥ . (25)
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Figure 3: The probability of winning the game (vertical axis) adopting the bold strategy (which

always chooses playing) depends on the parameter p (horizontal axis), on the objective budget

(g), and on the initial budget (b0). The graphic (a) illustrates these probabilities for a constant

g = 6, varying b0 from 1 to 5. The other graphics show the probabilities for different constant

b0/g ratios: (b) b0/g = 1/2, (c) b0/g = 1/3, and (d) b0/g = 2/3. The utility (ξ) of the bold

strategy for each case, given a uniform prior for p, corresponds to the definite integral of the

function (i.e. the area under each curve).
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The properties of timid are trivial to deduce. When the agent uses this

strategy, the process always terminates before the first effective round, at t =

0 (consequently, with τ = 0), and the gambler keeps an unchanged budget140

equivalent to b0:

E
[
τ | πtimid

]
= 0 , (26)

Pquit
timid = 1 , (27)

Pwin
timid = Plose

timid = 0 , (28)

E
[
Bτ | b0, πtimid

]
= ξtimid(b0) = b0 . (29)

Both timid and bold are blind strategies: they do not take into account any

information about the game for improving their decision making. In fact, by

looking at the b0/g ratio, it is easy to see that when b0 is closer to g than to 0

(i.e. b0/g > 0.5) the gambler has more to lose than to gain. Therefore, a simple

improvement over those two heuristics, called radical strategy, corresponds to

becoming timid when b0 > g/2 and bold otherwise:

πradical(b0, g) :=

⊥ if b0 > g/2 ,

> if b0 ≤ g/2 .

(30)

3.3. Oracle Policy

When p = 1/2, the gambler neither earns nor loses money on average. In

that case, the progression of the budget over time constitutes a martingale:

the expected budget at round t+ 1 is equivalent to the budget at round t [68].

When p < 1/2, the gambler loses money on average, and the game is said to

be a supermartingale: the expected budget at round t+ 1 is smaller than the

budget at round t [69]. When p > 1/2, the gambler earns money on average,
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then the process constitutes a submartingale: the expected budget at round t+ 1

is greater than the budget at round t [69]. Formally:

∀t ∈ N :


E
[
Bt+1 | πbold

]
= Bt if p = 0.5 ,

E
[
Bt+1 | πbold

]
< Bt if p < 0.5 ,

E
[
Bt+1 | πbold

]
> Bt if p > 0.5 .

(31)

Considering a GRG, or a DGP with a bold strategy (i.e. Dt = >, ∀t ∈ N),

and based on Eq. 31, it can be demonstrated that:

∀t ∈ N :


E
[
Bτ | πbold

]
= b0 if p = 0.5 ,

E
[
Bτ | πbold

]
= 0 if p < 0.5 ,

E
[
Bτ | πbold

]
= g if p > 0.5 .

(32)

Based on these facts (Eqs. (31) and (32)), and considering the objective of

maximizing the gambler’s expected final budget, if the parameter p could be

known in advance, the decision would be trivial. In a martingale, this result

does not depend on the gambler’s decision, and any expected future budget is

equivalent to the initial budget. In a supermartingale, the budget is expected to

decrease round after round, so the best decision is to quit the game immediately.

In a submartingale, the budget is expected to increase round after round, and

the best decision is to continue playing until the game finishes. The oracle

policy can be used for calculating the regret (Eq. (13)) of other strategies. The

resulting behavior of that policy corresponds to being bold when the probability

of success is favorable (p ≥ 0.5), and being timid otherwise:

{πoracle | p} :=

⊥ if p < 0.5 ,

> if p ≥ 0.5 .

(33)

Since the oracle always quits the game at the beginning if p < 0.5, keeping

the initial budget, and always plays until winning or losing the game when

p ≥ 0.5, the gambler’s expected final budget corresponds to:

E
[
Bτ | Bt, g, p, πoracle

]
=

g ·
{
Pwin
bold | Bt, g, p

}
if p ≥ 0.5 ,

b0 if p < 0.5 .

(34)
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and its general utility, always considering a uniform prior for p, is:

ξoracle(b0, g) =

∫ 1

0

E
[
Bτ | b0, g, p, πoracle

]
dp

=

∫ 0.5

0

b0 dp+

∫ 1

0.5

g ·
{
Pwin
bold | Bt, g, p

}
dp

= b0 + g ·
∫ 1

0.5

{
Pwin
bold | Bt, g, p

}
dp

= b0 + g ·
∫ 1

0.5

1−
(

1−p
p

)b0
1−

(
1−p
p

)g dp .

(35)

3.4. Naive Strategy

In a DGP, the parameter p is not known in advance, and the agent has the

power to stop the game before the end, to try to maximize its expected final

budget. For doing so, the agent can estimate p while playing, from observations,

which corresponds to estimating the parameter that regulates a binomial dis-

tribution [70, 71]. The binomial distribution gives the probability of having a

certain number of successes on a sequence of Bernoulli trials. The probability of

having Kt = k successes (and Zt = z = t− k failures) in t trials, given p (and

q = 1− p) is:

P(Kt = k | t, p) = Bin(k; t, p) =

(
t

k

)
pkqz . (36)

In a Bayesian approach [72], the beta distribution is conjugate to the binomial

likelihood. Then, assuming a uniform prior (i.e. considering that p can be a

priori placed uniformly between 0 and 1, following Eq. (12), which corresponds

to a Beta(1, 1) distribution), the posterior probability density function ϕ of p

takes the form of a beta distribution:

ϕ(p | k, t) = Beta(p; k + 1, z + 1) = (t+ 1)

(
t

k

)
pkqz , (37)

and the Bayesian estimate of p, denoted by p̂, corresponds to the mean of the

posterior distribution [73]:

p̂ = E[p | k, t] =

∫ 1

0

p · ϕ(p | k, t) dp =
k + 1

t+ 2
. (38)
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A naive approach for approximating the probability of winning a game based

on the observations is estimating p using Eq. (38), and then using it in Eq. (20).

The strategy corresponds to continuing playing the game while the estimate of p

suggests a positive mean reward. It is a naive approach since only the estimation

of p is taken into account for taking a decision, independent of the current budget

and ignoring the confidence on the estimation. The naive strategy is similar to

the oracle policy, but using the estimation of p at the decision time:

πnaive(t, p̂) =

⊥ if p̂ < 0.5 ,

> if p̂ ≥ 0.5 .

(39)

We would like to demonstrate that the naive strategy, described in Eq. (39)

based on the estimate of p, is equivalent to the strategy that quits the game145

when the budget drops to b0 − 1, as proposed by Theorem (1):

Theorem 1. In a DGP, the Bayesian estimate of p is lower than 1/2, considering

any symmetric beta prior (i.e. α = β), if and only if the current budget Bt is

lower than the initial budget b0.

Proof. Since, following Eq. (5), the budget at round t (Bt) must correspond to

the initial budget b0 plus the number of successes Kt (which return reward +1)

minus the number of failures Zt = t−Kt (which return reward −1), it is possible

to deduce the number of observed successes based on the number of played

rounds, the initial and current budget:

Bt = b0 +Kt − Zt = b0 + 2Kt − t =⇒ Kt =
Bt − b0 + t

2
. (40)

Then, considering Eq. (40), it is possible to demonstrate that the conditions

presented in Eqs. (38) and (39), which guide the naive strategy, supposing a
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uniform prior, can be transformed as follows:

Kt + 1v

t+ 2v
<

1

2
⇐⇒ Kt + 1v <

t+ 2v

2

⇐⇒ Kt <
t+ 2v

2
− 1v

⇐⇒ Kt <
t

2

⇐⇒ Bt − b0 + t

2
<
t

2

⇐⇒ Bt − b0 + t < t

⇐⇒ Bt − b0 < 0 ⇐⇒ Bt < b0 .

(41)

150

The transformation presented in Eq. (41) demonstrates that, in fact, the

naive strategy stops the game at the first round in which the current budget

falls under the initial budget (Bt < b0). Because the budget is integer, it means

stopping when Bt = b0 − 1.

The proof can be specialized to demonstrate that using the uniform distribu-

tion Beta(1, 1) results in the same behavior: the agent quits the game the first

time the budget falls below b0, as indicated in Eq. (42):

p̂ < 0.5 ⇐⇒ Kt + 1

t+ 2
<

1

2
⇐⇒ Bt − b0 + t

2
<
t

2
⇐⇒ Bt < b0 . (42)

Note that using the frequentist estimator (v = 0) instead of the Bayesian

estimator of p results in the same policy, as evidenced by Eq. (43), and illustrated

in Figure 4:

Xt < 0.5 ⇐⇒ Kt

t
<

1

2
⇐⇒ Bt − b0 + t

2
<
t

2
⇐⇒ Bt < b0 . (43)

A naive gambler either wins the game or quits it with budget Bτ = b0 − 1.155

In general (i.e. when b0 > 1), quitting the game means deciding to stop the

process, but in the particular case in which b0 = 1, naive behaves like bold (i.e.

the gambler either wins or is ruined, since Bτ = b0 − 1 = 0 in that case).

The probability of winning the game using the naive strategy can be deduced

by reinterpreting Eq. (20). That formula indicates the probability of winning
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Figure 4: The naive policy estimates p using the Bayesian average. When p̂ < 0.5 the gambler

stops the game. It corresponds to the situation in which bt < b0. For that reason, the equations

used for calculating lose probabilities (Bτ = 0) with the bold strategy can be translated into

quit probabilities (Bτ = b0 − 1) with the naive strategy. A similar alternative is using the

frequentist estimation of p, but the resulting policy corresponds exactly to naive. In fact,

roughly speaking, in this case, conducting a Bayesian estimation corresponds to starting a

frequentist estimation after have seeing one success and one failure (the prior). Note that,

because both the confidence in the estimation and the budget magnitude are not taken into

account in that strategy, a failure at the very first round makes the gambler quit the game.

when playing boldly. The same scheme of probabilities can be used to describe

an agent which plays either until winning, or until observing a budget equivalent

to b0 − 1. The insight for this translation is based on the fact that the structure

of paths leading from b0 to b0 − 1 or to g is isomorphic to the structure of paths

leading from 1 to 0 or to g − b0 + 1, as shown in Figure 5. In this way, the

probability of winning the game, using the naive strategy, before the budget

drops to b0 − 1 corresponds to:

{
Pwin
naive | Bt, b0, g, p

}
=
{
Pwin
bold | B′t, g′, p

}
, (44)

where B′t := 1, and g′ := g − b0 + 1.

The (complementary) probability of stopping the game using the naive

strategy, since the budget b0 − 1 is observed, is:

{
Pquit
naive | Bt, b0, g, p

}
=

1−
{
Pwin
naive | Bt, b0, g, p

}
if b0 > 1 ,

0 if b0 = 1 .

(45)

The only case in which the gambler can be ruined using the naive strategy is
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Figure 5: The probability of reaching g (winning the game) before b0 − 1 is the same as

reaching g − b0 + 1 before being ruined when starting with budget 1. Note the isomorphic

structure of both graphs if they are taken as Markov chains where up arrows have probability

p and down arrows have probability q.

when b0 = 1:

{
Plose
naive | Bt, b0, g, p

}
=

1−
{
Pwin
naive | Bt, b0, g, p

}
if b0 = 1 ,

0 if b0 > 1 .

(46)

Thanks to Equations (44) and (45), it is possible to define the expected final

budget of a gambler using the naive strategy:

E
[
Bτ | Bt, b0, g, p, πnaive

]
=

g ·
{
Pwin
naive | Bt, b0, g, p

}
+ (b0 − 1) ·

{
Pquit
naive | Bt, b0, g, p

}
, (47)

and its general utility:

ξnaive(b0, g) =

∫ 1

0

E
[
Bτ | b0, g, p, πnaive

]
dp . (48)

3.5. Acceptable Loss Strategy160

A general formulation, called loss strategy, and connecting timid, bold and

naive, can be done based on a maximal tolerable loss parameter ` ∈ N, into

which ` = b0 for bold, ` = 0 for timid, and ` = 1 for naive:

π`(Kt, Zt) =

⊥ if Zt −Kt ≤ ` (i.e. when Bt ≤ b0 − `),

> if Zt −Kt > ` (i.e. when Bt > b0 − `),
(49)
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Figure 6: Illustration of the maximal loss strategy for different values of ` when b0 = 3 and

g = 6. Note that when bt drops to b0 − ` the agent decides to stop gambling, except if it is

already ruined (case ` = b0).

where Kt and Zt are respectively the number of observed successes and failures.

Based on a reasoning similar to the one used for deriving Equations (44), (45)

and (46), illustrated in Figure 5, we can use the well-known GRG winning and

losing probability formulas to understand the `-strategy. All we need to do is

translating the reference points on the path structure, using ` in the place of b0,

and g − b0 + 1 instead of g, then obtaining:

{
Pwin
` | Bt, b0, g, p

}
=
{
Pwin
bold | B′′t , g′′, p

}
, (50)

with B′′t = ` and g′′ = g − b0 + `, and:

{
Pquit
` | Bt, b0, g, p

}
=

1−
{
Pwin
` | Bt, b0, g, p

}
if b0 > ` ,

0 if b0 ≤ ` ,
(51)

{
Plose
` | Bt, b0, g, p

}
=

1−
{
Pwin
` | Bt, b0, g, p

}
if b0 ≤ ` ,

0 if b0 > ` .

(52)
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The expected final budget of a gambler using the loss strategy is:

E
[
Bτ | Bt, b0, g, p, π`

]
=

g ·
{
Pwin
` | Bt, b0, g, p

}
+ (b0 − `) ·

{
Pquit
` | Bt, b0, g, p

}
, (53)

and its general utility:

ξ`(b0, g) =

∫ 1

0

E
[
Bτ | b0, g, p, π`

]
dp . (54)

The intuition behind this generalization can be understood by looking at

Figure 6 and observing the displacement of the decision frontier (the horizontal

line that divides the plane, indicating where the decision changes from playing

to quitting).165

4. Discussion

Figures 7 and 8 present the performance of each of the analyzed strategies

given the game conditions (b0 and g). Not surprisingly, the oracle strategy,

which has access to the hidden parameter p, always performs better than the

other ones, copying the timid strategy when p < 0.5 and the bold strategy when170

p ≥ 0.5. As explained in Section 3.3, that is the theoretically best possible

expected performance.

In terms of preferability, we say that a strategy π′ is preferred over strategy

π if its utility is greater, given b0 and g:

π′ � π | b0, g ⇐⇒ ξπ′(b0, g) > ξπ(b0, g) , (55)

and we say that a strategy π′ dominates a strategy π if it is never worse, and is

strictly preferable at least in one configuration:

π′ �� π ⇐⇒

∀b0, g ∈ N+ : π′ � π | b0, g ,

∃b′0, g′ ∈ N+ : π′ � π | b′0, g′ .
(56)

Figure 8 suggests that the bold strategy outperforms the timid strategy in

expectation when the initial budget is low, closer to 0 than g. However, timid
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Figure 7: Expected final budget for bold, timid, radical, naive, maximal loss with ` = 2, and

oracle strategies. The graphics in left column present a case in which the objective budget

is low (g = 4), in contrast to the right column, where it is higher (g = 20). The graphics on

the top present a case in which the initial budget is low, compared to the objective budget

(b0 = 1/4g). In the middle row, the initial budget is half of the objective (b0 = 1/2g). In the

bottom row, the initial budget is close to the objective (b0 = 3/4g). The utility (ξ) of each

strategy (the area under the corresponding curve) is also indicated.
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Figure 8: Expected final budget for the analyzed strategies (bold, timid, naive, radical, loss

with ` = 2, and oracle), considering a uniform prior distribution for p. The curves correspond

to the definite integral with respect to p between 0 and 1 of the expected utility of each

strategy, depending on g, and on the ratio b0/g. The graphic on the top presents a case in

which the objective budget is low (g = 4), and the graphic on the bottom presents a case in

which it is higher (g = 20). Note the superior performance of the bold strategy in relation to

naive when the objective budget g is high, and the ratio b0/g is low.
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outperforms bold when the initial budget is high, closer to g than 0. Both175

strategies are equivalent when b0 = g/2. Again, this is not surprising: when

the initial budget is low, the gambler has more to gain than to lose, then it is

preferable to take the risk of playing, and vice versa. It leads to the hypothesis

described in Theorem 2:

Theorem 2. In a DGP, the relation of preferability between bold and timid

strategies is determined by the ratio of b0 to g, such that:

∀b0, g ∈ N+ :


πbold � πtimid ⇐⇒ g > 2 b0 ,

πbold ∼ πtimid ⇐⇒ g = 2 b0 ,

πbold ≺ πtimid ⇐⇒ g < 2 b0 ,

(57)

which means, according to Eqs. (55) and (57):

∀b0, g ∈ N+ :


g > 2 b0 ⇐⇒ ξbold(b0, g) > ξtimid(b0) ,

g = 2 b0 ⇐⇒ ξbold(b0, g) = ξtimid(b0) ,

g < 2 b0 ⇐⇒ ξbold(b0, g) < ξtimid(b0) .

(58)

For proving Theorem 2, and consequently the proposition made in Eqs. (57)

and (58), we must recall the utility formulas concerning bold and timid strategies,

defined by Eqs. (23) and (29):

ξbold(b0, g) =

∫ 1

0

g ·
1−

(
1−p
p

)b0
1−

(
1−p
p

)g dp ; ξtimid(b0) = b0 . (59)

The solution for that definite integral cannot be expressed with a simple180

closed formula, but a proof for the inequalities presented in Eq. (58) can be

done based on Lemmas 2.1 and 2.2, which follow well-known definite integral

properties [74, 75, 76]:

Lemma 2.1. The definite integral of a given integrable function f between 0 and 1

is equivalent to the definite integral of f ′ between 0 and 1/2 if f ′(p) = f(p)+f(1−p)185

for any value of p within that interval.
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Proof of Lemma 2.1.∫ 1

0

f(p) dp =

∫ 1
2

0

f(p) dp+

∫ 1

1
2

f(p) dp

=

∫ 1
2

0

f(p) dp−
∫ 1

2

1

f(p) dp

=

∫ 1
2

0

f(p) dp+

∫ 1
2

0

f(1− p) dp

=

∫ 1
2

0

f(p) + f(1− p) dp .

(60)

Lemma 2.2. Let a and b be real values such that a < b, and f and g be

functions, both integrable on [a, b]. If f(x) > g(x) for any x between a and b,

then
∫ b
a
f(x) dx >

∫ b
a
g(x) dx.190

Proof of Lemma 2.2.

∀a, b, x ∈ R | a ≤ x ≤ b : f(x) > g(x)

=⇒ f(x)− g(x) > 0

=⇒
∫ b

a

f(x)− g(x) dx > 0

=⇒
∫ b

a

f(x) dx−
∫ b

a

g(x) dx > 0

=⇒
∫ b

a

f(x) dx >

∫ b

a

g(x) dx .

(61)

Corollary 2.2.1. Let f ′(p) = f(p) + f(1− p) be a function, integrable between

0 and 1/2, and b0 be a constant. If f ′(p) > 2 b0 for any p between 0 and 1/2,

then
∫ 1/2

0
f ′(p) dp > b0.
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Proof of Corollary 2.2.1. Replacing the terms in Lemma 2.2, we obtain:

∀p ∈ [0, 1/2] : f(p) + f(1− p) > 2 b0

=⇒
∫ 1

2

0

f(p) + f(1− p) dp >

∫ 1
2

0

2 b0 dp

=⇒
∫ 1

2

0

f(p) + f(1− p) dp > b0

=⇒
∫ 1

0

f(p) dp > b0 .

(62)

195

Proof of Theorem 2. Let f be the expected final budget using the bold strategy

(Eq. (22)):

f(p) := E
[
Bτ | b0, g, p, πbold

]
= g

1− rb0
1− rg

, (63)

using the ratio r = 1−p
p for readability (Eq. (2)). The sum of f(p) with f(1− p)

can be re-written as follows:

f(p) + f(1− p) = g

(
1− rb0
1− rg

)
+ g

(
1−

(
1
r

)b0
1−

(
1
r

)g
)

= g

(
1− rb0
1− rg

+
1− r−b0
1− r−g

)
= g

(
1− rb0
1− rg

+ rg−b0
1− rb0
1− rg

)
= g (1 + rg−b0)

1− rb0
1− rg

= g
(1 + rg−b0)(1− rb0)

1− rg

= g
−rg + rg−b0 − rb0 + 1

1− rg
.

(64)

Observe that:

0 < p < 1/2 ⇐⇒ 1 < r <∞ , (65)

and:

∀r ∈ R | r > 1 :


rg−b0 > rb0 ⇐⇒ g − b0 > b0 ⇐⇒ g > 2 b0 ,

rg−b0 = rb0 ⇐⇒ g − b0 = b0 ⇐⇒ g = 2 b0 ,

rg−b0 < rb0 ⇐⇒ g − b0 < b0 ⇐⇒ g < 2 b0 .

(66)
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Manipulating the first inequality of the first row presented in Eq. (66), we obtain:

∀r ∈ R | r > 1 : rg−b0 > rb0

⇐⇒ rg−b0 − rb0 > 0

⇐⇒ 1− rg + rg−b0 − rb0 > 1− rg

⇐⇒ 1− rg + rg−b0 − rb0
1− rg

>
1− rg

1− rg

⇐⇒ 1− rg + rg−b0 − rb0
1− rg

> 1

⇐⇒ g
−rg + rg−b0 − rb0 + 1

1− rg
> g .

(67)

Using similar algebraic reasoning on the other two rows, we can obtain:

∀r ∈ R | r > 1 : rg−b0 = rb0 ⇐⇒ g
−rg + rg−b0 − rb0 + 1

1− rg
= g , (68)

and:

∀r ∈ R | r > 1 : rg−b0 < rb0 ⇐⇒ g
−rg + rg−b0 − rb0 + 1

1− rg
< g . (69)

Therefore, combining Eqs. (66)–(69), we verify:

∀p ∈ [0, 1/2] :


f(p) + f(1− p) > g ⇐⇒ g > 2 b0 ,

f(p) + f(1− p) = g ⇐⇒ g = 2 b0 ,

f(p) + f(1− p) < g ⇐⇒ g < 2 b0 ,

(70)

allowing to infer that:

∀p ∈ [0, 1/2], r =
1− p
p

:


g 1−rg+rg−b0−rb0

1−rg > 2 b0 =⇒
∫ 1

0
g 1−rb0

1−rg dp > b0 ,

g 1−rg+rg−b0−rb0
1−rg = 2 b0 =⇒

∫ 1

0
g 1−rb0

1−rg dp = b0 ,

g 1−rg+rg−b0−rb0
1−rg < 2 b0 =⇒

∫ 1

0
g 1−rb0

1−rg dp < b0 .

(71)

The radical strategy appears as a combination of timid and bold, taking the

best of both strategies given the b0/g ratio (Eq. (58)). For this reason, radical

should dominate both timid (πradical �� πtimid) and bold (πradical �� πbold).
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The naive strategy does not take into account the b0/g ratio, but estimates200

p by observing the past results. A naive gambler quits the game immediately if

the estimated parameter p̂ falls under 1/2 (i.e. at any round t when Bt < b0).

Figure 8 suggests that naive presents a better (or at least equal) utility than

timid in any scenario (but a formal proof of dominance is still to be done).

It also appears that naive is superior to bold in most cases, except when the205

objective budget g is relatively high (i.e. when the magnitude of the goal budget

is significantly bigger than the single unit wagered each round), and the gambler’s

initial budget b0 is relatively low (i.e. closer to 0 than g). In this case, the

agent has more to gain than to lose, and the naive strategy (even if better than

timid) still induces a too conservative behavior. The exact point of intersection,210

from where naive becomes preferable than bold, depends on g, as can be seen in

Figure 8.

The loss strategy generalizes the naive strategy allowing to modify `, the

“tolerable loss”. It can be observed in Figure 8 that each different value of

` changes the point where loss “takes off” from bold, like a “tensioned rope”.

There is an optimal parameter `∗ that maximizes the utility ξ of that strategy,

depending on b0 and g:

`∗ =
b0

arg max
i=0

[
ξ`∗(b0, g) ≥ ξ`=i(b0, g) | b0, g ∈ N+

]
. (72)

Table 1 presents the optimal value of ` for all possible scenarios in which

g ≤ 30. The regularity of the values within that table suggests, empirically, that

`∗ could be obtained by the following rule:

`∗ | g, b0 = max

(
1 , min

(
b0 ,

∣∣∣−1 +
√

2g − 2b0 − 1

2

∣∣∣+ 1

))
. (73)

Among the heuristic methods analyzed in this article, the loss strategy with

`∗ is the one that presents the best performance for the analyzed scenarios, which

allows to hypothesize that it dominates the other strategies. However, formally215

proving the dominance of the `∗ strategy over the other ones is still to be done.
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{`∗ | b0, g}
b0/g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 1 1 - - - - - - - - - - - - - - - - - - - - - - - - - - -
4 1 1 1 - - - - - - - - - - - - - - - - - - - - - - - - - -
5 1 1 1 1 - - - - - - - - - - - - - - - - - - - - - - - - -
6 1 1 1 1 1 - - - - - - - - - - - - - - - - - - - - - - - -
7 1 1 1 1 1 1 - - - - - - - - - - - - - - - - - - - - - - -
8 1 2 1 1 1 1 1 - - - - - - - - - - - - - - - - - - - - - -
9 1 2 2 1 1 1 1 1 - - - - - - - - - - - - - - - - - - - - -
10 1 2 2 2 1 1 1 1 1 - - - - - - - - - - - - - - - - - - - -
11 1 2 2 2 2 1 1 1 1 1 - - - - - - - - - - - - - - - - - - -
12 1 2 2 2 2 2 1 1 1 1 1 - - - - - - - - - - - - - - - - - -
13 1 2 2 2 2 2 2 1 1 1 1 1 - - - - - - - - - - - - - - - - -
14 1 2 2 2 2 2 2 2 1 1 1 1 1 - - - - - - - - - - - - - - - -
15 1 2 2 2 2 2 2 2 2 1 1 1 1 1 - - - - - - - - - - - - - - -
16 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 - - - - - - - - - - - - - -
17 1 2 3 2 2 2 2 2 2 2 2 1 1 1 1 1 - - - - - - - - - - - - -
18 1 2 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 - - - - - - - - - - - -
19 1 2 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 - - - - - - - - - - -
20 1 2 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 - - - - - - - - - -
21 1 2 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 - - - - - - - - -
22 1 2 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 - - - - - - - -
23 1 2 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 - - - - - - -
24 1 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 - - - - - -
25 1 2 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 - - - - -
26 1 2 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 - - - -
27 1 2 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 - - -
28 1 2 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 - -
29 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 -
30 1 2 3 4 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1

Table 1: The optimal maximal tolerable loss parameter `∗ given b0 and g, considering all

possible scenarios with g ≤ 30. To construct this table, the utility of the loss strategy has been

calculated exhaustively for each scenario and for all possible values of `, from 0 (timid), then

1 (naive) to b0 (bold). The values of ` having highest utility are presented. The regularity

of the values inside this triangular matrix suggests that the optimal maximal tolerable loss

parameter `∗ can be calculated analytically.
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5. Conclusion

This article contributes to the state-of-the-art by presenting an original

version of the classical gambler’s ruin game, called decisional gambling process,

in which the gambler can decide to stop the game, but does not know the220

parameter p in advance. An oracle policy is defined, allowing to indicate the

theoretically best possible performance of a gambler if the value of the underlying

parameter could be known.

Some heuristic strategies are proposed and formally evaluated. The naive

strategy (which simply bases its decision on the estimation of p) is often better225

than timid, bold, and radical. However, naive can be surpassed by bold and

radical when the ratio b0/g is low (i.e. when the gambler does not have much to

lose, compared with the potential earnings). The exact point from where those

strategies behave better than naive depends on g.

We finally propose a generalized method, the loss strategy, which is able230

to reproduce the behavior of the previously analyzed strategies, depending on

how a parameter ` is tuned. That parameter specifies how much the agent is

willing to lose in relation to its initial budget (similar to the “stop-loss” order

in the stock market [77]). When ` = 0, the player does not accept any risk of

decreasing the budget, quitting the game immediately, which corresponds to the235

timid strategy. When ` = 1, the gambler quits the game if the budget falls to

b0 − 1, which corresponds to the naive strategy, as demonstrated. Other integer

values of ` can be defined between 0 and b0. When ` = b0, the agent accepts to

play until being ruined, which corresponds to the bold strategy.

For each combination of b0 and g, an optimal parameter `∗ can be deduced240

in order to maximize the utility of the strategy. The use of the loss strategy

tuned with `∗ proved to be the best strategy among the described ones in the

analyzed scenarios. In this article, however, we do not demonstrate that this

method is optimal. In fact, finding an optimal method for DGPs remains an open

problem. In particular, it could be interesting to investigate whether considering245

the confidence on the estimation (which depends on the number of observations)
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during the decision making can lead to some utility improvement.

Future work includes considering the case in which the objective budget can

be infinite (g →∞), and finding a policy which can be formally proved to be

optimal. Another possibility consists in extending the analysis made in this250

article to the corresponding multiarmed bandit problem, where the decision is

not related to stay or quit, but to the choice of playing, at each round t, a specific

game i among n different games.
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