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Abstract

This article tackles the problem of identification of elastic continuum model by atomistic simulations for
graphene polymer nanocomposite. The Atomistic Local IdentificAtion of Stiffness method, so-called ALIAS
method, is developed to estimate the local stiffness tensor at all points of polymer graphene laminate
nanocomposite. Results suggest that the graphene can be modeled at continuum scale by a general imperfect
interface with zero thickness. Moreover, the identification procedure reveals the existence of interphase on
either side of the graphene with a thickness of 1 nm, which is one and a half times stiffer than the polymer bulk
matrix. The identified continuum model is used to study the effective elastic properties of nanocomposites
with sandwich microstructure. This study at continuum scale reveals a softening effect due the very low
stiffness of slip along graphene plane. The softening due to the interfaces is preponderant in relation to the
interphase stiffening. Finally, the continuum model also suggests that the wrinkling of graphene increases
the stiffness of nanocomposites.
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1. Introduction1

Graphene, as one of the stiffest known materials, whose Young’s modulus is around 1 TPa [1, 2], is an2

attractive candidate for use in high-performance polymer-based nanocomposites. From 2000s, a significant3

amount of research has been carried out on graphene nano-platelets (GNP) or graphene-derived materials4

based polymer nanocomposites due to their potential for large increases in toughness, strength and stiffness5

[3, 4, 5, 6]. The enhanced mechanical properties of the nanocomposites have been found to depend on various6

factors including the GNP-polymer bonding, the concentration and dispersion of GNP, the defects in GNP7

[7, 8, 9]. Many experimental studies have shown that the GNP polymer interface and the interphase region8

greatly influence the effective mechanical properties of the nanocomposites (see, e.g. [10, 11, 12]). In this9

paper, the polymer close to GNP filler is called interphase and the term interface indicates a discontinuity10

surface, which is generally located between two materials.11

The existence and the influence of interfaces and interphases have been experimentally observed in GNP12

polymer nanocomposites [13, 14, 15]. They have been theoretically demonstrated in polymer nanocomposites13

by atomistic simulations [16, 17, 18, 19, 20]. However, their respective roles on elastic behavior are not yet14

well understood. So, it is necessary to have an identification procedure which is able to decouple the15

elastic contributions of interfaces and interphases. This is hardly accessible through an inverse analysis16

based on atomistic simulations or experimental data because the effects of interfaces and interphases can17

be hardly distinguished. The objective of this paper is to propose an identification methodology of elastic18
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models with interphases and/or imperfect interfaces in GNP polymer nanocomposites. Possible applications1

of these continuum models could be the definition of a finite element framework taking into account the2

size effects to study at mesoscale the concentration and dispersion of GNP on elastic properties (see, e.g.3

[21, 22, 23, 24, 25] for similar studies on electric and thermal conductivity properties). We will restrict our4

study to a sandwich structure model of nanocomposite (see Figure 2) for reasons of clarity.5

The strong influence of interfaces and interphases induces size effects on the mechanical behavior. These6

size effects have been observed in several polymer nanocomposites (see, e.g. [26, 27] for a review). There7

are mainly two families of continuum models in the literature able to capture size effects: the models with8

an interphase surrounding inclusions and the imperfect interface models. The first class of models with9

interphases have been used on polymer nanocomposites for mean-field homogenization (see, e.g. [28, 29])10

and for numerical homogenization [21]. The mechanical studies using an interphase region in polymer11

carbon nanocomposites were mostly performed on the polymer reinforced with carbon nanotubes [30, 31,12

32, 33, 34, 35]. Atomistic simulations are also performed to identify the interphase elastic parameter by13

inverse analysis to reproduce the size effect [36, 37, 38, 39]. In these studies, the interphase is assumed14

isotropic and the elastic parameters are fited to reproduce the experimental or atomistic simulation data.15

The study of interphase anisotropy is very delicate through inverse analysis. The second class of models16

that incorporates zero-thickness imperfect interfaces [40, 41, 42, 43] is also able to capture the size effects17

[44, 45]. The general imperfect interfaces combine the discontinuity of displacement of cohesive zone model18

[46, 47] and the discontinuity of the traction vector of the membrane-type interface model [48, 49]. To the19

best of our knowledge, although the atomistic simulations are widely used to identity the physical effective20

parameters of the materials such as Young’s modulus, glass transition parameter, etc.[50, 51], the atomistic21

identification of the anisotropic local materials parameters remains an open question. Nevertheless, special22

cases of imperfect interfaces have identified by atomistic simulations, such as membrane-type interface in thin23

material [52, 53, 54, 55, 56, 57, 58, 59]; and cohesive zone model to the study of the decohesion between filler24

and matrix in polymer nanocompoistes [24, 60, 61, 62, 63, 64, 65, 66]. Note that some authors performed25

atomistic simulations to study the cohesion between carbon filler and polymer matrix without identifying26

the cohesive zone model [17, 18, 67, 68, 69, 70].27

We introduce the methodology of Atomistic Local IdentificAtion of Stiffness, called in this paper ALIAS28

methodology, and which allows to establish an equivalent continuum model from an atomistic model. It29

consists of measuring the local stress and strain fields under different deformations of the simulation box30

and then deducing the elastic tensor fields. The novel possibilities offered by the ALIAS methodology are31

the identification of a continuum model allowing to take into account size effects from an unique size box32

of atomistic model, and also the characterization of interphase anisotropy. The ALIAS methodology is a33

sequential multiscale approach following the classification proposed in the comprehensive book of [71]. The34

other category of atomistic-continuum coupling approaches is the concurrent method (see, e.g. [71, 72] for35

an overview) and the application to polymer material [73, 74, 75]. Although they contain more physical36

ingredients, the main drawback for GNP nanocomposite applications is the GNP number in a Represen-37

tative Volume Element (RVE) that induces a large number of atomistic domains, leading to untractable38

computational times. However, the ALIAS method is inspired by concurrent methods in the sense that they39

are based on the same two key features: the collection of continuum information from atomic level and the40

constraint of atomistic simulations to impose the continuum field. For the first point, the Murdoch-Hardy41

procedure [76] is used because it allows to define both the velocity field and the stress field at all points.42

Regarding the second point, the Cauchy-Born rule [77, 78] is the fundamental assumption to link the con-43

tinuum strain to the atom displacement. It is suitable for the multiscale coupling of bulk materials such as44

crystalline materials [see, e.g. 79, 80]. However, for the amorphous materials such as glass or polymer, it45

is no longer applicable [81, 82, 83, 84, 85]. To overcome this difficulty, we impose the deformation to the46

atomic simulation box and we compute the atoms displacement by the Athermal, Quasistatic Simulations47

algorithm introduced by [86, 87, 88] and used to determined the elastic constants of amorphous glasses48

materials by [81, 82, 83, 84, 85]. The novelty of ALIAS method is the estimation of the local displacement49

field during simulations for a given macroscopic strain imposed to the atomistic simulation box. This, allows50

us to deduce the strain fields and the stiffness tensor at each point.51

The paper is organized as follows. First, in section 2, a short overview of the general imperfect interface52
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framework is established. In section 3, we describe the atomistic model, the ALIAS methodology and their1

results. Finally, in section 4, we discuss the influence of interphase and interface on elastic properties of2

sandwich graphene/polymer nano-composite.3

4

Notations and definitions5

Notations are based on the following conventions. Scalars are in italics lowercase (a), vectors are bold-6

face in lowercase (a), second-order tensors are bold-face in uppercase or bold-face in greek symbol (A,α),7

and fourth-order tensors are blackboard bold in uppercase (A). The dyadic product of two vectors a8

and b is a second-order tensor D = a ⊗ b with (D)ij = (a)i(b)j . The scalar product of two vectors a9

and b is denoted a · b = (a)i(b)i. The scalar product of two second-order tensors A and B is denoted10

A : B = (A)ij(B)ij . Quantities defined on the interface are distinguished from those in the bulk by a super-11

script (•) s. The continuum fields identified by the ALIAS methodology are designated by a sub-script12

(•)w Moreover, macroscale quantities and effective quantities are differentiated from microscale quantities13

by a bar placed above the quantity ¯(•). The jump of a quantity (•) over the interface I are defined by14

~•� = •|+I − •|
−
I . The list of symbols used in this paper is provided in Table 1.15

Table 1: Symbols table

Lx, Ly, Lz Side length of the RVE
tI Thickness of interphase
nI Unit normal vector to the interface I
φ and φs Bulk/interfacial free energy density
u (x), us (x) Displacement field and surfacic displacement field in interface I
~u� Displacement jump across the interface I
ts, ~t� Average traction vector and traction vector jump across the interface I
ε (x), εs (x) Infinitesimal strain tensor and infinitesimal surface strain tensor in interface
σ (x), σs (x) Cauchy stress tensor in the bulk and surface Cauchy stress tensor in interface
Cb, CI The fourth-order symmetric stiffness tensor for bulk polymer and interphase
Cs The fourth-order symmetric interfacial stiffness tensors
Ks Second-order symmetric cohesive interfacial stiffness tensor
ε̄, σ̄ Effective infinitesimal strain tensor and effective Cauchy stress tensor
CC , CA Effective stiffness tensor compute by continuum model and by atomistic model
mα Masse of αth atom
rα, r(0)

α Current and initial position of αth atom
rαβ , nαβ Inter-atomic distance and covalent bond direction between αth atom and βth atom
vα Velocity of αth atom
fαβ , fα =

∑
β fαβ Force of βth atom on the αth atom and force on αth atom

U ({rα} , ε̄) Potential energy of atomistic system for prescribe macro strain ε̄
w (x), bw (x, rα, rβ) Weight function and bond function Murdoch-Hardy procedure
ρw (x) Atomistic mass density at point x
u(E)
w (x), vw (x) Atomistic Eulerian displacement and atomistic velocity fields at point x
σw (x), εw (x) Atomistic Cauchy stress tensor and atomistic strain tensor at point x
Cw(x) Atomistic stiffness tensor at point x
sw (x) Nematic order parameter at point x

2. Generalized imperfect interface framework16

The purpose of this section is to establish the equations governing continua embedding general interface17

elastic model. A comprehensive description of this model can be found for the case of infinitesimal displace-18

ments in [45] and for its extension to finite deformation in [89, 90]. In this section, we assume infinitesimal19
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Figure 1: Sketch of domains Ω with the imperfect interface I and the unit normal nI .

displacements and linear behavior for the sake of simplicity. The interface I splits the body Ω into two1

regions (see Figure 1). The unit normal of the interface I is denoted by nI .2

The displacement in the body is denoted by u (x) and the displacement jump, ~u�, across the interface3

I is defined by4

~u� = u|+I − u|−I , (1)5

where u|+I and u|−I are the values of displacement in the upper and lower surfaces of interface I respectively.6

The displacement field, us, inside the interface I is defined as the median value according to:7

us (x) = 1
2

(
u|+I + u|−I

)
, ∀x ∈ I. (2)8

The infinitesimal strain tensor in the bulk is defined by9

ε (x) = 1
2
(
∇u (x) +∇uT (x)

)
, ∀x ∈ Ω, (3)10

and the infinitesimal strain tensor on the interface is defined by11

εs (x) = 1
2

(
∇sus (x) + (∇sus (x))T

)
, ∀x ∈ I, (4)12

where ∇ is the gradient operator, ∇s = P ·∇ is the interface gradient operator and P = I−nI ⊗nI is the13

projector onto the tangent plane of the interface I.14

In absence of external force densities in bulk and in the interface, the balance equations are given by:

∇·σ = 0 ∀x ∈ Ω, (5)
∇s ·σs + ~t� = 0 ∀x ∈ I, (6)

where ∇· is the divergence operator; ∇s · {· } = ∇· {· } : P is the interface divergence operator; σs15

the interfacial stress and ~t� is the traction vector jump across the interface defined by16

~t� = ~σ· nI� =
(
σ|+I − σ|

−
I

)
· nI . (7)17

We assume the existence of a bulk free energy density φ(ε) and an interfacial free energy density
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φs(εs, ~u�) in the bulk and the interface respectively, such as the behavior laws derive from them

σ = ∂εφ ∀x ∈ Ω, (8)
σs = ∂εsφ

s ∀x ∈ I, (9)
ts = ∂~u�φ

s ∀x ∈ I, (10)

where ts denotes the average traction across the interface, defined by1

ts = 1
2

(
σ|+I + σ|−I

)
· nI . (11)2

Under the assumptions of standard linear elastic behavior with internal stresses, both free energies are
given by

φ (ε) = 1
2ε : C (x) : ε+ τ (x) : ε+ φ0 ∀x ∈ Ω, (12)

φs (εs, ~u�) = 1
2ε

s : Cs (x) : εs + τ s (x) : εs + 1
2 ~u� .K

s (x) . ~u�+ φs0 ∀x ∈ I, (13)

where C (x) is the fourth-order symmetric bulk stiffness tensor; Cs (x) is the fourth-order symmetric inter-3

facial stiffness tensors; τ is the internal stresses in the bulk and τ s is the internal surface stress; φ0 and4

φs0 are the free energies of bulk and interface under zero strain and zero jump displacement; and Ks is the5

second-order symmetric tensor which corresponds to the cohesive stiffness of interface.6

3. Identification of continuum elastic parameters by atomistic simulations7

3.1. Atomistic model8

a

c

e1

e2

e3

Lx

Ly

Lz

Figure 2: Graphene polymer nanocomposite with sandwich structure under periodical boundary condition, single layer graphene
is located in the middle of the box.

At the atomic scale, the graphene polymer nanocomposite is modeled by a set of N classical interacticting9

point particules with sandwich structure in a rectangular box under periodic boundary condition (see Figure10

2). Two types of particles are considered: the carbon in the graphene sheet and the −CH2− atom group11

5



in polymer chains. Each macromolecular chain contains 500 −CH2− units. The length and the width of1

the box are given by Lx = 100.8Å and Ly = 94.57Å. The box contains 25 × 38 crystal lattice in graphene2

sheet. The thickness Lz depends on the polymer chain number. The shape of the parallelepiped simulation3

box is represented by a set of 3 vectors a,b, c through the second order tensor h = (a,b, c). The initial4

system is prepared from the off-lattice self-avoiding random walk combining the simultaneously molecular5

dynamics relaxation [91]. We assume that the particles interact through the DREIDING potential energy6

function [92], where the electrostatic contributions are neglected for simplicity reasons. The potential energy7

U ({rα} , ε̄), depends on the current position of particles, {rα}, via the DREIDING potential as well as on8

the shape of simulation box via the effective infinitesimal strain tensor ε̄ of the box defined by9

ε̄ = 1
2
(
F + FT

)
− I, where F = h·

(
h(0)

)−1
, (14)10

I is the unit second order tensor and h(0) defines the shape of the parallelepiped simulation box in the initial11

reference configuration (ε̄ = 0).12

In our study, we suppose that the tensor h (t) is parameterized by a scalar t called pseudo time.13

We assume that the system follows an equilibrium trajectory, even though the actual potential energy14

U ({rα} , ε̄ (t)) is in a local minimum. The Athermal, Quasistatic Simulations algorithm is used to en-15

sure that the system follows an equilibrium trajectory. This simulation technics have been introduced by16

[86, 87, 88] and used to determine the elastic constants of amorphous glasses materials by [81, 82, 83, 84, 85].17

For each small pseudo time increment, δt, this algorithm consists of moving affinely the atoms from previous18

state, and then to perform a minimization to find the nearest local minimum.19

The velocity of α-th atom is estimated by backward finite difference approximation20

vα (t) ≈ rα (t)− rα (t− δt)
δt

. (15)21

It is interesting to note that the velocity tends to zero in the quasistatic limit (i.e. vα → 0 and δt → ∞),22

therefore we could neglect it in most of cases. However, the atom velocity atomic is necessary to define the23

displacement field.24

The equilibrium trajectory imposes that the force on particle α is always zero25

fα = −∂rαU ({rα} , ε̄ (t)) =
∑
β,α

fαβ = 0. (16)26

Here fαβ is the force of β-th atom on the α-th atom. Since the potentials used are conservative, they27

can be expressed in terms of set of inter-atomic distances rαβ between the α-th and β-th atoms [71, 93].28

Consequently, a set of central forces between the pairs of atoms fαβ can be defined by29

fαβ = −∂rαβU ({rα} , ε̄ (t)) rα − rβ
rαβ

. (17)30

The expressions of DREIDING potential in term of interatomic distances is given in supplementary infor-31

mation. It is interesting to note that this definition ensures that32

fαβ = −fβα, and fα =
∑
β,α

fαβ . (18)33

3.2. Atomistic Local IdentificAtion of Stiffness: ALIAS methodology34

The ALIAS methodology is based on the measurement of continuum stress and strain tensors for several35

imposed effective infinitesimal strain tensors ε̄. The number of imposed effective infinitesimal strain tensors is36

chosen to explore a necessary set of strain-stress combinations to defined the stiffness fields. The Murdoch-37

Hardy procedure [76] is used to measure the continuum velocity and Cauchy’s stress tensor fields from38
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atomistic quantities. In this paper, the continuum displacement field that allows to compute the strain field1

is obtained by integration of the velocity field.2

3.2.1. Murdoch-Hardy procedure3

The main point here is to identify the Eulerian specification of continuum fields, such as mass density,4

Cauchy’s stress tensor and velocity, with local space averages of atomistic quantities, such as atom mass,5

atom velocity and interatomic forces. A physical interpretation of the Murdoch-Hardy procedure is that a6

device with a finite size measures the conservative quantities of interest at a point x. This device is modeled7

by a scalar-valued weighting function w(x) which defines a spatial averaging and satisfies the normalization8

condition9 ∫
R3
w (x) dx = 1. (19)10

The mass density ρw (x, t) is defined as11

ρw (x, t) =
∑
α

mαw (rα (t)− x) . (20)12

Here, the mass density ρw (x, t) must verify the continuity equation (conservation of mass) in the current13

configuration14

∂tρw +∇x · (ρwvw) = 0, (21)15

where ∂t and ∇x · denote the partial derivative with respect to the time and the divergence operator with16

respect to the spatial coordinate x, respectively.17

To satisfy the continuity equation (21), the Eulerian specification of velocity fields vw(x, t) is defined by18

[see e.g. 76]19

vw (x, t) =
{ 1

ρw

∑
αmαvα (t)w (rα (t)− x) if ρw (x, t) , 0

0 otherwise . (22)20

Following [93, 94, 95], the atomistic Cauchy stress tensor is decomposed in two terms: the kinematics21

contribution, σw,k, and the potential contribution, σw,v, such as22

σw (x, t) = σw,k (x, t) + σw,v (x, t) , (23)23

where24

σw,k (x, t) = −
∑
α

(vα (t)− vw (x, t))⊗ (vα (t)− vw (x, t))w (rα (t)− x) . (24)25

Here, the kinematics contribution of the atomistic Cauchy stress tensor and the velocity fields are assumed26

to be negligible under the quasistatic assumption (δt → ∞), i.e. vα ∝ (δt)−1 → 0 for all α, t implying27

vw(x, t) ∝ (δt)−1 → 0 and σw,k (x, t) ∝ (δt)−2 → 0 for all x, t.28

The potential contribution of atomistic Cauchy stress, σw,v satisfies the balance equation29

∇x.σw,v (x, t) =
∑
α

fα (t)w (rα (t)− x) . (25)30

The expression of σw,v is not unique, the most common one is31

σw,v (x, t) = 1
2
∑
α,β

fαβ (t)⊗ (rβ (t)− rα (t)) bw (x; rα (t) , rβ (t)) , (26)32

where bw (x, rα (t) , rβ (t)) is the bond function expressed by33

bw (x; rα (t) , rβ (t)) =
∫ 1

0
w((1− s)rα + srβ − x)ds. (27)34

7



Note that the atomisitic definition of stress is not unique [71, 93, 94] and is a controversial topic in the1

literature [96].2

3.2.2. Methotology of stiffness identification3

First, we introduce a definition of the infinitesimal strain tensor field from the Mudoch-Hardy velocity4

field vw(x, t) through the concept of the Eulerian displacement field. Following [97], we introduce the5

Eulerian displacement field, u(E)
w (x, t), which allows to reconstruct the solid body as it was at the initial6

instant in an absolute referential before all transformations. The relation between the Eulerian displacement7

field and velocity fields is8

vw (x, t) = −du(E)
w

dt , or ∂tu(E)
w = −vw.

(
I +∇xu(E)

w

)
, (28)9

where ∇x is the gradient operator with respect to the spatial coordinate x. The Eulerian displacement field10

can be estimated by a finite difference approximation11

u(E)
w (x, t+ δt) ≈ u(E)

w (x, t)− δtvw (x, t+ δt) ·
(
I +∇xu(E)

w (x, t)
)
. (29)12

By introducing the definitions of the Eulerian specification of velocity fields vw(x, t) (Eq. 22) combined with
the definition of atomic velocities vα (t) (Eq. 15), we can write the increment of the Eulerian displacement
field :

∆u(E)
w (x, t) = u(E)

w (x, t+ δt)− u(E)
w (x, t)

= − δt
ρw

∑
α

mαvα (t)w (rα (t)− x) ·
(
I +∇xu(E)

w (x, t)
)

(30)

= − 1
ρw

∑
α

mα (rα (t)− rα (t− δt))w (rα (t)− x) ·
(
I +∇xu(E)

w (x, t)
)
.

Note that the increment of Eulerian displacement field is independent of speudo time δt and that it is well13

defined in the quasistatic limit (δt→∞).14

Under infinitesimal displacement assumption, the initial and final configuration can be considered as the15

same, therefore the classical displacement field uw can be defined as the opposite of the Eulerian displacement16

field uw = −u(E)
w (x). The infinitesimal strain tensor field εw is defined by:17

(εw)ij (x) = 1
2

(
∂xi (uw)j (x) + ∂xj (uw)i (x)

)
. (31)18

Here, we use a centered finite difference approximation of the spatial derivative of displacement field19

∂xi (uw)j (x) ≈
(uw)j (x + δxei)− (uw)j (x− δxei)

2δx . (32)20

The atomistic stiffness tensor Cw(x) at each point where the atomistic Cauchy’s stress σw and the21

atomistic infinitesimal strain εw are measured is defined by the least squares method, for a given set of K22

effective strain tensors ε̄(k), such as23

Cw (x) = argmin
Cw(x)∈Ela

{
K∑
k=1

∥∥∥σ(k)
w (x)− Cw(x) : ε(k)

w (x)− τw(x)
∥∥∥2

F

}
(33)24

where Ela is the set of fourth order elastic tensor with minor and major symmetry and ‖a‖2F = aijaij is the25

Frobenius norm associated to 2nd order tensor. Here σ(k)
w (x) (resp. ε(k)

w (x)) is the atomistic Cauchy’s stress26

tensor (resp. the atomistic infinitesimal strain) that is measured at x point for the effective strain tensors27

8



of the simulation box ε̄ = ε̄(k). τw(x) is the internal Cauchy’s stress tensor at x point that is computed on1

reference configuration (ε̄ = 0). Note that ε(k)
w (x) is null by definition for all x on the reference configuration.2

3.2.3. Application of sandwich structure of graphene polymer nanocomposite3

The origin of absolute referential, REuler(O, e1, e2, e3), in the Eulerian specification is the center of the4

graphene sheet and its orientation is defined such that e3 is normal to the graphene and the triangles in the5

graphene hexagonal lattice pointing along the e1 direction (see Figure 2).6
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Figure 3: Profiles for weighting function a) along e1 and b) along e3.

Here, we want to probe the mechanical properties as a function of the z distance from the graphene7

sheet. For that reason an anisotropic measuring device with rectangular cuboid shape is used such with8

lengths lw1 = Lx, lw2 = Ly and lw3 = 4Å. The length lw3 is chosen to be greater than the C-C bond and9

small enough to avoid considering graphene atoms when we estimate the interphase properties. We assume10

that the measure is uniform for all points in the cuboid and that the atoms occupy a small sphere of radius11

rw = 0.77Å to regularize the weighting function w(x). The atomic radius rw is chosen as half of the C-C12

bond of the DREIDING potential [92]. Under these assumptions, the weighting function is defined by a13

convolution product14

w (x) = 1
w0

∫
Ω
f (Cub)(x)f (Sph)(x− x′)dx′, (34)15

where w0 is the normalization constant given by equation (19) and f (Cub) and f (Sph) are the characteristic
function of the cuboid and sphere respectively given by

f (Sph) (x) = 1−H (|x| − rw) , (35)

f (Cub) (x) =
3∏
i=1

(
1−H

(∣∣∣∣x.ei − lwi
2

∣∣∣∣) ,) (36)

where H (x) denotes the Heaviside step function. The representation of weighting function along e1 and e316

is shown in Figure 3.17

Elongations and simple shears are prescribed to the molecular box to identify the atomistic elastic tensor18

Cw(x) at each point. The choice of an anisotropic weight function imposes that the stress field and strain19

field for these deformations of molecular box depend only on the coordinate z along e3 axis. Moreover, the20

components of local infinitesimal strain into the plane (e1, e2), are equal to the corresponding components21

9



of the effective infinitesimal strain tensor1

(εw)11 (x) = ε̄11, (εw)22 (x) = ε̄22, (εw)12 (x) = ε̄12 ∀x. (37)2
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Figure 4: (a) and (b) Evolution of stiffness tensor components with Voigt notation as a function of the normal distance, z,
from the graphene layer; (c) Nematic order parameter, sw vs z; (d) Evolution of density ρw of polymer, graphenes and nano
composite as a function of the normal distance, z.

This post-processing has shown that the stiffness tensor components with Voigt notation verify that ∀x,3

(Cw)11 (x) ≈ (Cw)22 (x), (Cw)31 (x) ≈ (Cw)32 (x) and ∀I ≥ 4, (Cw)I1 (x) ≈ (Cw)I2 (x) ≈ 0; and ∀I < 6,4

(Cw)I6 (x) ≈ 0. The Figure 4a,b show the evolution of (Cw)11, (Cw)12, (Cw)13, (Cw)33 and (Cw)66 with the5

distance to the graphene z. Substantial increase of one order of magnitude of the stiffness components in6

graphene plane ((Cw)11, (Cw)12 and (Cw)66) is shown for z < 2.5Å due to graphene sheet (see Figure 4a).7

In the interphase area, 2.5Å ≤ z ≤ 10.5Å, the stiffness components (Cw)11, (Cw)12 and (Cw)33 are 40%8

higher than in the bulk part z ≥ 10.5Å (see Figure 4b), while (Cw)13 and (Cw)66 seem to be the same as9

the polymer bulk. Thus, the thickness of the interphase region is identified as 10.5 Å.10

Due to the slip at the polymer/graphene interface (see Figure 5b), the local strain, εw (x) and the local11

stress increment, σw (x), in the polymer remains zero for all shears in the graphene plane. It is therefore12

impossible to identify with this method the stiffness tensor components (Cw)I4 and (Cw)I5. For convenient13

10



reasons, we assume that (Cw)44 (x) = (Cw)55 (x) = (Cw)66 (x) and CI4 (x) = CI5 (x) = 0 for all x in the1

polymer region.2

The stiffness increase in the interphase region appears to be related to the increase in atomic density,3

ρw (x) which results in an increase in the van der Waals interaction density. Figure 4d shows the local4

density of graphene, polymer and composite systems as a function of the z distance from the graphene5

sheet. The density of the graphene polymer composite with sandwich structure is dominated by the density6

of graphene in the midplane and by the density of polymer for the rest part. We can see a dense packing7

of polymer mass close to graphene layer called interphase zone, which is due to the adsorption of the chains8

on faces of graphene sheets. In addition to the density effect, the stiffness increase in the interphase along9

the graphene sheet plan ((Cw)11, (Cw)22 and (Cw)12) is also due to the orientation of the covalent bonds10

inside of polymer macromolecules into the plane (e1, e2). This local conformation change is evidenced by11

the nematic order parameter sw (see Figure 4c), which is defined by12

sw (x) = 1
ρb (x)

∑
B(p)

(
3 (nαβ .e3)2 − 1

2

)
bw (x; rα (t) , rβ (t)) (38)13

where B(p) is the set of covalent bonds in the polymer; e3 is the unit normal of graphene; nαβ = (rα −14

rβ)/rαβ is the unit vector which defined the covalent bond direction between two CH2 atom group α15

and β along the polymer chain; bw (x; rα (t) , rβ (t)) is the bond function defined Eq. (27) and ρb (x) =16 ∑
B(p) bw (x; rα (t) , rβ (t)) is a normalization constant which corresponds to the local bond density at x. We17

can see on the Figure 4c a decrease of the nematic order parameter sw in the interphase. Generally, the18

nematic order sw is used to describe the orientational order of a nematic liquid crystal. For a completely19

random and isotropic sample, sw = 0, whereas for a perfectly aligned sample along e3 axis, s = 1. In20

addition, s = −1/2 denotes that all the bonds are in the plan perpendicular to e3. Therefore, it indicates21

that in the interfacial zone close to the graphene sheets, the polymer chains turn to be paralleled to the22

graphene layer.23
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Figure 5: Evolution of displacement components as a function of the normal distance, z, from the graphene layer. (a) uw · e3
for a elongation of εn = 0.3% normal to the graphene sheet, ε̄ = εne3 ⊗ e3. (b) uw · e1 for a simple shear of γ = 3% in a
direction e1 on a graphene plane, ε̄ = γ

2 (e3 ⊗ e1 + e1 ⊗ e3).

Moreover, the ALIAS method makes it possible to define a displacement field uw. Figure 5 represents24

the components of displacement fields, uw along the normal of graphene sheet for an elongation of εn = 0.3%25

normal to the graphene sheet, ε̄ = εne3⊗e3 (see Figure 5a) and for an simple shear of γ = 3% in a direction26

e1 on a graphene plane, ε̄ = γ
2 (e3 ⊗ e1 + e1 ⊗ e3) (see Figure 5b).27

As shown in Figure 5a, the component uw · e3 of displacement field evolves linear in polymer bulk28

11



(z < 10.5 and z > 10.5), which means that the strain is homogeneous there (≈ 0.32%). In the central part1

corresponding to the interphase, discontinuities are observed. Note that the average slope is lower there2

(≈ 0.23%), which is in agreement with the fact that the interphase is stiffer.3

Figure 5b shows sharp discontinuities of the displacement fields component uw · e1 on both sides of4

graphene sheet. Moreover, the displacement field remains constant in the polymer region. These two facts5

indicate that the deformation applied to the atomic box is accommodated by slips at the interfaces between6

graphene and polymer.7

3.3. Identification of imperfect interface elastic parameters8

Equivalent

imperfect interface

s1
s2
s3

I

Figure 6: Scheme of the three layers of the imperfect interface I.

For the identification of interface parameters, we write the surface free energy φs as the sum of three9

contributions as shown in Figure 6: one for the graphene and two for the interfaces polymer/graphene.10

Therefore, the three layers description of the imperfect interface is used. We assume that the elastic pa-11

rameters of the imperfect interface are constant along the graphene sheet for the sake of simplicity and12

consistency with the previous section.13

Following the classification in [45], the graphene layer can be considered as an elastic interface, denoted14

by s2, i.e. it is kinematically coherent (~u�|s2 = 0) but kinetically non-coherent (~t�|s2 , 0). The free15

energy of s2 is defined by16

φs2 = 1
2ε

s2 : Cs2 : εs2 + τ s2 : εs2 + φs20 , (39)17

where Cs2 is the fourth order surface stiffness tensor of graphene, τ s2 is the internal surface stress and εs218

is the surface strain tensor into the graphane sheet.19

The graphene/polymer interfacial regions can be assumed as cohesive interfaces, denoted s1 and s3, i.e.20

it is kinematically non-coherent (~u�|s1 , 0 and ~u�|s3 , 0) but kinetically coherent (~t�|s1 = ~t�|s3 = 0).21

The cohesive laws for interface s1 and s3 is22

σ|s1 .e3 = Ks1~u�|s1, σ|s3 .e3 = Ks3~u�|s3, (40)23

where Ks1 and Ks3 are the second order cohesive stiffness matrix of the interface s1 and s3. The free energy24

of s1 and s3 are defined by25

φs1 = 1
2 ~u� |s1.K

s1. ~u� |s1 + φs10 , φs3 = 1
2 ~u� |s3.K

s3. ~u� |s3 + φs30 , (41)26

where φs0 = φs10 + φs20 + φs30 .27

12



The kinematic compatibility across the graphene sheet s2 enforces that the jump of displacement field1

in the equivalent imperfect interface is2

~u� = u|+s3 − u|−s1 =
(

u|+s3 − ug
)

+
(
ug − u|−s1

)
= ~u� |s1 + ~u� |s3. (42)3

In equation (42), “+” and “-” correspond to the upper and lower surface of the interface with respect to4

the normal direction e3. The results of atomistic simulations suggest that the displacement jumps across5

interface s1 and s3 are equal. For the sake of simplicity, we assume that ~u� |s1 = ~u� |s3 = ~u� /2, which6

implies that the displacement field, ug (ug = u|+s2 = u|−s2 = u|+s1 = u|−s3), and the strain fields, εs2, on the7

graphene sheet are given by8

ug = u|+s3 + u|−s1
2 , εs2 (x) = 1

2

(
∇sug (x) + (∇sug)T (x)

)
. (43)9

Keeping in mind the cohesive law for the equivalent imperfect interface as10

Ks ~u� = ts = (σ|s1 + σ|s3) .e3

2 , (44)11

introducing the cohesive laws of the interface s1 and s3, and using the equality of jump displacement across12

s1 and s3, we obtain13

Ks = 1
4
(
Ks1 + Ks3) = 1

2Ks1 = 1
2Ks3. (45)14

The two last equalities come from the mirror symmetry of the system with respect to the graphene plane15

which implies that Ks1 = Ks3.16

The additivity of specific free energy and the equation (45) gives

φs = φs1 + φs2 + φs3, (46)

φs = ~u� |s1.Ks. ~u� |s1 + 1
2ε

s : Cs2 : εs + ~u� |s3Ks. ~u� |s3 + φs0. (47)

After establishing the new expression of specific free energy of the imperfect interface φs, the identification
of stiffness tensor Ks is detailed. At atomic scale we impose elementary rigid body translation of graphene
sheet, d = d1e1 + d2e2 + d3e3 (see e.g. Fig. 7a for translation along e1). The polymer atoms displacements
are kept fixed so that the variation of potential energy is only due to the displacement discontinuity at
the interface and ~u� |s1 = − ~u� |s3 = d. Assuming that the temperature is 0 K in our simulations, the
variation of free energy for a translation d of graphene is given by the variation of potential energy

∆U =
〈
φ− φ(0)

〉
=
∫

Ω
φ− φ0 dΩ +

∫
I
φs − φs0 dS (48)

= S (~u� |s1.Ks. ~u� |s1 + ~u� |s3Ks. ~u� |s3) (49)
= 2S (d · Ks · d) (50)

where S is the graphene sheet surface. The last equation shows that the potential energy is a quadratic17

function of d defined by the six independant components of the symetric second order stiffness tensor Ks.18

For the identification, we compute a set of 37 values of the variation of potential energy ∆U to estimate19

the stiffness tensor Ks by the least squares method (see supplementary information for details). We assume20

that the stiffness tensor Ks is diagonal (Ks)23 = (Ks)31 = (Ks)12 = 0 MPa.nm−1, for the sake of simplicity.21

The cohesive part of the general imperfect interface is very anistropic because the stiffness associated to the22

opening mode perpendicular to the graphene (Ks)33 = 52960 MPa.nm−1 is five order of magnitude than23

the stiffness associated to the slips along graphene plane (Ks)11 = (Ks)22 = 8.50 MPa.nm−1.24

This identification method allows to identify the Critical Resolved Shear Stress (CRSS) associated to25

the slip in the graphene plane by computation of the local shear stress. Fig. 7b shows the evolution of the26

13
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Figure 7: a) Scheme of graphene sheet translation along e1. b) Evolution of shear stress in a graphene plane for a translation
along e1.

local shear stress (σw)13 as function of d for a translation of graphene sheet along e1. The curve has the1

same periodicity as that of the graphene lattice. There are two maxima in one period. The smaller one2

provides the value of CRRS, τ? ≈ 17 MPa. Note that this value remains approximatively the same for all3

slip directions into the graphene plane.4

The surface elasticity tensor is identified by the method used for the bulk. Indeed, the fourth-order5

stiffness tensor Cw is identified on the graphene sheet (z = 0). Then, Cs, is deduced from (see e.g. [98]).6

Cs = h

(
Cw −

(Cw : N)⊗ (Cw : N)
N : Cw : N

)
, (51)7

where N = e3⊗e3 and h = 4Å is the graphene sheet thickness. The h value is chosen as the full width at half8

maximum of the curve of graphene density ρw vs. z (see Figure 4d). In this work, Cs is given Cs11 = Cs22 = 2809

GPa.nm, Cs12 = 90 GPa.nm, Cs66 = 95 GPa.nm and Csij = 0 GPa.nm for other components.10

4. Discussion11

4.1. Summary of the identification of elastic parameters12

The results of the previous section suggest that polymer/graphene nanocomposite can be modeled by13

a five layer composite: an imperfect interface for graphene (I), two interphase layers (Ω2 and Ω3) with a14

thickness, tI = 10.5 Å and two layers for polymer bulk (Ω1 and Ω4) see Figure 8b. The mean values of the15

elastic constants in Voigt notation for each layer are given in Table 2.16

The elastic behavior of the polymer bulk is isotropic and can be defined by the Lame’s coefficients17

λb = 9.0 GPa and µb = 2.3 GPa, such as Cb11 = Cb22 = Cb33 = λb + 2µb; Cb12 = Cb23 = Cb31 = λb18

and Cb44 = Cb55 = Cb66 = µb. The elastic behavior of the polymer interphase is transverse isotropic, it19

can be defined by five coefficients, such as CI11 = CI22 = 17 GPa; CI12 = 11.4 GPa, Cb23 = Cb31 = 9.1 GPa;20

CI44 = CI55 = 2.3 GPa and CI66 = (CI11−CI12)/2. The surface elasticity of imperfect interface is isotropic, it is21

defined by surfacic Lame’s coefficients λb = 95 GPa.nm and µb = 90 GPa.nm, such as Cs11 = Cs22 = λs+2µs;22

Cb12 = λs and Cb66 = µs. The cohesive stiffness of imperfect interface is isotropic into the graphene plane23

(Ks
11 = Ks

22 and Ks
12 = Ks

23 = Ks
31 = 0 MPa.nm−1), with a huge mechanical contrast between the out of24

graphene plane stiffness and the in plane stiffness (Ks
33/Ks

11 ≈ 105).25

It is important to note that the results depend on the weight function, w (x) and therefore on the shape26

and size of our measuring tools. Nevertheless, the mean strain computed with the atomistic displacement,27
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Figure 8: a) Atomistic configuration; b) Equivalent continuum model with imperfect interface and interphases.

uw (x) is equal to the the effective strain of the atomistic simulation box ε̄, and that the effective properties1

are the same for the atomic and continuum models (cf. following section and Table 2). Another area for2

improvement is taking the temperature into account. Indeed, all the results are obtained at zero temperature3

which explains why the Young’s modulus of polymer bulk, Eb ≈ 6.4 GPa, has the same order of magnitude4

as that of an amorphous polymer below its secondary transition temperature [99]. We estimate that the5

ratio between Young’s modulus of interphase, EI and bulk remains qualitatively the same EI/Eb ≈ 1.5 for6

temperatures below the glass transition temperature of the bulk and for much higher temperatures. We7

issue a large reserve for a temperature range around the glass transition temperature of the bulk because8

it is possible that the glass transition temperature of the interphase is different [100, 101], which would9

generate a change of one or two orders of magnitude of the ratio EI/Eb.10

4.2. Effective properties of sandwich structure11

We use the framework derived by Chatzigeorgiou et al [45] to define the macro strain tensor ε (or the12

mean strain tensor of the sandwich RVE of the Fig. 8 a):13

ε = 1
|Ω|

∫
Ω
ε dV + 1

|Ω|

∫
I

1
2 (nI ⊗ ~u�+ ~u�⊗ nI) dS, (52)14

where nI is the unit normal vector to the imperfect interface at a given point. The macro stress σ (or the15

mean stress tensor of the sandwich RVE) is defined by16

σ = 1
|Ω|

∫
Ω
σ dV + 1

|Ω|

∫
I
σs dS (53)17

The effective stiffness tensor CC of the equivalent continuum model, which linearly connects the macro18

stress and strain (σ = CC : ε), is computed by numerical homogenization with periodic boundary condi-19
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Table 2: Identified elastic constants of the continuum model in Voigt notation.

Polymer bulk Polymer interphase

Cb =


13.6 9.0 9.0 0 0 0
9.0 13.6 9.0 0 0 0
9.0 9.0 13.6 0 0 0
0 0 0 2.3 0 0
0 0 0 0 2.3 0
0 0 0 0 0 2.3

 GPa CI =


17.0 11.4 9.1 0 0 0
11.4 17.0 9.1 0 0 0
9.1 9.1 19.2 0 0 0
0 0 0 2.3 0 0
0 0 0 0 2.3 0
0 0 0 0 0 2.9

 GPa

Imperfect Interface

Cs =


280 90 0 0 0 0
90 280 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 95

 GPa.nm Ks =

[8.5 0 0
0 8.5 0
0 0 52960

]
MPa.nm−1

Effective stiffness of RVE (Lz = 10 nm)
Continuum model Atomistic model

CC =


43.3 18.7 8.77 0 0 0
18.7 43.3 8.77 0 0 0
8.77 8.77 14.1 0 0 0

0 0 0 0.079 0 0
0 0 0 0 0.079 0
0 0 0 0 0 12.3

 GPa CA =


43.3 18.7 8.8 0.0 0.0 0.0
18.7 43.3 8.8 0.0 0.0 0.0
8.8 8.8 14.1 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 12.3

± 0.1 GPa

16



tions satisfying the extended Hill-Mandel condition [45] (see Supplementary Information for details). We1

use the finite element method to discretize the solution space with linear tetrahedrons for bulk part and2

linear triangles for interfaces. The effective behavior of the sandwich structure, presented in Table 2, is3

transversally isotropic because the microstructure and the elastic properties of phases are isotropic along the4

graphene plane. In addition, the effective stiffness depends on the RVE size Lz. It is possible to obtain an5

analytic expression of the effective stiffness coefficient (CC)ij in the case of RVE with a sandwich structure.6

The theoretical study of this size effect will be the subject of a future work, but here we preferred to study7

the influence of the interface and the interphase on the RVE anisotropy.8

To validate the ALIAS methodolgy, we estimate directly by atomic simulations the effective stiffness9

tensor, CA, following the procedure introduced for polymer based materials by Theodorou and Suter [102]10

(see Supplementary Information for details). We believe that our approach is validated because we find the11

same effective module CC = CA, with the exception of the components (CA)44 and (CA)55 which cannot be12

obtained by atomistic simulations because of the sliding at the polymer/graphene interface (cf. the end of13

section 3.2.3).14
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Figure 9: Young’s modulus normalized by that of the bulk polymer Eb as function of the angle, θ, between the tensile direction
and the vector e1 into the plane (e1, e3) (see Supplementary Information for compuation details of E(θ)). a) Comparison
between the full continuum model (with interface and interphase) and a model without interphase and another one without
the cohesive part of imperfect interface (~u� = 0) b) Illustration of the effect finite size of graphene and wrinkle of graphene
on the stiffness anisotropy.

To show this anisotropy, we plot in Figure 9a the Young’s modulus E(θ) normalized by Young’s modulus15

of polymer Eb as function of the θ angle (see Figure 8) between the tensile direction and the vector e116

into the plane (e1, e3). We use the effective stiffness tensor CC to compute E(θ), the demonstration of17

the used formula is provided in Supplementary Informaiton. We notice that for tensile directions that are18

perpendicular to the graphene (θ = 90◦) and aligned with graphene (θ = 0◦) the Young’s modulus is greater19

than that of the polymeric matrix. It is even five times larger in the graphene plane due to the extraordinary20

stiffness of graphene. On the other hand, for a wide angular range (6◦ ≤ θ ≤ 86◦), the Young’s modulus21

is much lower than that of the polymer, going up to more than one order of magnitude for angular range22

(22◦ ≤ θ ≤ 68◦). This is due to the superlubricity of graphene (see e.g. [103], for review) which generates23

very low shear stiffness and CRSS.24

To compare the influence of the interphase and the interface on the elastic properties, we plot in Figure25

9a the Young’s modulus normalized as a function of the θ angle for one model “without interphase” (Cb =26

Ci) and another one “without interface”, i.e. without displacement discontinuities at graphene interfaces27

(~u� = 0,Ks
ii →∞). It is clear that the interphase has no significant effects on the Young modulus because28

the curves of the models with and without interphase are superposed; with the exception of an increase in29

17
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Table 3: Influence on the effective properties of graphene modifications
Stiffness Yield stress Toughness Electrical resistivity

(E) (σy) (KIc) (ρe)
Chemical modified ↗ ↗ ↘ ↗

graphene
Geometrical modification ↗ open open ↗

(wrinkling, border) question question

the Young’s modulus of 10% for a tensile direction perpendicular to graphene (θ = 90◦), which is not visible1

on the graph. Conversely, the interface acts as a notable softener effect because the model without interface2

has a Young’s modulus always higher than that of the polymer.3

We can conclude that one of the ways to increase the Young’s modulus of nanocomposite without4

microstructure change is to increase the interfacial cohesion between the polymer and the graphene by5

chemical route such as grafting. Nevertheless, this involves a compromise for the material designer between6

stiffness and electrical conductivity. In fact, the exceptional electrical conductivity of graphene is altered7

when the perfection of the 2D crystal is broken. The chemical interface modification will also modify the8

CRSS, which would tend to increase the yield stress and decrease the toughness. Indeed, the toughness9

material is able to dissipate energy by anelastic mechanisms such as interfacial sliding before propagating10

a critical crack. Therefore, the CRSS increasing, induced by the chemical grafting of graphene, should11

decrease the number of active slip sites in a volume element and thus reduce the toughness. We fall back12

into one of the classic conflicts between strength and toughness [104].13

Another way to increase the Young’s modulus is to change the geometry of the system by either adding14

the GNP extremities or introducing a graphene wrinkle. Figure 10 shows model microstructures, one with15

the GNP extremities and the other with wrinkled graphene. Figure 9b shows the effect of these geometric16

changes on the Young’s modulus anisotropy. Taking into account the GNP extremities increases the Young’s17

modulus by one order of magnitude for angular range 20◦ ≤ θ ≤ 70◦. However the same simulation with18

“without interface”, i.e. without displacement discontinuity (~u� = 0), shows an increase in Young’s19

modulus going up to double for θ = 45◦. The other geometric effect which increases the Young’s modulus is20

the GNP wrinkling. In this case, the effect on Young’s modulus is similar to that of taking into account the21

GNP extremity (see Figure 9b) with higher moduli in directions (θ = 0◦ and 90◦). Note that the curvature22

18



effects is taken into account in the imperfect interface model which is a generalization of the Young–Laplace1

equation [see, e.g. 105]. In this simulation, we negled also the bending stiffness of graphene which could2

be considered extremely low [106, 107]. The wrinkling of graphene also induces a decrease in the GNP3

conductivity due to the presence of midgap state [108]. Here, we also find the conflicts between stiffness4

and conductivity. The influence of these geometric changes on the yield stress and toughness of the GNP5

polymer nanocomposite is not obvious. In our opinion, it would merit special study because of deformation6

mechanism such as cavitation [17] or crazing [91]. The Table 3 summarizes all the conclusions resulting7

from this discussion, giving the supposed influence of changes in interface properties and geometry on the8

effective properties of GNP polymer nanocomposites.9

5. Conclusion10

In this paper, we have tackled the problem of identification of elastic continuum model by atomistic11

simulations for graphene polymer nanocomposite. The ALIAS method was developed to estimate the local12

stiffness tensor on all points of polymer graphene nanocomposite with a sandwich structure model. Results13

suggest that the graphene can be modeled at continuum scale by a general imperfect interface with zero14

thickness. The cohesive part of the general imperfect interface is very anistropic because the stiffness15

associated to the slip along graphene plane is five orders of magnitude lower than the stiffness associated16

to the opening mode perpendicular to the graphene. Moreover, the identification procedure revealed the17

existence of interphase on either side of the graphene with a thickness of 1 nm, which is one and a half times18

stiffer than the polymer bulk matrix.19

The identified continuum model has been used to study the effective elastic properties of nanocompos-20

ites with sandwich microstructure by numerical homogenization. This study at continuum scale showed a21

softening effect due to the very low stiffness of slips along graphene plane is preponderant in relation to22

the interphase stiffening. Finally, the continuum model suggests that the wrinkling of graphene increases23

the stiffness of nanocomposites, as well as the increasing of interfacial cohesion by chemical route such as24

grafting of graphene.25
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Abstract

This document provides supplementary information regarding:

1. Expressions of DREIDING potential in term of interatomic distance
2. Fitting details of the cohesive stiffness of interface Ks

3. Computation of effective stiffness tensor by atomistic simulations
4. Computation of effective stiffness tensor by numerical homogenization
5. Expression of Young’s modulus as function of angle θ

1. Expressions of DREIDING potential in term of interatomic distance

In the DREIDING potential [1], the interactions of all the atoms are described by the
valence (or bonded) interactions and the nonbonded interactions. For convienent reasons,
we consider only the van der Waals interactions in the nonbonded part of DREIDING
potential, which is modeled by the Lennard-Jones 12-6 type expression

U (vdw) ({rα}) =
∑
α

∑
β,α,
rαβ<rc

4εαβ

[(
σαβ
rαβ

)12
−
(
σαβ
rαβ

)6
]

(1)

where εαβ and σαβ are parameters which depends on the atom types. For computational
reasons, we use a cut off radius rc = 14.0Å.

We assume that the valence interactions consist of bond stretch (U (s), two-body),
bond-angle bend (U (b), three-body), dihedral angle torsion (U (tor), four-body). In the
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a) b)

Figure 1: Definition of: a) the bending angle θαβγ and b) the dihedral angle φαβγδ .

cas of coarse-grain PE and graphene, these potentials are written as

U (s) ({rα}) =
∑
Bond

k
(s)
αβ

2
(
rαβ − r0

αβ

)2
, (2)

U (b) ({rα}) =
∑

Bending

k
(b)
αβγ

2
(
cos (θαβγ)− cos

(
θ0
αβγ

))2
, (3)

U (tor) ({rα}) =
∑

Dihedral

k
(tor)
βγ

2
[
1− 3 cos (φαβγδ) + 4 cos3 (φαβγδ)

]
, (4)

where k(s)
αβ , r0

αβ , k
(b)
αβγ , θ0

αβγ and k(tor)
βγ are parameters which depends on the atom types.

The bending angle θαβγ and the dihedral angle φαβγδ are difened on Figure 1 and they
can be computed using interatomic distances(see, e.g. [2] p. 468 for expression of dihedral
angle cosine):

cos (θαβγ) = rβα.rβγ
rαβrβγ

=
r2
αβ + r2

βγ − r2
αγ

2rαβrβγ
, (5)

cos (φαβγδ) = (rαβ × rβγ) · (rβγ × rγδ)
|rαβ × rβγ | |rβγ × rγδ|

(6)

=

(
r2
αβ + r2

βγ − r2
αγ

)(
r2
βγ + r2

γδ − r2
βδ

)
− 2r2

βγ

(
r2
βγ − r2

αγ − r2
βδ + r2

αδ

)
4
√
r2
αβr

2
βγ −

1
4

(
r2
αβ + r2

βγ − r2
αγ

)2
√
r2
γδr

2
βγ −

1
4

(
r2
γδ + r2

βγ − r2
βδ

)2
.

(7)

The total potential energy of the system is represented by the sum of all these contribu-
tions:

U ({rα} , ε̄) = U (vdw) ({rα}) + U (s) ({rα}) + U (b) ({rα}) + U (tor) ({rα}) . (8)
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2. Fitting details of the cohesive stiffness of interface Ks

The variation of potential energy ∆U of the atomistic box for a translation d of
graphene is quadratic form given by

∆U = 2S (d− d0) · Ks · (d− d0) (9)

where S is the graphene sheet surface and d0 a small shift vector to correct the numerical
error due to the numerical minimization of the initial configuration of atomistic box. The
cohesive stiffness of interface Ks and the shift vector d0 matrix tensor Ks is defined by
the least squares method, for a given set of K = 37 translations d(k), such as

{Ks,d0} = argmin
Ks∈Mdiag

3 ,d0∈R3

{
K∑
k=1

∣∣∣∆U (k) − 2S
(
d(k) − d0

)
· Ks ·

(
d(k) − d0

)∣∣∣2}
(10)

whereMdiag
3 is the set of diagonal matrix in basis (e1, e2, e3) and ∆U (k) is the variation of

potential energy for the translation d(k). The 37 values of translation vector are chosen
along six directions of translation {e1, e2, e3, e2 + e3, e3 + e1, e1 + e2}. The Figure 2
shows the atomistic value of the variation of potential energy ∆U and the quadratic fit
for a translation into graphene plane along e1 and another one perpendicular to graphene
plane e3). The cohesive part of the general imperfect interface is very anistropic because
the stiffness associated to the opening mode perpendicular to the graphene Ks

33 = 52960
MPa.nm−1 is five order of magnitude than the stiffness associated to the slips along
graphene plane Ks

11 = Ks
22 = 8.50 MPa.nm−1.

3. Computation of effective stiffness tensor by atomistic simulations

The method presented in the previous section is a transposition of the procedure
introduced by Theodorou and Suter [3] to estimate the stiffness tensor of polymer based
materials. The starting point of this procedure is to write the variation of the total free
energy ∆φ as function of the effective infinitesimal strain tensor ε̄, such as

∆φ = |Ω|2 ε̄ : CA : ε̄ (11)

Assuming that the temperature is 0 K in our simulations, the variation of free energy for
a prescibed effectice strain ε̄ is given by the variation of potential energy

∆φ = ∆U = U (ε̄)− U (0) (12)

The effective stiffness CA is defined by the least squares method, for a given set ofK = 43
effective strain ε̄(k), such as

CA = argmin
CA∈Orth

{
K∑
k=1

∣∣∣∣∆U (k) − |Ω|2 ε̄(k) : CA : ε̄(k)
∣∣∣∣2
}

(13)

where Orth is the set of fourth order elastic tensor for orthorhombic material in basis
(e1, e2, e3) and ∆U (k) is the variation of potential energy for the prescribe effective strain

3
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Figure 2: a) Scheme of graphene sheet translation along e1. b) Evolution of potential energy as function
of d for translation of graphene along e1. c) Scheme of graphene sheet translation along e3. d) Evolution
of potential energy as function of d3 for translation of graphene along e3.

ε̄(k). Note that this method is not limited to orthorhombic material, this simplifying as-
sumption that guided by laminate geometry of atomistic box allowed us to reduce the
coefficient number of CA from 21 to 9 ((CA)11, (CA)22, (CA)33, (CA)44, (CA)55, (CA)66,
(CA)12, (CA)23, (CA)31). Moreover, the elastic constant (CA)44 and (CA)55 cannot be
obtained by atomistic simulations because of the sliding at the polymer/graphene in-
terface, so we impose (CA)44 = (CA)55 = 0. The 43 values of effective strain ε̄(k) are
chossen along seven directions α(j) in space of symetric second order tensor {e1 ⊗ e1 ,
e2⊗e2, e3⊗e3, 1√

2 (e1 ⊗ e2 + e2 ⊗ e1) , 1√
2 (e1 ⊗ e1 + e2 ⊗ e2), 1√

2 (e2 ⊗ e2 + e3 ⊗ e3),
1√
2 (e3 ⊗ e3 + e1 ⊗ e1)

}
. For each direction α(j), we prescribe six effective strains, such

as
ε̄(k) = λiα

(j), k = i+ 7 (j − 1) (14)

with λi = {−0.015;−0.01;−0.005; 0.005; 0.01; 0.015}

4



The effective stiffness tensor computes by atomistic simulations is

CA =


43.3 18.7 8.8 0.0 0.0 0.0
18.7 43.3 8.8 0.0 0.0 0.0
8.8 8.8 14.1 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 12.3

 GPa (15)

4. Computation of effective stiffness tensor by numerical homogenization

In this section, the definition and computation of effective properties in the context of
linear elasticity with imperfect interface are presented. The practical calculation of the
effective elastic tensor with 3D Finite Element Method (FEM) is detailed. An overview
of computational homogenization with FEM can be found in [4].

Ω1

Ω2

Ω3

Ω4

e1

e3
et

θ
Lz

tI

Figure 3: Representative Volume Element for periodic laminate polymer/graphene nanocomposte (Lz =
10 nm).

The Representative Volume Element (RVE) for periodic laminate polymer/graphene
nanocomposte is composed by a five layers: an imperfect interface for graphene (I), two
interphase layers (Ω2 and Ω3) with a thickness, tI = 10.5 Å and two layers for polymer
bulk (Ω1 and Ω4) see Figure 3.

The continuum homogenization problem being linear, the effective stiffness of poly-
mer/graphene nanocomposite CC given the macroscopic constitutive relationship betwen
macro stress σ and macro strain ε

σ = CC : ε (16)

is obtained by computing the macro stress for six elementary localization problems on

5



RVE with the following prescribed macro strains :

ε(1) = e1 ⊗ e1; ε(4) = 2 (e2 ⊗ e3 + e3 ⊗ e2) ;
ε(2) = e2 ⊗ e2; ε(5) = 2 (e3 ⊗ e1 + e1 ⊗ e3) ; (17)
ε(3) = e3 ⊗ e3; ε(6) = 2 (e1 ⊗ e2 + e2 ⊗ e1) .

4.1. Strong form
The localization problem based assuming that the RVE is subjected to the prediodic

boundary condition is given as follows:
Given a macroscopic strain ε, find the displacement field u (x) in Ω such that:

∇· σ = 0 ∀x ∈ Ω, (18)
∇s · σs + ~t� = 0 ∀x ∈ I, (19)

σ = C (x) : ε (x) ∀x ∈ Ω, (20)
σs = Cs (x) : εs (x) ∀x ∈ I, (21)

ts = 1
2

(
σ|+I + σ|−I

)
· nI = Ks · ~u� ∀x ∈ I, (22)

with the kinematic

ε (x) = 1
2
(
∇u (x) +∇uT (x)

)
, ∀x ∈ Ω, (23)

εs (x) = 1
2

(
∇sus (x) + (∇sus (x))T

)
∀x ∈ I, (24)

us (x) = 1
2

(
u|+I + u|−I

)
∀x ∈ I, (25)

~u� = u|+I − u|−I ∀x ∈ I. (26)

and verifying the periodic boundary conditions

u (x) = ε · x + ũ (x) , ∀x ∈ ∂Ω (27)

where the fluctuation ũ (x) is periodic on Ω and discoutinous over the imperfect interface
I. In other words, it takes the same values at two homologous points on opposite faces
of a parallelepipedic domain Ω. The traction vectors σ · n and σs · n are antiperiodic.

4.2. Weak form
Given a macroscopic strain ε, find ũ ∈ Hp1(Ω) for all δu ∈ Hp1(Ω), such as :∫

Ω
σ [u] : ε [δu] dV +

∫
I

σs [u] : εs [δu] + ts [~u�] · ~δu� dS = 0 (28)

where u = ε · x + ũ and Hp1(Ω) is the set {w (x) periodic on Ω and continous on Ω\I,
such as

∫
Ω w2 dV <∞ ,

∫
Ω∇w : ∇w dV <∞ }.
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The equation (28) becomes after using the elastic constitutive laws∫
Ω

ε [ũ] : C (x) : ε [δu] dV +
∫
I

εs [ũ] : Cs (x) : εs [δu] + ~ũ� · Ks · ~δu� dS (29)

= −
∫

Ω
ε : C (x) : ε [δu] dV −

∫
I

εs : Cs (x) : εs [δu] dS

where εs = P · ε · P is the projection of the macro strain onto the tangent plane of the
interface I and P = I− nI ⊗ nI .

4.3. Finite element discretization
For the discretization of this discontinous weak form it suffices to divide the domain

into two subdomains, Ω− and Ω+, separated by the interface I and write the weak as
follow :

Given a macroscopic strain ε, find ũ ∈ Hp1(Ω) for all δu ∈ Hp1(Ω), such as :

m++ (ũ, δu) +m−− (ũ, δu) +m+− (ũ, δu) +m−+ (ũ, δu) = f+
ε (δu) + f−ε (δu) (30)

where

m++ (ũ, δu) =
∫

Ω+
ε [ũ] : C (x) : ε [δu] dV +

∫
I+

1
4εs

[
ũ|+I

]
: Cs (x) : εs

[
δu|+I

]
dS

+
∫
I+

ũ|+I · Ks · δu|+I dS,

m−− (ũ, δu) =
∫

Ω−
ε [ũ] : C (x) : ε [δu] dV +

∫
I−

1
4εs

[
ũ|−I

]
: Cs (x) : εs

[
δu|−I

]
dS

+
∫
I−

ũ|−I · Ks · δu|−I dS,

m+− (ũ, δu) =
∫
I

1
4εs

[
ũ|+I

]
: Cs (x) : εs

[
δu|−I

]
dS −

∫
I

ũ|+I · Ks · δu|−I dS,

m−+ (ũ, δu) =
∫
I

1
4εs

[
ũ|−I

]
: Cs (x) : εs

[
δu|+I

]
dS −

∫
I

ũ|−I · Ks · δu|+I dS,

f+
ε (δu) = −

∫
Ω+

ε : C (x) : ε [δu] dV −
∫
I+

1
2εs : Cs (x) : εs

[
δu|+I

]
dS,

f−ε (δu) = −
∫

Ω−
ε : C (x) : ε [δu] dV −

∫
I−

1
2εs : Cs (x) : εs

[
δu|−I

]
dS.

The bilinear form m++ (ũ, δu) and the linear form f+
ε (δu) (reps. m−− (ũ, δu) and

f−ε (δu)) are discretized by Lagrangian finite-element method with linear tetrahedron
P1-elements of subdomain Ω+ (resp. Ω−) and computed by Gauss quadrature of order
1 and order 2 for the term

∫
I+ ũ|+I · Ks · δu|+I dS (resp.

∫
I− ũ|−I · Ks · δu|−I dS).

To compute the coupling term m−+ (ũ, δu) and m−+ (ũ, δu), we impose the same dis-
cretization of interface I for the domains Ω+ ans Ω−.

The using 3D meshes are plotted on Figure 4. The element size is chosen when the
values of the components of the stiffness tensors CC changed by minus 0.1% when the

7



a) b)

c)

Figure 4: 3D meshes with linear tetrahedron P1-element of RVE whit : a) flat graphene, b) wrinkled
graphene, c) finite size graphene.

number of degree of freedom (dof) is doubled. Note that the peridodic boundary condi-
tions and the continuous translational symmetry of all RVE geometry along e2 (along e1
and e2 for flat graphene RVE) imply that the effective stiffness CC is independent of the
lenght Ly for all studied RVE (and independent of Lx for flat graphene RVE). We chose
Ly = 4Å with 4 rows of elements following the direction e2 to reduce the computational
cost. The choice of Lx is arbitrary for all RVE while the Lz = 10 nm is chosen to have
the same size as the atomic simulation box. The shape of wrinkled graphene is sinusoidal
given by the parametric equations :

x = u u ∈
[
−Lx2 ; Lx2

]
y = v v ∈

[
−Ly2 ; Ly2

]
z = ∆

2 cos
(

2π u

Lx

)
where ∆ = 2Å and Lx = 4 nm. This choice gives the same order of magnitude graphene
curvature that this one observed by dynamics molecular simulations at 300K [5].
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Case of finite size graphene. In this case, we add a Neumman boundary condition at the
interface border ∂I, such as

σs · m = 0 (31)

where m is the normal vector to the line ∂I and perpendicular to the normal unit
vector of the interface nI . Note that adding the boundary condition doesn’t change the
expresion of weak form (Eq. 28).

Case of wrinkled graphene. In this case, surface elastic parameter are express into the
local basis BI [x] = (t1 [x] , t2 [x] ,nI [x])

Cs (x) =Cs11t1 [x]⊗ t1 [x]⊗ t1 [x]⊗ t1 [x] (32)
+ Cs22t2 [x]⊗ t2 [x]⊗ t2 [x]⊗ t2 [x]
+ Cs12 (t1 [x]⊗ t1 [x]⊗ t2 [x]⊗ t2 [x] + t2 [x]⊗ t2 [x]⊗ t1 [x]⊗ t1 [x])
+ 2Cs66 (t1 [x]⊗ t2 [x] + t2 [x]⊗ t1 [x])⊗ (t1 [x]⊗ t2 [x] + t2 [x]⊗ t1 [x]) ,

Ks (x) =Ks
11t1 [x]⊗ t1 [x] + Ks

22t2 [x]⊗ t2 [x] + Ks
33nI [x]⊗ nI [x] , (33)

where Csij and Ks
ii are the corresponding components for the flat graphene case; and

where nI [x] is unit normal to the imperfect interface at point x and (t1 [x] , t2 [x]) is
the orthonormal basis of tangent plane to the imperfect interface at point x. The vector
t2 [x] = e2 ∀x ∈ I because of the RVE is invariant by translation along e2.

4.4. Post-processing
The macro stress σ defined by

σ = 1
|Ω|

∫
Ω

σ dV + 1
|Ω|

∫
I

σs dS

= 1
|Ω|

∫
Ω+

σ dV + 1
|Ω|

∫
Ω−

σ dV

+ 1
|Ω|

∫
I+

1
2C

s (x) : εs
[
u|+I

]
dS + 1

|Ω|

∫
I−

1
2C

s (x) : εs
[
u|−I

]
dS (34)

is evaluated by Gauss quadrature of order 1.
The prescribed macro strain are chosen the Voigt’s tensors basis so the effective

stiffness tensor is given in Voigt notation by :

CC =
[[

σ(1)
]

;
[
σ(2)

]
;
[
σ(3)

]
;
[
σ(4)

]
;
[
σ(5)

]
;
[
σ(6)

]]
(35)

where
[
σ(i)] is the macro stress in Voigt notation obtain for prescribed the macro strain

ε(i). The effective stiffness and effective compliance for studied cases are given in Table
1.
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Table 1: Effective elastic constants in Voigt notation.

Effective stiffness Effective compliance

Flat graphene

CC =


43.3 18.7 8.77 0 0 0
18.7 43.3 8.77 0 0 0
8.77 8.77 14.1 0 0 0

0 0 0 0.079 0 0
0 0 0 0 0.079 0
0 0 0 0 0 12.3

 GPa S =


30.2 −10.6 −12.2 0 0 0
−10.6 30.2 −12.2 0 0 0
−12.2 −12.2 86.2 0 0 0

0 0 0 12700 0 0
0 0 0 0 12700 0
0 0 0 0 0 81.3

 MPa−1

Flat graphene without interphase (CI = Cb)

CC =


42.6 18.2 8.77 0 0 0
18.2 42.6 8.77 0 0 0
8.77 8.77 13.2 0 0 0

0 0 0 0.079 0 0
0 0 0 0 0.079 0
0 0 0 0 0 12.2

 GPa S =


30.7 −10.4 −13.5 0 0 0
−10.4 30.7 −13.5 0 0 0
−13.5 −13.5 93.3 0 0 0

0 0 0 12700 0 0
0 0 0 0 12700 0
0 0 0 0 0 82.1

 MPa−1

Flat graphene without interface (Ks →∞)

CC =


43.4 18.9 9.02 0 0 0
18.9 43.4 9.02 0 0 0
9.02 9.02 14.5 0 0 0

0 0 0 2.3 0 0
0 0 0 0 2.3 0
0 0 0 0 0 12.3

 GPa S =


30.2 −10.6 −12.2 0 0 0
−10.6 30.2 −12.2 0 0 0
−12.2 −12.2 84.3 0 0 0

0 0 0 435 0 0
0 0 0 0 435 0
0 0 0 0 0 81.3

 MPa−1

Wrinkled graphene

CC =


37.2 16.4 9.14 0 0 0
16.4 42.9 8.88 0 0 0
9.14 8.88 13.8 0 0 0

0 0 0 0.140 0 0
0 0 0 0 0.748 0
0 0 0 0 0 12.1

 GPa S =


35.4 −10.0 −17.0 0 0 0
−10.0 29.8 −12.5 0 0 0
−17.0 −12.5 91.8 0 0 0

0 0 0 7140 0 0
0 0 0 0 1340 0
0 0 0 0 0 82.6

 MPa−1

Finite graphene

CC =


31.5 14.9 8.79 0 0 0
14.9 39.4 8.79 0 0 0
8.79 8.79 14.1 0 0 0

0 0 0 0.773 0 0
0 0 0 0 1.13 0
0 0 0 0 0 8.69

 GPa S =


42.7 −11.9 −19.2 0 0 0
−11.9 32.8 −13.0 0 0 0
−19.2 −13.0 91.0 0 0 0

0 0 0 1290 0 0
0 0 0 0 885 0
0 0 0 0 0 115

 MPa−1
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5. Expression of Young’s modulus as function of angle θ

For macroscopic tensile loading along direction et, the macro stress tensor is :

σ = σtet ⊗ et, (36)

and the the macro strain tensor is given by

ε = S : σ (37)

where the fourth order tensor S = C−1
CM is the effective compliance tensor.

We define the effective Young’s modulus associated to the tensile loading along di-
rection et as

E (et) = σt
εt

(38)

where εt is the normal strain associated to the tensile loading along direction et defined
by

εt = ε : et ⊗ et. (39)

In case of tensile loading along direction et = cos (θ) e1 + sin (θ) e3, the macro stress
tensor is

σ = σt
[
cos2 (θ) e1 ⊗ e1 + sin2 (θ) e3 ⊗ e3 + cos (θ) sin (θ) (e3 ⊗ e1 + e1 ⊗ e3)

]
. (40)

Therefore, the macro stress and macro strain are in Voigt notation associated to the basis
(e1, e2, e3).

[σ] = σt


cos2 (θ)

0
sin2 (θ)

0
cos (θ) sin (θ)

0

 , [ε] =
[
S
]

[σ] = σt


S11 cos2 (θ) + S31 sin2 (θ)
S12 cos2 (θ) + S23 sin2 (θ)
S31 sin2 (θ) + S33 cos2 (θ)

0
S55 cos (θ) sin (θ)

0

 (41)

where Sij are effective compliance tensor components for transversally isotropic material.
The macro strain can be rewritten as

ε = σt
(
S11 cos2 (θ) + S31 sin2 (θ)

)
e1 ⊗ e1

+ σt
(
S12 cos2 (θ) + S23 sin2 (θ)

)
e2 ⊗ e2

+ σt
(
S31 sin2 (θ) + S33 cos2 (θ)

)
e3 ⊗ e3

+ σt
S55 cos (θ) sin (θ)

2 (e3 ⊗ e1 + e1 ⊗ e3) ,
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and we deduce the normal strain εt

εt = σt
(
S11 cos2 (θ) + S31 sin2 (θ)

)
cos2 (θ)

+ σt
(
S31 sin2 (θ) + S33 cos2 (θ)

)
sin2 (θ)

+ σt
S55

2 (cos (θ) sin (θ))2
.

Finally, the effective Young’s modulus E(θ) as function of the angle, θ, between the
tensile direction and the vector e1 into the plane (e1, e3) is

E (θ) = 1
S11 cos4 (θ) + S33 sin4 (θ) +

(
2S31 + S55

2

)
sin2 (θ) cos2 (θ)

. (42)
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