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We consider the problem of jointly detecting a known signal and estimating the channel in the frequency 
range used by underwater acoustic communication systems. A multi-scale multi-lag propagation envi-
ronment is considered and no prior knowledge of the channel order is assumed. The proposed detec-
tion/estimation method is based on the framework of multifamily generalized likelihood ratio tests applied 
to a signal lying in a union of subspaces. The result is a ”tuning-free” orthogonal matching pursuit algo-
rithm with a stopping criterion that does not require the knowledge of the number of channel taps or the 
noise variance. The performance is illustrated with replay simulations using real shallow-water channels 
measured in the Mediterranean Sea. Numerical results show that the proposed method outperforms com-
peting algorithms in terms of both detection probability and channel estimation error. In addition, channel 
estimation does not exhibit a performance floor as observed with fixed-order-based approaches.
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1. INTRODUCTION

Acoustic signal detection and channel estimation is of interest for a wide range of applications, including
underwater source localization and wireless communications. For instance, model-based localization tech-
niques seek to estimate the channel structure in order to compute source position estimates by solving an
inverse problem.1–3 Similarly, channel estimation can be very useful to recover the transmitted information
in a communication context.4, 5 In both cases, estimation is often made possible by detecting and processing
a known signal referred to as beacon or preamble.

Detection of a known signal usually relies on a bank of matched-filters (BMF). Depending on the un-
derlying assumptions on the channel and the noise, detection is performed by comparing the BMF outputs
to some threshold after being possibly normalized, combined and/or ordered (maximization over Doppler
branches, time delay averaging, accumulation of the strongest correlations, rank reduction, etc.).6, 7 Estima-
tion methods rely on multipath channel models with various assumptions about their structure. For instance,
the model may have a predefined degree of sparsity and/or it may explicitly consider the multi-scale structure
due to path-dependent Doppler shifts.3, 5, 8, 9

Be it for the detection of a known signal or for channel estimation, the channel order is often assumed to
be known or fixed a priori. This knowledge is either explicit by considering a fixed number of dominant taps
or implicit by assuming some knowledge on the signal-to-noise ratio or by setting specific values for sparse
regularization parameters. When the actual order departs from the presumed one, the performance degrades
significantly. If it is overestimated, noise may be injected in the detection and estimation procedures. If
underestimated, only part of the available signal energy is exploited.

The main contribution of this work is to propose a single method for joint signal detection and channel
estimation with a multi-scale multi-lag (MSML) model and without prior knowledge of the channel order.
This contribution is based on the framework of multifamily generalized likelihood ratio tests (MFGLRT)
applied to a signal lying in a union of subspaces (UoS).10 In this framework, the channel output signal
is assumed to lie in one out of a possible set of known subspaces. The candidate set of subspaces is here
built from all the possible MSML channel structures. Although efficient,10 the resulting detection/estimation
method is too complex to be applicable in our context. Therefore, we propose an approximate solution based
on a modified implementation of orthogonal matching pursuit (OMP). This solution automatically estimates
the signal subspace as well as the channel order from the data without the knowledge of the noise variance.
The benefit of the proposed method is illustrated with replay simulations using real shallow-water channels
measured in the Mediterranean Sea. Numerical results show that it outperforms competing algorithms in
terms of both detection probability and channel estimation error.

The paper is organized as follows. Sec. 2 is devoted to the problem formulation. The derivation of the
MFGLRT as well as its approximated formulation based on OMP is presented in Sec. 3. Numerical results
are provided in Sec. 4, followed by conclusions in Sec. 5.

2. PROBLEM FORMULATION

We consider the possible transmission of a known signal x(t) over a MSML underwater acoustic com-
munication channel. At reception, the baseband signal y(t) is either modeled as

H0 : y(t) = w(t), (1)

when no signal is transmitted or as

H1 : y(t) =

L−1�

�=0

α�(t)x(t− τ�(t))e
−i2πfcτ�(t) + w(t), (2)



when x(t) is transmitted. α�(t) denotes the complex attenuation of the �-th channel path, fc is the car-
rier frequency and τ�(t) is the delay assumed to be a linear function of time described by an initial delay
τ0� and a drift �� (also called the Doppler scale or the time-compression factor), so that τ�(t) = τ0� +
��t. w(t) is the additive noise assumed to be Gaussian of unknown variance σ2. Based on the observa-
tion y(t) and the knowledge of x(t), the problem addressed in this paper is first to decide between the
two hypotheses H0 and H1, and then, when H1 is decided, to estimate the unknown channel parameters�
L,

�
α�(t), τ

0
� , ��

�
{�=0,··· ,L−1}

�
. The amplitudes of the channel paths are assumed constant over the dura-

tion of x(t), i.e α�(t) ≈ α�, so that the discrete-time baseband signal can be expressed, under H1, as

y = z+w with z = X̃α, (3)

where y and w ∈ CN , α ∈ CL and X̃ ∈ CN×L is a matrix defined as X̃ = [x̃0, · · · , x̃L−1]. N denotes the
number of signal samples and the k-th entry of each vector x̃� ∈ CN satisfies

x̃�(k) = x
�
kTs(1− ��)− τ0�

�
e−i2πfc(��kTs+τ0� ), (4)

where Ts is the sampling period.

3. JOINT DETECTION AND ESTIMATION METHOD

Eq. (3) shows that signal z lies in a subspace spanned by the columns of X̃. In our context, the actual
channel parameters are unknown so that X̃ is also unknown. However, in practice, it is often reasonable to
bound some of the channel parameters with known values. More specifically, 0 < L ≤ Lmax, −�max ≤
�� ≤ �max and 0 < τ0� ≤ τmax. In addition, since any digital estimator has a finite resolution, it is
commonly assumed that each pair

�
τ0� , ��

�
approximately lies on a predefined delay-Doppler grid. Although

X̃ is unknown, we can therefore consider that all possible values taken by X̃ are known in advance such
that X̃ ∈ {X̃1, · · · , X̃M}, where each X̃i is known and where M denotes the number of all possible
sets {L,

�
α�(t), τ

0
� , ��

�
{�=0,··· ,L−1}}. Note that M can be extremely large for practical values of Lmax,

�max, τmax so that the prior knowledge of each X̃i may be unusable because of computational limitations.
However, for the sake of clarity, we first consider in Sec. 3.1 a fictitious scenario in which computational
complexity is not an issue and present a joint detector/estimator that makes use of the knowledge of each
X̃i in an MFGLRT framework. An approximate solution with a much lower complexity is then proposed in
Sec. 3.2.

A. MFGLRT

When all possible values taken by X̃ are known in advance, z is said to lie in a union of M subspaces,
i.e., z ∈ ∪M

i=1Si. In this case, z belongs to one of the subspaces Si, spanned by the columns of X̃i, but we do
not know a priori to which one. The detection of an unknown signal that lies in a union of subspaces and that
is observed in additive Gaussian noise with unknown variance has recently been addressed.10 It is shown
that an efficient detector can be obtained by using the framework of multifamily generalized likelihood ratio
tests. This detector is expressed as the following test

max
1≤i≤M

gi (Li(y))
H1

≷
H0

η, (5)

where

Li(y) =
1

2
ln

�
yHPSiy

yH (IN −PSi)y
× N − ni

ni

�
, (6)



and η is the detection threshold chosen so as to satisfy some predefined probability of false-alarm. PSi

denotes the projection matrix in subspace Si defined as PSi = X̃i

�
X̃H

i X̃i

�−1
X̃H

i . We assume each

matrix X̃i to have at most N − 1 linearly independent columns so that ni = dim (Si) < N . Li(y) is a GLR
statistic and gi penalizes this statistic to counteract its tendency to increase with the model order ni. The
analytic expression of gi is given in [10, Sec. III-B] and is shown to depend on the Legendre transform of
the cumulant generating function (CGF) of Li(y) under hypothesis H0. gi is termed as the MFGLR statistic
in the sequel. Not only Eq. (3) is a signal detector but it also provides an estimate of the subspace where z
actually lies, that is

Ŝ = Si∗ with i∗ = argmax
1≤i≤M

gi (Li(y)) . (7)

In other words, Eq. (7) provides an estimate of the channel parameters L and
�
τ0� , ��

�
{�=0,··· ,L−1} and the

estimate of X̃ is �̃
X = X̃i∗ . The amplitudes of the channel paths can then be obtained by the following

least-square estimate:

α̂ =

�
�̃
X

H �̃
X

�−1 �̃
X

H

y. (8)

B. APPROXIMATED MFGLRT (AMFGLRT)

As mentioned previously, in most practical scenarios, M is extremely large so that the MFGLRT pre-
sented in Eqs. (5) and (7) is infeasible. For instance, if Ngrid designates the number of possible delay-
Doppler pairs for each path, then M =

�Lmax
�=1

�Ngrid

�

�
. However, the complexity can be drastically reduced

by decoupling (at least in part) the estimation of subspace S from the computation of gi (Li(y)). Let X̃grid
denote the matrix of Ngrid columns containing all possible time and Doppler shifted versions of the trans-
mitted signal x. Using this definition, z can be seen as a sparse signal in the basis X̃grid. Therefore, an
estimate of subspace S can be obtained by solving the following least-square problem

Ŝ = span{X̃grid (U∗)}, (9)

with
U∗ = argmin

U : |U|≤Lmax

min
α

���y − X̃grid (U)α
���
2
. (10)

U is any combination of the set {0, 1, · · · , Lmax − 1} and |U| denotes the cardinality of U . X̃grid (U) is the
submatrix of X̃grid with columns indexed in U . U∗ is therefore the estimated sparse support set. Problem
(10) can be solved using any sparse signal recovery algorithm such as matching or basis pursuit.11 However,
for optimal performance, these algorithms require some prior knowledge on the sparsity degree, i.e., the
actual channel order L, and/or on the noise power to efficiently tune their parameters. As illustrated in Sec.
4, estimation performance is highly sensitive to this tuning. The main contribution of this work is to combine
the resolution of Eq. (10) using OMP with the computation of gi (Li(y)) as a decision statistic as well as a
stopping criterion for OMP.

More specifically, OMP is a greedy algorithm developed for sparse support set estimation. As recalled
in Alg. 1, it iterates until some stopping condition is satisfied. In our context, since we do not know
the actual value for |U|, we cannot set a priori the number of OMP iterations. Similarly, since the noise
variance is unknown, we cannot set a predefined threshold on the energy of the so-called residual to stop
the decomposition. Our approach relies on the property that MFGLR approaches are able to provide model
order estimates by maximizing the test statistic gi.12, 13 In Problem (10), the model order is |U|. We use this
property in OMP to stop the procedure. At each iteration i, the MFGLR statistic obtained with subspace Ŝi



Algorithm 1: OMP

Input: y, X̃grid,

Output: Ŝ , �̃X, α̂
1 Initialization: i = 1, U0 = ∅, r0 = y

2 Support set estimation : Ui = Ui−1 ∪ si with si = argmaxu=1,··· ,Ngrid

���rHi−1X̃grid(u)
���

3 Subspace estimation : Ŝi = span{X̃grid (Ui)}
4 Residual update : ri = (IN −PŜi

)y

5 if stopping condition is satisfied then

6 Ŝ = Ŝi,
�̃
X = X̃grid (Ui), α̂ =

�
�̃
X

H �̃
X

�−1 �̃
X

H

y

7 STOP iterations

8 else
9 Set i = i+ 1 and go to step 2

is computed. Since the model order increases with the iteration index, i.e., |Ui−1| < |Ui|, and the subspaces
Ŝi are also increasing, i.e., Ŝi−1 ⊂ Ŝi, we let OMP iterate as long as the MFGLR statistic keeps increasing.
OMP is stopped as soon as Ŝi leads to a MFGLR statistic smaller than the one obtained at the previous
iteration with Ŝi−1, meaning that the model order has been found. The great benefit of this approach is
that no prior knowledge of the channel order (or sparsity degree) is required. OMP becomes “tuning-free”.
In addition, the same statistic is used for stopping the support set estimation procedure and for deciding
whether a signal is present or absent. The full method is detailed in Alg. 2. As mentioned previously, the
MFGLR statistic depends on the Legendre transform of the CGF of Li(y) under hypothesis H0. Although
a closed-form expression of this statistic is available in the context of union of subspaces, this not the case
anymore since the sparse support set is now estimated with OMP so that it becomes random and data-
dependent. However, an approximation can be found using a second-order expansion of the CGF of Li(y).
The resulting expression is given in step 5 of Alg. 2, where µi = E(Li(y)) and σi = E(L2

i (y)) − µ2
i

under hypothesis H0. These values, as well as the detection threshold η, are obtained through Monte-Carlo
simulations with noise only.



Algorithm 2: Approximated MFGLRT (AMFGLRT)

Input: y, X̃grid, µi, σ2
i , η

Output: Ŝ , �̃X, α̂, Detection decision
1 Initialization: i = 1, Ui = ∅, r0 = y, g̃0(y) = −∞
2 Support set estimation : Ui = Ui−1 ∪ si with si = argmaxu=1,··· ,Ngrid

���rHi−1X̃grid(u)
���

3 Subspace estimation : Ŝi = span{X̃grid (Ui)}
4 Residual update : ri = (IN −PŜi

)y

5 MFGLR statistic:

g̃i(y) = 2

�
λiLi(y)− µiλi +

σ2
i

2
λi

�
�{Li(y)−µi}

with

Li(y) =
1

2
ln


 yHPŜi

y

yH
�
IN −PŜi

�
y
× N − i

i


 ,

λi =
Li(y)−µi

σ2
i

. �{·} denotes the indicator function.

6 if g̃i(y) < g̃i−1(y) then
7 if g̃i−1(y) > η then
8 Detection decision = true

9 Ŝ = Ŝi−1, �̃X = X̃grid (Ui−1), α̂ =

�
�̃
X

H �̃
X

�−1 �̃
X

H

y

10 else
11 Detection decision = false

12 Ŝ = ∅, �̃X = 0, α̂ = 0

13 STOP iterations

14 else
15 Set i = i+ 1 and go to step 2

4. NUMERICAL RESULTS

The performance of AMFGLRT is illustrated with replay simulations using real shallow-water channels
measured in the Mediterranean Sea. Replay of time-varying impulse responses (TVIRs) distorts input sig-
nals by convolving them with measured channels.7, 14–17 Table 1 summarizes measurement conditions and
test channel parameters. TVIRs are shown in Fig. 1. Drifts of multipath arrivals are clearly visible. This
drifts result from the transmitter and receiver movements but also from the possible deviations of instrument
clock frequencies from their nominal values (such deviations have the same effect as that of genuine Doppler
shifts).

For both channels, the detection and estimation performance are measured with a BPSK-modulated
signal x(t), whose simulation parameters are detailed in Table 2. The additive noise is white Gaussian,
i.e., w ∼ CN (0,σ2

wIN ), and the signal-to-noise ratio (SNR) is defined as the energy-per-bit over the noise
power spectral density, that is:

SNR =
�z�22
Lseqσ2

w

. (11)



Table 1: Channel parameters and sounding conditions

Name MED1 MED2
Environment Bay of Toulon Bay of Toulon
Time of year July July
Range ∼700 m ∼700 m
Water depth ∼50 m ∼50 m
Transmitter depth 10 m (towed) 10 m (towed)
Receiver depth 4 m (suspended) 12 m (suspended)
Probe signal type pseudo noise pseudo noise
-3dB freq. band 5.7-15.3 kHz 6.85-10.15 kHz
Delay coverage 128 ms 42 ms
Doppler coverage 7.8 Hz 23.8 Hz
Play time 25 s 25 s

(a) (b)

Figure 1: Time-varying impulse responses: (a) MED1, (b) MED2

The delay-Doppler grid used to build matrix X̃grid has the following parameters: maximum Doppler
�max = 5/1500 ≈ 3.3 10−3, Doppler step �step = 0.1/1500 ≈ 6.7 10−5 , maximum delay spread τmax = 25
ms and delay step τstep = Ts. Consequently, Ngrid = 10638 for the simulation with MED1 and 3650 for
the one with MED2.



Table 2: Simulation parameters for x(t)

Name MED1 MED2
Modulation BPSK m-sequence BPSK m-sequence
Length of the sequence (Lseq) 511 255
Duration ∼60.1 ms ∼87.3 ms
Symbol rate 8.5 kbds 2.92 kbds
Roll-off (RRC filter) 0.1 0.1
Sampling rate (Ts) 0.235 ms 0.685 ms

A. DETECTION PERFORMANCE

The performance of AMFGLRT is compared with two other detectors. The first one is the bank of
constant-false-alarm-rate (CFAR) matched filters (BMF) made of Doppler-shifted signal replicas. This de-
tector can be expressed as

max
1≤i≤Ngrid

yHPŜi
y

yH
�
IN −PŜi

�
y

H1

≷
H0

ηMFB with Ŝi = span{X̃grid (i)}. (12)

Such a detector based its decision by only considering the main tap of the channel. The second detector is
the one corresponding to the use of the GLRT statistic when the signal subspace is estimated with a fixed
number nit of OMP iterations. After simplification, it satisfies

yHPŜnit
y

yH
�
IN −PŜnit

�
y

H1

≷
H0

ηOMPnit
(13)

where Ŝnit is the output of Alg. 1 when the stopping condition in step 5 is set to i = nit. Setting the number
of iterations to a fixed value nit is equivalent to assuming that the number of channel taps equals this value.

We investigate the performance of the proposed detector in terms of probability of detection PD. The
probability of false alarm PFA is set to 10−3. The detection thresholds and the probabilities of detection are
obtained with 100/PFA and 2000 independent trials, respectively. For each trial, the signal x(t) is injected
into the channel with a random delay. Fig. 2 shows the probability of detection as function of the SNR for
AMFGLRT, BMF and OMP. Similar behaviors are observed in both channels: AMFGLRT outperforms the
other methods and the performance of OMP degrades significantly as nit increases. In addition, performance
in MED1 is better than in MED2, owing to a higher SNR gain provided by a longer m-sequence. The strength
of AMFGLRT is that the number of channel taps (or equivalently, the dimension of subspace S) is estimated
on the data and is not fixed a priori. For low SNR values and when the sparse support set is unknown,
detectors better have to only consider the main taps and ignore taps with low amplitudes. This is because the
actual delay-Doppler coordinates of taps with low amplitudes are very unlikely to be correctly estimated for
low SNRs and may result in noise injection in the test statistic. However, as the SNR increases, it becomes
beneficial to consider additional taps. The adaptation capacity of AMFGLRT is illustrated in Fig. 3 where
the average number of estimated taps is shown as a function of the SNR for both channels. Note that the
average number of taps is greater for MED1 than for MED2, which is expected since the delay resolution is
inversely proportional to the signal bandwidth. As discussed in the next section, this adaptability feature is
also very useful to optimize the channel estimation performance.



(a) (b)

Figure 2: Probability of detection vs signal-to-noise ratio, PFA = 10−3. (a) MED1, (b) MED2

Figure 3: Average number of estimated taps with AMFGLRT vs signal-to-noise ratio.

B. ESTIMATION PERFORMANCE

Since we are using real channel data, the true values of the parameters
�
L,

�
α�(t), τ

0
� , ��

�
{�=0,··· ,L−1}

�

are unknown. Therefore, we use the normalized mean-square error (NMSE) of the signal reconstruction as
a performance metric. It is defined as

NMSE = E




���z− �̃
Xα̂

���
2

2

�z�22


 , (14)

and is estimated with 2000 Monte-Carlo trials. The performance of AMFGLRT is compared with the same

methods used in the previous section. For BMF, we set �̃
X = X̃grid (UBMF), where the sparse support set

UBMF is estimated as the union of matched-filter branch indexes having a CFAR statistic greater than some
threshold controlled by a false-alarm probability set to PFA = 10−3.



(a) (b)

Figure 4: Estimation performance vs signal-to-noise ratio. (a) MED1, (b) MED2

Fig. 4 shows the NMSE as a function of SNR for all methods. Once again, AMFGLRT outperforms
the other approaches in both channels. OMP offers a reasonable performance in the low SNR region with a
small number of iterations but very quickly exhibits a performance floor due to the underestimation of the
number of channel taps. This performance floor is shifted to large SNR values when nit increases but at the
cost of degrading the performance for small SNRs. BMF also exhibits a performance floor whose position
may change depending on PFA. In any case, it does not provide satisfactory performance. Channel-order
adaptation, as provided by AMFGLRT, is clearly beneficial for all SNR ranges. Note that other estimation
approaches, such as basis pursuit, have also been tested. The results are not shown here because their
behavior is similar to OMP in that it does not adapt to the SNR and shows performance flooring depending
on the value set for the regularization parameters.

5. CONCLUSION

We have proposed a joint signal detector and channel estimator in the framework of a sparse represen-
tation problem combined with a multifamily generalized likelihood ratio test. A key feature of this method,
called AMFGLRT, is its capacity to estimate the channel order from the data. For low SNRs, AMFGLRT
only considers the main channel taps and ignore taps with low amplitudes. This limits the amount of noise
injected in the detection and estimation procedures. As the SNR increases, the additional signal energy pro-
vided by these weaker taps becomes beneficial and is taken into account by AMFGLRT. Using real channel
data, this adaptability has been shown to provide a significant performance improvement, especially for
channel estimation.

Although designed with the assumption of additive Gaussian noise, AMFGLRT is expected to be robust
to impulsive noises with little adaptation. First, normalized CFAR statistics are known to be more robust
to local non-stationarity than statistics assuming the knowledge of the noise power. Moreover, before being
processed, observed data could be filtered by non-linear functions such as those used in robust estimation.18

This analysis is left for future work.
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