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Abstract—We propose a new versatile elliptic curves cryptog-
raphy library based on unified arithmetics and various low-level
arithmetics with a focus on protection against simple power anal-
ysis and an abstract layer for easy customisations. The implemen-
tations are oriented toward industrial applications and embedded
devices. The number arithmetic used in the library is partly
inherited from GMP with several improvements using adapted
Montgomery representation and windowing techniques. We also
present an improved AMNS (Adapted Modular Number System)
arithmetic with competitive running time. The abstraction layer
allows for the integration of external arithmetics (e.g., other
libraries or hardware co-processor), general number systems and
randomization of arithmetics. The library has the advantage of
proposing standard elliptic curves but gives also the possibility
to use curves in different settings such as Weierstrass form in
co-Z coordinates, Jacobi quartic or Edwards forms (as well as
their associated conversions functions). It has been extensively
tested on x86-64, ARM 32/64 bits, STM32 architectures and also
in real-world applications. We present some comparative elliptic
curves signatures timings for different curves without taking into
account the specificity of the curves in our library (as opposed
to OpenSSL for instance).

Index Terms—elliptic curves cryptography, unified arithmetics,
adapted modular number system

I. INTRODUCTION

Creating secure implementations for elliptic curves cryptog-
raphy (ECC) while preserving performances is not an easy task
as shown by the attacks [1]–[4] on OpenSSL [5] and GnuPG
[6]. Unified formula for elliptic curves cryptography was
introduced in the early 2000s [7]–[9] in order to prevent simple
power analysis (SPA) or even differential power analysis
(DPA) and have been extended to a wide family of coordinate
systems [10]–[14]. Building on previous works and the need
for robust implementations, we propose a new versatile ECC
library, called MPHELL 1 , based on unified arithmetics with
a focus on protection against simple power analysis and an
abstract layer for easy customisations. It has been extensively
tested on x86-64, ARM 32/64 bits, STM32 architectures and
also in real-world applications. Our library has the advantage
to propose standard elliptic curves (all those from [15]) but

1https://www-fourier.univ-grenoble-alpes.fr/mphell/

gives also the possibility to use curves in different settings
such as Weierstrass form in co-Z coordinates, Jacobi quartic
or Edwards forms (as well as their associated conversion
functions)2. The number arithmetic used is inherited from
GMP [16] and has some improvement using Montgomery
representation [17] and windowing techniques. It also has a
“Modular Number System” module [18] with a focus on the
“Adapted Modular Number System” (AMNS) for which we
extend and improve the results of [19]. Part of the mathematics
behind the elliptic curves arithmetics were described in [20].
Our contribution intends to better address the needs of a
fast arithmetic library for elliptic curves with the following
features:

• Secure against simple power analysis,
• Easy to customize (e.g. usable with several types of

curves or versatile number arithmetics such as AMNS),
• Using optimized number arithmetic,
• Usable in industrial context,
• Usable on microcontrollers (e.g., STM32), ARM 32 bits

and 64 bits, and x86 architectures (32 bits and 64 bits)
• Competitive against other ECC libraries.

The library has been designed with GNU/Linux systems as
main targets (frequent on embedded systems) and for curves
over prime fields.

This work is organized as follows: in section II, we present
an improved AMNS, following the works of Didier, Dosso
and Véron [19] and Dosso [21] and show optimality results
for some family of elliptic curves. In section III, we detail the
design of a new library, called MPHELL , for the arithmetic
of elliptic curves with different types of low-level arithmetics
(e.g., AMNS) and unified arithmetics for elliptic curves in
order to be SPA resistant. In section IV, we give detailled
timings for MPHELL on different types of architectures and
compare it to common libraries. In section V we present our
conclusions.

2The formulae used are mainly available in the Elliptic Curve Formula
Database http://www.hyperelliptic.org/EFD.

https://www-fourier.univ-grenoble-alpes.fr/mphell/
http://www.hyperelliptic.org/EFD/


In the following, for a prime number p, we denote by Fp
the finite field with p elements (represented as Z/pZ). We will
also denote by log the logarithm in base 2.

II. IMPROVING AMNS

This section proposes several improvements on the work
of Didier, Dosso and Véron [19] and Dosso [21]. Let us first
introduce some notations: p will denote a prime number. For
an arbitrary integer n > 1, we denote by Z[X]n the set of
integers polynomials of degree less (or equal) than n. Given
a polynomial Q in Z[X]n we denote by ‖Q‖k the real k-
norm of Rn+1 restricted to Z[X]n (the polynomials being seen
as vectors). The positive integer φ will be either 232 or 264

depending on the targeted architecture (32 bits or 64 bits). Let
A ∈ Z[X]n, we denote by A mod (E, φ) the polynomial
reduction A mod E where the coefficients of the result are
computed modulo φ. We note A the polynomial A with its
coefficients reduced modulo 2.

A. A reminder on AMNS

A Modular Number System (MNS), introduced by Bajard
et al [18], allows to represent elements of Fp as polynomials.
Such MNS is defined by a 4-tuple (p, n, γ, ρ) such that for all
x ∈ Fp there exists V ∈ Z[X] such that V (γ) = x (mod p)
with deg(V ) < n and ‖V ‖∞< ρ. In order to represent all
the elements of Fp, we need p < (2ρ − 1)n. An Adapted
Modular Number System (AMNS) is an MNS such that γn =
λ (mod p) with |λ| 6= 0 “small” (often lower than 10). γ is a
root modulo p of the polynomial E = Xn−λ. E is called the
external reduction polynomial. We use it to reduce the degree
of AMNS polynomials after multiplication by replacing Xn

by λ in the computation. An AMNS is defined by a 5-tuple
(p, n, γ, ρ, E).

Another reduction is needed to keep polynomials of the
AMNS such that ‖V ‖∞< ρ. We need an algorithm called
"internal reduction" acting on the size of the polynomial
coefficients. Different methods exist to achieve this reduction,
but the best known one was introduced by Negre and Plantard
[22] and uses a Montgomery scheme. In such setting, every x
in Fp is represented by V ∈ Z[X]n−1 such that V (γ) = xφ
(mod p).

We recall here the internal Montgomery reduction algorithm
[19](section 4.1) which returns S such that S(γ) = V (γ)φ−1

(mod p) and ‖S‖∞< ρ. This algorithm reduces the coeffi-
cients of V using the polynomials M and M ′ = −M−1
mod (E, φ). The modulus φ is either 232 or 264 according
to the target architecture. We set Q = V ×M ′ mod (E, φ),
T = Q×M mod E and S = (V + T )/φ.

In practice, ‖M‖1 must be “small enough” to keep this
internal reduction algorithm consistent.

B. Improving the generation of AMNS

According to [21](Proposition 2.2), the limit on ‖V ‖∞ is
almost accurate. We can write ‖V ‖∞6 ω × (ρ − 1)2 to be
more precise. The conditions on ρ and φ are there to make
the AMNS internal reduction work [19](Algorithm 3). It turns

out that we can improve these conditions. Set M = m0 +
m1X+ ...+mn−1X

n−1. The accurate limit is ‖T‖∞6 φ×α
with α = |m0|+ |λ| × (|m1|+ |m2|+ ...+ |mn−1|).

We remind the definition of ω : ω = 1 + (n− 1)|λ|.
To get ‖S‖∞6 ρ we need :

ω × (ρ− 1)2 + α× φ
φ

< ρ,

ω × (ρ− 1)2

ρ− α
< φ.

(1)

This equation gives the condition ρ > α. In order to find a
suitable ρ, we study the minimum of the real function f(x) =
|ω|×(x−1)2

x−α which is well defined and derivable on its domain
R\{α}. Its derivative is given by f ′(x) = |ω|×(x−1)×(x−2α+1)

(x−α)2
and the minimum of f happens when x = 2α− 1.

If f(2α−1) < φ then the internal reduction polynomial M
can be used to create an AMNS. In practice, because we want
ρ to be a power of 2, we need f(2log(2α−1)) < φ. We can
set ρ = 2log(2α−1). This gives a smaller value for f(ρ) than
taking ρ = 2log(2ω‖M‖∞). Then, we can deduce new limits.
We replace : ρ > 2ω‖M‖∞, 2ωρ 6 φ and ‖V ‖∞6 ωρ2 from
[21] by ρ > α, ω×(ρ−1)

2

ρ−α < φ and ‖V ‖∞6 ω(ρ− 1)2.
We notice that ρ > α > ‖B‖1> 1

2‖B‖1, with B the matrix
defined in [21](Theorem 2.2). The theorem’s condition is
satisfied. This calculation for ρ does not improve significantly
the AMNS generation process, but it can help to find better
AMNS in several cases. Two points have been improved:

• The limit: It is now y = f(ρ) which have to be lower
than φ = 264, and not anymore y = 2ωρ,

• The calculation of ρ: to get f(ρ) as small as possible and
keep ρ as a power of 2 we use ρ = 2log(2α−1) instead of
ρ = 2log(2ω‖M‖∞).

We can see on Figure 1 below the function f and its
minimum (y = f(2α − 1)) in green. In red the line y = 264

which is the maximum for f(ρ) (or for 2ωρ with the old limit)
to keep the internal reduction consistent. The blue line is the
value y = f(ρ) with ρ = 2log(2α−1) which is lower than
264: with the new limit and the new computation for ρ this
AMNS is accepted. The orange line on top is the value of
y = 2ωρ, with ρ = 2log(2ω‖M‖∞) which must be < 264 (red
line) in the condition of [21]. This represents the old limit
and the old computation of ρ, the AMNS would have been
rejected with these values. The orange line under is the value
of y = f(ρ) with ρ = 2log(2ω‖M‖∞). This line uses the new
limit but the old computation for ρ, the AMNS would have
also been rejected. The graphic shows that the new limits and
the new calculation of ρ allow to accept this AMNS, which
would have been rejected by the conditions of [21]. We can
notice that with ρ = 2α − 1, the value f(ρ) is minimal. But
because ρ must be a power of 2 and ρ > α we can compare
f(ρ1) and f(ρ2) with ρ1 = 2log(2α−1) and ρ2 = 2log(α+1). It
leads to an improved choice of ρ, namely if f(ρ1) < f(ρ2)
we choose ρ = ρ1, otherwise we choose ρ = ρ2.



Figure 1. The new limits for AMNS.

C. Characterization of AMNS parameters

In order to give a characterization of AMNS parameters, we
will prove that the following claim is necessary and sufficient
(cf. Proposition 2.7 from [21]): Assuming E and M from an
AMNS as above, and Res denotes the resultant of polynomials
in Z[X]. Then gcd(Res(E,M), φ) = 1 if and only if M ′ =
−M−1 (mod (E, φ)) exists.

Proof. From [21], we know that the condition is sufficient. It
remains to show that it is necessary.

We will show that the conditions below, equivalent to
gcd(Res(E,M), φ) = 1, are necessary for M ′ to exist:{

if λ is even then m0 is odd (proposition 2.8 of [21]),
if λ is odd then gcd(M,Xn − 1) = 1.

(2)
Here is a proposition of a sufficient and necessary condition
on M , such that M ′ exists. Instead of looking at the resultant
we look to a linear equation system over the ring Z/φZ.
Let M = m0+m1X...+mn−1X

n−1 and M ′ = x0+x1X...+
xn−1X

n−1 be an unknown polynomial. Then

M ×M ′ (mod E) = A×

 x0
x1

.

.

.
xn−1

. (3)

with

A =

 m0 λmn−1 λmn−2 ... λm2 λm1
m1 m0 λmn−1 ... λm3 λm2
... ... ... ... ... ...
... ... ... ... ... ...

mn−2 mn−3 mn−4 ... m0 λmn−1
mn−1 mn−2 mn−3 ... m1 m0

 , (4)

where the first line are the coefficients of degree 0, the second
line the coefficients of degree 1 until the last line with the
coefficients of degree n− 1.

Hence, M is invertible (mod E, φ) if and only if there
exists M ′ = x0 + x1X... + xn−1X

n−1 such that M ×M ′

(mod E, φ) = 1. This is equivalent to find a solution over the
ring Z/φZ of the following linear equation:

A×

 x0
x1

.

.

.
xn−1

 =

1
0

.

.

.
0

. (5)

The system above has a unique solution over Z/φZ if and
only if gcd(det(A), φ) = 1 and as φ is a power of 2 the system
has a solution if and only if det(A) is odd. The proposition
2.1 of [21] allows to replace the coefficients of A by their
remainder modulo 2 to know the parity of det(A). Set B = A
(mod 2). If λ is even, then B is a triangular matrix with only
m0 (mod 2) on the diagonal and we get back the condition
det(A) is odd if and only if m0 is odd. Else, if λ is odd, then
B is the transpose of H3 as defined in [21](p.64). Then the
condition gcd(M,Xn− 1) = 1 is necessary and sufficient for
det(A) to be odd. Finally, if gcd(det(A), φ) = 1 then A is
inversible in Z/φZ and the solution is given by

M ′ = A−1 ×

1
0

.

.

.
0

. (6)

This demonstrates that the conditions (2) are necessary for M ′

to exist. And conclude that the condition of [21](Proposition
2.7) is necessary.

D. An example of optimal parameters for AMNS

For the NIST prime P-521, we want to show that the best
AMNS parameters is with M = 252X − 1. Indeed with the
external polynomial E = X10 − 2, a root
γ = 1524291284333980581729295522359944485228807686
8481304447554477341920760443455886816993682143864
70689042884243711624327585667956874652483059712,
of E is such that M(γ) (mod p) = 0. So γ−1 = 252

(mod p). As M has almost all its coefficients equal to
zero, it already speeds up the internal reduction. In addition
(252)2 = 0 (mod φ) and M ′ = 252X + 1 has also almost
all its coefficents equal to zero and makes again the internal
reduction faster.

Indeed instead of using 2n2 multiplications we use only 2n
multiplications which are always some number multiplied by
252. By consequences, the internal reduction which is the most
time consuming operation on AMNS becomes almost free for
the NIST P-521.

We want to show that the above M is optimal. Set M =
aX−1 with |a| < ρ < 264. The condition M(γ) = 0 (mod p)
is equivalent to γ = a−1 (mod p). To have M ′ = aX + 1
in order to get MM ′ = −1 (mod 264) we need a2 = 0
(mod 264). This last condition is equivalent to a = ±k× 232

for some integer k and as |a| < 264, we must have |k| < 232.
Hence, there are less than 2×232 = 233 possible values for a =
γ−1 and so for γ. As 2 6 γ 6 p−2, the probability to have a

"fitting" γ is
233

p− 4
<

233

2520
=

1

2487
. If we consider that for a

given p we can choose the external polynomial E = X10− λ
with 1 6 |λ| 6 10 and that for each external polynomial E



Table I
AMNS PARAMETERS FOR NIST AND BRAINPOOL (BP) CURVES.

p NIST P-224 NIST P-256 NIST P-384 NIST P-521
nopt (k = 64) 4 5 7 9
n (k = 64) 4 5 7 10
nopt (k = 32) 8 9 13 17
n (k = 32) 11 13 18 22

p BP 224 BP 256 BP 384 BP 512
nopt (k = 64) 4 5 7 9
n (k = 64) 4 5 7 10
nopt (k = 32) 8 9 13 17
n (k = 32) 11 12 18 25

there are less than n = 10 roots (the degree of gcd(Xp−X,E)
is exactly the number of distinct roots of E in Fp). Then the

probability to have such a M is lower than 2×10×10× 1

2487
.

Now if a is a power of 2 (like for the NIST P-521), there
are less than 64 possibilities for a. And the probability to
have such an AMNS for a given p of 521 bits is less than

2× 10× 10× 26

2520
= 200× 1

2514
.

The case above could be adapted to Mersenne prime p =
2p0 − 1. We have 2p0 = 1 (mod p). As p0 is a prime number
the degree n of the external reduction polynomial is inversible
modulo p0: there exists n0 such that n × n0 = 1 (mod p0).
We can take γ = 2n0 as a root for E = Xn − 2 modulo p.
Indeed (2n0)n − 2 = 2n0×n − 2 = 0 (mod p).

To find the internal reduction polynomial of the form M =
2m × Xk − 1, we search for m < log(ρ) and 0 < k < n
such that m + n0 × k = 0 (mod p0). Indeed M(γ) = 2m ×
(2n0)k − 1 = 2m+n0×k − 1 = 0 (mod p).

It is likely that such an AMNS always exists by looking at
the interval p0−n0 knowing that n0 > p0/n and will give an
AMNS with internal reduction properties as describe above.
The same strategy could be applied on generalized Mersenne
prime by using adequate external reduction polynomial. For
instance, with p = 2192−264−1 we could take E = X3−X−1
and γ = 264 as a root.

E. Influence of φ on the AMNS size

1) Generation of AMNS with different φ: According to the
value of φ = 2k (232 or 264), the generated AMNS are more
or less efficients. We denote by nopt, the optimal size for an
AMNS, namely the smallest size (in block number) such that
all values from the field can be represented and by definition

it is given by nopt =
log(p)

k
+ 1. Other parameters such as

λ, M , M ′ and ρ have influence on the AMNS performances
but the most important is the AMNS size: n = deg(E). If
n = nopt we cannot improve its value. In practice, it is not
always possible to have n = nopt, and we should find the
smallest n.

The table I gives value of nopt for k = 64 and k = 32 and
the values of n we get for the AMNS generation of NIST [15]
and Brainpool [23] elliptic curve arithmetics (of same size).

2) Why φ = 264 leads to better AMNS for Elliptic Curves:
When φ = 232 the generated AMNS have always a size larger
than the ideal one. We give here some hint of understanding.

Table II
OPTIMAL VALUES nopt AND n DEPENDING OF THE SIZE OF p

size of p (in bits) 256 384 512
n (k = 64) 5 7 10
nopt (k = 64) 5 7 9
n (k = 32) 12 18 25
nopt (k = 32) 9 13 17

We look for an approximate lower bound of f(ρ) as a function
of n. We use |λ| = 2 because all higher values will increase
f(ρ). If ρ0 = 2α − 1, then f(ρ0) = 2ω(ρ0 − 1) but with
ρ as a power of 2, f(ρ) > 2ω(ρ0 − 1). Let us approximate
ω by 2n (for |λ| = 2, ω = 2n − 1), we will denote this
operation ω ' 2n and apply it to the subsequent operations.
Then α ' |λ|×||M ||1 > |λ|×||M ||2 and ||M ||2 6

√
(n)p1/n

(Minkowski bound). We get the following identities:

f(ρ0) = 2ω(ρ− 1),

f(ρ0) = 22ω(α− 1),

f(ρ0) ' 23n(α− 1),

f(ρ0) ' 23n(|λ|||M ||2),
f(ρ0) ' 24n||M ||2,
f(ρ0) ' 24n3/2p1/n.

(7)

And f(ρ) > f(ρ0) so 24n3/2p1/n is an approximate lower
bound for f(ρ).

To have a working AMNS we need f(ρ) < φ so
log(f(ρ)) 6 32 or 64. We need to find the smallest n such
that log(24n3/2p1/n) 6 32 or 64.

We give in table II the values of n, and the n optimal with
k = 32 or 64. This explains why AMNS are more efficient
with φ = 264 than φ = 232. The more p grows the more n
needs to increase to keep log(24n3/2p1/n) 6 32 or 64. And
for a same p, n needs to increase more when k = 32 than
when k = 64. By consequences AMNS with φ = 264 are
well adapted to elliptic curve cryptography of nowdays (but
probably less for RSA primes).

III. DESIGN OF THE LIBRARY AND CHOICES FOR THE
ARITHMETIC OF CURVES

The library MPHELL is logically built with abstraction lay-
ers. The first one concerns the low-level big number arithmetic,
GMP or MbedTLS are available for this layer. The second
one is the prime field arithmetic, either built from the big
number layer or directly provided (e.g., AMNS, or Intel
IPP3 prime field arithmetic). Then comes the field arithmetic
layer, only able to deal with prime field, quadratic and cubic
extention of prime field (i.e., fields of size p2 and p3), used
for conversion between elliptic curve settings. The elliptic
curve layer is the last piece dealing with different types of
coordinates systems, abstracting Weiestrass, Jacobi quartics
and Edwards arithmetics and the conversion between them.

3Intel Integrated Performance Primitives



Only unified coordinates systems are used in order to provide
countermeasure against SPA [14], [24]. A random number
generator (RNG) is provided and allows to choose several
DRBG4 and also “true random sources” for the seed. An
external hardware RNG can also be used, like the one from
STM32F4 board.

The field arithmetic versatility allows to choose the best
solution according to the target:

• AMNS is efficient when 128 bits integers are available,
• Intel IPP has good performance for NIST curves, but

works only on Intel targets,
• GMP is a compromise between genericity and perfor-

mances and we can build countermeasures over it.

This flexibility keeps MPHELL performing well on different
targets. Like in other libraries we use different methods for
signing and verifying since verification does not need to be
protected against attacks whereas signing does. We choose
for the signing to implement complete formulae with unified
addition since other methods offers opportunities to some
side channel attacks. Therefore we use a simple double and
add algorithm for the signature. By design, the library can
be modified by users to add some countermeasures such as
coordinate randomizations (first introduced by [25]) which
offer some beneficial protection [26].

A. Weierstrass curves

Weierstrass curves are mainly the ones found in the stan-
dards (e.g [15], [27]) but there is no explicit recommandation
for the arithmetic. We propose therefore two implementations,
one which is based on projectives coordinates and another one
based on projective jacobian coordinates. For the projectives
coordinates, we used the formulae from [28] for unified
addition which costs 11M+6S+1×a+10A+4×2+1×4, as
well as dedicated addition from [29, formula 3] which costs
12M+2S+6A +1×2 and doubling from [28] which costs 7M
+3S+5A+4 × 2 + 1 × 3 in the favorable case of a4 = −3
and 5M+6S+1 × a + 7 A+3 × 2 + 1 × 3 otherwise. For
the Jacobian Coordinates we used formulae from [30] which
costs 8M+4S+15.5A per ZADDC operation (ladder) (see [30,
section 4] for details), even if [31] provides faster operations
but with the uncertainty of patents. For dedicated addition
and doubling we adapted formulae from the ones of [32]
which are similar to [28] but uses less additions. They cost
12M+4S+6A+1 × 2 for addition and for doubling it costs
5M+3S+5A+4×2+1×3 in the favorable case where a4 = −3
and 7M+3S+4A+4× 2 + 1× 3 otherwise.

In the table III, we summarize the different costs of
operations for different libraries [5], [33]–[38], neglecting
the constants, and the pros and cons of MPHELL against
common libraries [5], [33], [35]–[37]. Here are written M for
multiplication, S for squaring and A for addition. The costs
are computed according to the source code available of the
different libraries (including MPHELL ).

4Determinitic Random Bit Generator

B. Edwards curves
Since the work of [39] and later [40] the Edwards curves

became widely used and standardized [15], [41]. Hence we
present our implementations of Edward Curves. We use mainly
the work of [42] for twisted extended edwards coordinates.

For a dedicated addition we use the formulae from [42,
§3.2] which costs 9M+1× a+ 7A.

For a dedicated doubling we use the formulae from [42,
§3.3] which costs 4M+4 S+1× a+ 6A+1× 2.

For a unified addition we use the formulae from [42, §3.1]
which costs 9M+1× a+ 1× d+ 7A.

We also use formulae in (Edwards) projective coordinates
from [43, §6] which costs 10M+1S+1× a+ 1× d+ 7A.

For the dedicated doubling we use the formulae from [43,
§6] which costs 3M+4S+1×a+6A+1× 2. We only present
in Table III libSodium [38] since other libraries ( [5], [33],
[37]) follow the same methods and others uses non performant
formulae [34], [35].

C. Jacobi Quartic curves
The formulae are made only for the extended homogeneous

projective coordinates. We propose a unified addition from
[44] which costs 8M+2S+13A and a dedicated doubling
which costs 3M+5S+1× a+ 3A.

We have summarized all the formulae used in MPHELL in
table IV.

D. Scalar multiplication
1) Protected: For protected scalar multiplication we use

a naive implementation with a double and add with unified
formulae except for the case of weierstrass curve with jacobian
coordinates where we use formulae from [30].

We have summarized the methods in the table V.
2) Unprotected: For a general scalar multiplication we use

the method of sliding window with varying size w according
to the size l of the scalar. Hence we choose w = 3 for l 6 70,
w = 4 for l 6 197, w = 5 for l 6 539 and w = 6 otherwise.
Our method differs from [45, Algorithm 3.38] as we do not
perform substraction of points. Therefore for those formulae
we used the dedicated addition and doubling presented earlier.

E. Verification of signatures
For the verification we use a formula like the one of [45,

Algorithm 3.48] (used for example in [32]) which uses also
a sliding window method but which does a simultaneous
doubling for the two points.

We have summarized the method in the table VI, libraries
that use same formula for protected and unprotected version
are not listed here.

IV. EXPERIMENTAL RESULTS AND COMPARISON WITH
OTHER LIBRARIES

A. Results on x86-64 architectures
In the figure 2 ECDSA and EdDSA signatures5 timings

are shown for different elliptic curves without taking

5Average number of signatures per second, calculated over 10 000
ECDSA signatures



Table III
COST OF ADDITIONS AND DOUBLINGS OPERATIONS ON Fp IN [5], [33]–[38]

Library Curve Addition Doubling Coordinates
OpenSSL SECP224R1 12M+4S+6A+1 × 2 if Z2 6= 1 3M+5S+8A, Projective

9M+3S+6A+1 × 2 if Z2 = 1 +1 × 3 + 1 ×4 + 2 ×8 Jacobian standard
OpenSSL SECP256R1 10M+5S+9A+4 × 2 if Z2 6= 1 3M+5S+8A Projective

7M+4S+6A+5 × 2 if Z2 = 1 +1 × 3 + 1 × 4 + 2 × 8 Jacobian standard
OpenSSL SECP256R1 12M+4S+6A+1 × 2 if Z2 6= 1 4M+4S+5A+3 × 2 Projective

& SECP521R1 8M+3S+6A +1 × 3 + 1 ÷ 2 Jacobian standard

libreSSL Standard 12M+4S+8A+1 × 2 3M+4S+5 A+7 × 2 if a4 = −1 Projective
weierstrass 4M+4S+6A+8 × 2 if a4 = −3 coordinates

curves 4M+6S+5A+8 × 2

MbedTLS Weierstrass 8M+3S+6A+1 × 2 3M+4S+4A+1 × 3 if a4 = 0 Mixt for add
4M+4S+6A+1 × 3 if a4 = −3 Jac. for doubling

3M+6S+5A+1 × 3 + 1 × a4 otherwise

libgcrypt Weierstrass 10M+4S+7A+1 × 2 + 1 × 3 7M+6S+4A+2 × 2 if a4 6= −3 Jacobian
7M+5S+5A+2 × 2 if a4 = −3 Projective

IntelIPPCP NIST and SM2 Curves 12M+4S+6A+1 × 2 4M+4S+4A+2 × 2 + 1 × 3 + 1 ÷ 2 Jacobian
3M+6S+4A+1 × a4 + 2 × 2 + 1 × 3 + 1 × 4 + 1 × 8 Jacobian

All curves 8M+3S+6A+1 × 2 Jacobian and affine

wolfSSL Weierstrass 12M+4S+21A+1 optional ÷2 3M+6S+20A+1 × a4 Projective
wolfSSL Weierstrass 9M+3S+21A+1 optional ÷2 when Z2 = 1 4M+4S+22A if a4 = −3 Projective

libSodium Ed25519 7M+7A 3M+4S+5A+1 × 2 Extended with prec.
Ed25519 7M+7A 4M+4S+5A+1 × 2 Extended

Table IV
COST OF ADDITIONS AND DOUBLINGS IN OPERATIONS ON Fp IN MPHELL

Curve Addition Doubling Coordinates
Weierstrass 11M+6S+10A same as addition Projective
Weierstrass 12M+2S+6A 7M+3S+5A Projective

5M+6S+7A
Weierstras 12M+4S+6A 5M+3S+5A Jacobian

7M+3S+4A
8M+4S+15.5A per ZADDC

Jacobi Quartic 8M+2S+13A 3M+5S+3A Jacobian
Edwards 9M+7A 4M+4S+6A Extended
Edwards 9M+7A Same as addition Extended
Edwards 10M+1S+7A 3M+4S+6A Projective

Table V
METHODS USED FOR SCALAR MULTIPLICATION IN ECDSA SIGNATURES

Library Curve Method
Mbed TLS Weierstrass Comb method with

(log2(p) < 384)?w = 4 : w = 5, [45, Alg. 3.44]
Mbed TLS Montgomery Montgomery ladder [45, Alg. 3.40]
OpenSSL NISTP curves Inteleaved point multiplication [46, §3.3]
OpenSSL NISTz256 WNAF with w = 7

LibreSSL Weierstrass & Montgomery Montgomery ladder
libgcrypt Weierestrass & Edwards Always double and add [45, Alg.3.27]

Intel NIST Fixed base NAF with (log(p) < 384)?w = 7 : w = 5
[45, Alg 3.42]

libSodium Ed 25519 Fix based NAF with w = 5

wolfSSL Weierstrass Joye ladder [47]
MPHELL Weierstrass Method from [30]
MPHELL Edwards & Jacobi Unified double and add

into account specificity of the curves (as in OpenSSL
for instance) on x86-64 architectures. The libraries used
for the comparisons are: MPHELL(v5.0.0), OpenSSL
[5](v3.0.0), MbedTLS [34](v2.25), LibECC, Intel
IPPCP [36](v2020.0.0), Miracl [48](v7.0.0),LibGCrypt

Table VI
METHODS USED FOR SCALAR MULTIPLICATION IN ECDSA VERIFICATIONS

Library Curve Method
OpenSSL NISTP curves window method with w = 5
OpenSSL NISTz256 window NAF with w = 5

LibreSSL Weierstrass & Montgomery window NAF with log(p) >= 300?w = 4 : w = 3

libgcrypt Edwards Double and add
libgcrypt Weierstras binary NAF [45]

Intel NIST windows method with w = 5

libSodium Ed 25519 sliding window method with w = 5 [45, Alg.3.38]
wolfSSL Weierstrass simultaneous point multiplication [45, Alg 3.48] with w = 5

MPHELL All curves sliding window with (log(p) 6 529)?w = 5 : w = 6

Figure 2. Comparison between MPHELL and other libaries on x86 64 bits,
for ECDSA/EdDSA signatures

[49](v1.8.5), libSodium [38](v1.0.16),LibreSSL
[33](v3.3.1). For the signature MPHELL performs well
despite the unified operation (protection against Simple
Power Analysis). Intel IPP is faster for the NIST curves
where it uses some dedicated arithmetic based on the pseudo
Mersenne prime specificities. libSodium is also faster but
dedicated to the Ed25519 curve and without protection against
SPA. For the verification in the figure 3, which requires
no protection, MPHELL is faster on all curve except for the
Ed25519 where libSodium is still the best.

The figures 4 and 5 show the performance of MPHELL under
AMNS, as described in §II, with respect to GMP and Intel IPP
for the field arithmetic layer on x86 (64 bits) and illustrate the
pertinency of this approach.

B. Results on embedded devices (ARM and STM32)

The following timings show the performance of our li-
brary and arithmetic choices on ARM v8 (Raspberry 4) and
on STM32F4 for ECDSA signatures and verifications and
compare it to MbedTLS [34], which is a reference SSL/TLS
library for embedded devices based on ARM architectures.
On Raspberry Pi 4 (Figures 6 and 7), MPHELL is faster
than MbedTLS [34] for the signature, except for some NIST



Figure 3. Comparison between MPHELL and other libaries on x86 64 bits,
for ECDSA/EdDSA verifications

Figure 4. Comparison between MPHELL field arithmetics on x86 (64 bits),
for ECDSA/EdDSA signatures

curves, where MbedTLS has a dedicated arithmetic. For the
verification MPHELL is always faster. On this target GMP is
the best option for the field arithmetic. Indeed the 128 bits
integers are not available and the poor quality of the AMNS
defined with φ = 232 leads to poor performances.

On the STM32F4 (Figures 8 and 9), despite the small
memory available, MPHELL works well. For the signature
MbedTLS has faster timings for the NIST curves where it
uses some dedicated arithmetic based on the pseudo Mersenne
prime specificities.

Nevertheless MPHELL has the best performances for the

Figure 5. Comparison between MPHELL field arithmetics on x86 (64 bits),
for ECDSA/EdDSA verifications

Figure 6. Comparison between MPHELL (differents field arithmetics) and
MbedTLS on Rasperry PI 4, for ECDSA/EdDSA signatures

Figure 7. Comparison between MPHELL (differents field arithmetics) and
MbedTLS on Rasperry PI 4, for ECDSA/EdDSA verifications

Figure 8. Comparison between MPHELL (differents field arithmetics) and
MbedTLS on STM32F4, for ECDSA/EdDSA signatures

Figure 9. Comparison between MPHELL (differents field arithmetics) and
MbedTLS on STM32F4, for ECDSA/EdDSA verifications



other curves, even with the SPA protection. We can see, sur-
prisingly that AMNS gives competitive timings on STM32F4
despite the fact that 128 bits integers are not available and that
the AMNS used are by consequent far from the ideal ones.
For the verification MPHELL is currently the fastest.

V. CONCLUSION

We have seen that MPHELL , using our improvement on
AMNS, can be efficient. It is the fastest for ECDA signatures
verifications. On STM32F4 board, we have shown that our
AMNS implementation offers competitive timings despite the
fact that we do not have optimal parameters in this case.
We have also seen that MPHELL offers overall competitive
performances when it uses SPA resistant unified addition. But
alone this method could not be enough when dealing general
SCA [2]–[4] or with Machine Learning attacks [50], [51].
We know from [52], that randomized arithmetics could be
used to provide countermeasures against such attacks, as also
shown in [53]. The abstract layer of MPHELL allows for such
implementation of randomized arithmetics for AMNS or other
MNS and will be the subject of a forthcoming work including
Machine Learning attacks.
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