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Abstract: In this paper, a general framework is developed for continuous-
time financial market models defined from simple strategies through con-
ditional topologies that avoid stochastic calculus and do not necessitate
semimartingale models. We then compare the usual no-arbitrage con-
ditions of the literature, e.g. the usual no-arbitrage conditions NFL,
NFLVR and NUPBR and the recent AIP condition. With appropriate
pseudo-distance topologies, we show that they hold in continuous time
if and only if they hold in discrete time. Moreover, the super-hedging
prices in continuous time coincide with the discrete-time super-hedging
prices, even without any no-arbitrage condition.
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.

1. Introduction

Absence of arbitrage opportunities is an usual condition imposed on finan-
cial market models to deduce a characterization of super-hedging prices. In
continuous-time, Delbaen and Schachermayer [8] have introduced the famous
no-arbitrage condition NFLVR as equivalent to the existence of a local mar-
tingale measure, see also the well known NFL condition by Kreps [17] at the
origin of the arbitrage theory in continuous time. More recently, the weaker
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NUPBR no-arbitrage condition [16] has been introduced as the minimal one
necessary to solve utility maximization problem.

However, models where the price processes are not semi-martingales are
also considered in the literature, e.g. fractional Brownian motion, see [20]
and [19] for empirical study. Moreover, in the papers [22] and [24], it is
shown that arbitrage opportunities exist in fractional Brownian motion mod-
els. Also Guasoni considers [11] non-semimartingale models with transaction
costs. In the paper [5], the no-arbitrage condition AIP ensures the finiteness
of the super-hedging prices in non-semimartingale frictionless models and a
dynamic programming principle allows to compute them in discrete time.

Absence of arbitrage opportunities in non-semimartingale models has also
been considered by restricting the class of admissible trading strategies as
initiated by [6], [4], [3], [23] among others. Precisely, only simple strategies
with a minimal deterministic time between two trades are allowed. It is then
possible to show that fractional Brownian motions, and more general pro-
cesses, are arbitrage free with respect to this so-called Cheridito’s class of
simple strategies, see [13]. In other words, this specific restricted class of
simple strategies is adapted to the non-semimartingale price processes of
consideration in such a way that a no-arbitrage condition holds.

Our approach is different: We fix an a priori given class of strategies that
are interpreted as simple discrete-time strategies (discrete-time or simple
strategies in short) and the continuous-time strategies are defined as conver-
gent sequences of simple strategies. Here, convergence should be understood
with respect to a topology induced by a (conditional) pseudo-distance we
introduce in such a way that, by definition, a terminal continuous-time port-
folio value is attainable from a terminal discrete-time portfolio process, up
to an arbitrarily small error. Precisely, if vT is a terminal continuous-time
portfolio value, then for every ε > 0, there exists a terminal discrete-time
portfolio value vT such that vT ≥ vT − ε.

We aim to show that the usual no-arbitrage conditions NFL, NFLVR and
NUPBR in discrete-time are respectively equivalent to their analogous con-
ditions in continuous time, with an appropriate choice of a pseudo-distance
topology which is financially meaning. The same holds for the weaker AIP
condition which means that non negative payoffs admit non negative prices,
or equivalently, the infimum super-hedging price of a non negative price can-
not be −∞, see [5]. Moreover, we then show that the infimum super-hedging
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prices in discrete time and in continuous time coincide, without supposing
any no-arbitrage condition. Of course, such prices may be numerically es-
timated only if AIP holds, which is the weaker no-arbitrage condition of
consideration.

In the following, we first present the general framework that generates the
continuous-time portfolios from the discrete-time ones. Then, we successively
compare in discrete time and in continuous time the NFL, NFLVR, AIP
and NUPBR no-arbitrage conditions. Finally, we compare the super-hedging
prices in discrete time and in continuous time. The last section exposes the
theory we have developed on pseudo-distance topologies. In the appendix,
some auxiliary results are collected.

2. Model

Let (Ω, (Ft)t∈[0,T ],P) be a complete stochastic basis which is right-continuous.
We consider a financial market model defined by d risky assets described by
a continuous-time right-continuous price process St = (S1

t , ..., S
d
t ) ∈ Rd

+,
t ∈ [0, T ], adapted to the filtration (Ft)t∈[0,T ]. Moreover, we suppose that
there exists a bond whose price is S0 = 1, without loss of generality. The
quantities invested in a portfolio are described, as usual, by a real-valued
adapted process θ0 that describes the quantity invested in the bond and
an adapted process θ = (θ1, ..., θd) ∈ Rd, called strategy, that describes
the quantities invested in the risky assets. Without transaction costs, the
liquation value of the strategy θ is given by the portfolio process V = V θ = θS
where the product needs to be understood as the Euclidean inner product on
Rd. Recall that, in discrete-time t = 0, 1, · · · , T , V = V θ is said self-financing
if θtSt = θtSt+1, i.e. ∆Vt+1 := Vt+1 − Vt = θt∆St+1. Then, the terminal value
of a self-financing portfolio process starting from the zero initial capital is of

the form Vt,T =
T∑
i=t

θi−1∆Si.

In the following, T > 0 is the horizon time and we consider for any time
t ≤ T , a set Vt,T of T - terminal discrete-time portfolios, starting from the zero
initial capital at time t. An element of Vt,T may be seen as a portfolio value
generated by a simple strategy, as in [6] or generated by specific discrete-time
strategies more generally.

A first typical example is when the trades are only executed at arbitrary
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deterministic times:

Vt,T =

{
n∑
i=1

θti−1
∆Sti , t = t0 < · · · < tn = T, θti ∈ L0(Rd, Fti), n ≥ 1

}
. (2.1)

A second example is when the portfolios are revised at some stopping times,
e.g. when some market conditions are satisfied. Let us denote by Tt,T the set

of all [t, T ]-valued stopping times. We denote by T̂ nt,T , n ≥ 1, the set of all
increasing sequences of stopping times (τi)

n
i=0 such that t = τ0 < · · · < τn =

T . We then consider the set:

Vt,T =

{
n∑
i=1

θτi−1
∆Sτi , (τi)

n
i=0 ∈ T̂ nt,T , θτi ∈ L0(Rd, Fτi), n ≥ 1

}
. (2.2)

Remark 2.1. In the common cases, the discrete-time portfolio processes
Vt,T ∈ Vt,T are explicitly characterized by a priori given ”simple” strategies
θt,T ∈ St,T , i.e. Vt,T = I(θt,T ) for some operator I. In that case, we also
denote by Vt,u the u-time value of Vt,T , i.e. Vt,u = I(θt,T,u), u ∈ [t, T ], where
θt,T,u is the restriction of θt,T to the interval [t, u] so that θt,T,uv = 0 if v > u.
This is the case in the two examples above and we write Vt,T = I(St,T ). In
continuous-time, this is usual to require the strategies be admissible. In the
example given by (2.2), we have

Iu(θ) := I(θt,T,u) =
n∑
i=1

θτi−1

(
Sτi∧u − Sτi−1∧u

)
, u ∈ [t, T ]. (2.3)

We say that θ is admissible if there exists m ∈ R such that Iu(θ) ≥ m a.s.
for all u ∈ [t, T ]. In that case, the corresponding set of terminal portfolio
processes is denoted by aVt,T instead of Vt,T . 3

In the following, we consider L0(Rm,FT ), m ≥ 1, the set of all equivalence
classes of random variables defined on (Ω,FT ,P) with values in Rm. The
following definitions allow to define continuous-time portfolio processes (resp.
strategies) from discrete-time portfolio processes (resp. simple strategies).

Definition 2.2. Let t ≤ T and let Ot be a topology on L0(R,FT ). We say
that a sequence (V n

t,T )n≥1 of Vt,T is Ot-integrable if (V n
t,T )n≥1 is convergent

with respect to Ot.
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Definition 2.3. Let t ≤ T and let Ot be a topology on L0(R,FT ). We
denote by Vct,T = Vct,T (Ot) the family of all limits for the topology Ot of Ot-
integrable sequences (V n

t,T )n≥1 of Vt,T . An element of Vct,T is called a terminal
continuous-time portfolio.

Definition 2.4. Let t ≤ T and let Ot be a topology on L0(R,FT ). Suppose
that Vt,T = I(St,T ) for some operator I and simple strategies St,T . We say
that a sequence (θn)n≥1 of St,T is Ot-integrable if (V n

t,u = Iu(θn))n≥1 is Ot-
integrable for all u ≤ T .

Definition 2.5. Let t ≤ T and let Ot be a topology on L0(R,FT ). Sup-
pose that Vt,T = I(St,T ) for some operator I and simple strategies St,T . A
continuous-time strategy θ on [t, T ] is an Ot-integrable sequence θ = (θn)n≥1

of simple strategies θn ∈ St,T . In that case, for any u ∈ [t, T ], we define
V c
t,T (u) = Iu(θ) as a limit in Ot of the convergent sequence (Iu(θn))n≥1. We

then have V c
t,T = V c

t,T (T ) ∈ Vct,T = Vct,T (Ot) by definition.

The aim of the paper is to understand whether a no-arbitrage condition im-
posed on the set of all discrete-time portfolio processes (or simple strategies)
at any time t also holds on the set of all continuous-time portfolio processes
(resp. strategies). Clearly, that should depend on the topologies (Ot)t≤[0,T ].
Also, it is interesting to compare the super-hedging prices obtained by the
discrete-time portfolio processes from the continuous-time ones.

In the following, we shall consider at any time t ≤ T a topology Ot that
satisfies the Fatou property defined as follows:

Definition 2.6. A topology O on L0(R,FT ) satisfies the Fatou property if
for any sequence (Xn)n≥1 of L0(R,FT ) that converges to X in O, we have
X ≤ lim infnXkn for some subsequence (kn)n≥1.

Moreover, we shall introduce a non Hausdorff topology which satisfies the
following properties:

Definition 2.7. A topology O on L0(R,FT ) is said Ft-positively homoge-
neous if for any sequence (Xn)n≥1 of L0(R,FT ) that converges to X in O,
and for all αt ∈ L0(R+,Ft), (αtX

n)n≥1 converges to αtX in O.

Definition 2.8. A topology O on L0(R,FT ) is said Ft- lower bond preserving
if, for any X ∈ L0(R,FT ) such that X ≥ mt for some mt ∈ L0(R,FT ) and
for any sequence (Xn)n≥1 of L0(R,FT ) that converges to X in O, there exists
a subsequence (Xkn)n≥1 such that Xkn ≥ µt for some µt ∈ L0(R,FT ).
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3. The NFL and the NFLVR conditions

Let us define At,T := Vt,T −L0(R+,FT ) (resp. Act,T := Vct,T −L0(R+,FT )) the
set of all attainable claims from discrete-time (resp. continuous-time) port-
folio processes. We denote by L∞(R,FT ) the set of all equivalence classes
of bounded random variables X such that ‖X‖∞ < ∞. Consider the corre-
sponding sets A∞t,T := At,T ∩ L∞(R,FT ) and Ac,∞t,T := Act,T ∩ L∞(R,FT ) of

bounded attainable claims. Then, we denote by Aw,∞t,T and Ac,w,∞t,T the weak
closures ofA∞t,T andAc,∞t,T respectively with respect to the topology σ(L∞, L1).

3.1. The NFL condition

Definition 3.1. Let (Ot)t≤T be a collection of topologies on L0(R,FT ) and
Vct,T = Vct,T (Ot), t ≤ T . The No Free Lunch condition (NFL, [17]) is defined

at time t by Aw,∞t,T ∩ L∞(R+,Ft) = {0} (resp. Ac,w,∞t,T ∩ L∞(R+,Ft) = {0})
for the model defined by the discrete-time (resp. continuous-time) portfolio
processes. We say that the NFL condition holds if it holds at any time t ≤ T .

In the following, if O and O′ are two topologies, we say that O ⊆ O′ if
any open set of O is an open set of O′. We consider a collection (Ot)t≤T of
topologies on L0(R,FT ) so that Vct,T = Vct,T (Ot), t ≤ T .

Lemma 3.2. Suppose that O0 ⊆ Ot and Vt,T ⊆ V0,T for all t ∈ [0, T ].
Then, the NFL condition holds for the continuous-time (resp. discrete-time)
portfolio processes if and only if NFL holds at time t = 0.

Proof. By the assumptions, we deduce that Vct,T ⊆ Vc0,T for all t ∈ [0, T ]. We

deduce that Ac,w,∞t,T ⊆ Ac,w,∞0,T for all t ∈ [0, T ]. The conclusion follows.

Proposition 3.3. Suppose that the topology Ot, t ≤ T , satisfies the Fatou
property, is Ft-positively homogeneous and is Ft- lower bond preserving. As-
sume that Vt,T is a Ft positive cone, i.e. Vt,T is convex and αtVt,T ⊆ Vt,T for
all αt ∈ L0(R+,Ft). Then, with Vct,T = Vct,T (Ot), the following statement are
equivalent:

1.) NFL holds at time t for the model defined by the discrete-time portfolio
processes.

2.) There exists Qt ∼ P such that EQt(V ) ≤ 0 for all V ∈ Vt,T such that
V is bounded from below by a constant.

3.) NFL holds at time t for the model defined by the continuous-time port-
folio processes.
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4.) There exists Qt ∼ P such that EQt(V ) ≤ 0 for all V ∈ Vct,T such that
V is bounded from below by a constant.

Proof. By the assumptions, Aw,∞t,T and Ac,w,∞t,T are positive cones. Therefore
the equivalences between 1.) and 2.) and between 3.) and 4.) are immediate
consequences of the Kreps-Yan theorem, see [15, Theorem 2.1.4]. Indeed, if
EQt(V ) ≤ 0 for all V ∈ Act,T ∩L∞(R,FT ) (resp. At,T ∩L∞(R,FT ), it suffices
to apply the Fatou lemma to the sequence V m = V 1{V≤m} ∈ L∞(R,FT ), as
m→∞, if V is bounded from below, to deduce 4.) (resp. 2.)). It is clear that
4.) implies 2.) since Vt,T ⊆ Vct,T . It remains to show that 2.) implies 4.). We
first observe that 2.) implies that EQt(V |Ft) ≤ 0 for all bounded from below
V ∈ Vt,T , since Vt,T is a Ft positive cone. We then deduce by rescaling that
the inequality EQt(V |Ft) ≤ 0 also holds if V is bounded from below by an
Ft-measurable random variable. Then, consider V ∈ Vct,T such that V ≥ m
a.s. for some m ∈ R. By definition, V = limV n in Ot, for some convergent
sequence of elements V n ∈ Vt,T . As Ot satisfies the Fatou property, we may
suppose w.l.o.g. that V ≤ lim infn V

n. Moreover, as Ot is Ft- lower bond
preserving, we may also suppose that V n ≥ µt a.s., for all n ≥ 1, where
µt ∈ L0(R,Ft). Then, EQt(V |Ft) ≤ limnEQt(V

n|Ft) by the Fatou lemma.
As EQt(V

n|Ft) ≤ 0 by the remark above, the conclusion follows.

Definition 3.4. The price process is said locally bounded if there exists a
sequence of increasing stopping times (T n)n≥1 and a real-valued sequence
(Mn)n≥1 such that limn→∞ T

n = +∞ and the stopped processes ST
n

are
bounded by Mn.

Note that, if the jumps ∆St = St − St− are uniformly bounded by a
constant M ≥ 0, it suffices to consider T n = inf{t ≥ Tn−1 : St ≥ n} so that
ST

n ≤M + n.

Corollary 3.5. Suppose that O0 ⊆ Ot for all t ≤ T . Suppose that the topol-
ogy O0 satisfies the Fatou property, is F0-positively homogeneous and is F0-
lower bond preserving. Assume that Vt,T is given by (2.2) for all t ≤ T and S
is a locally bounded process. Then, if NFL holds for the discrete-time (resp.
continuous-time) portfolios, there exists a local martingale measure for S.
Moreover, if Vt,T =a Vt,T , the existence of a local martingale measure for S
implies NFL for both discrete-time and continuous-time portfolios .

Proof. Note that Vt,T ⊆ V0,T by (2.2). Therefore, as O0 ⊆ Ot, it suffices
to consider the NFL condition at time t = 0 by Lemma 3.2. By Proposi-
tion 3.3, NFL in discrete time and in continuous time are equivalent. In the

7



following, we use the notations of Definition 3.4. If NFL holds, the local mar-
tingale measure Q = Q0 for S is given by Proposition 3.3. Indeed, for each
n ≥ 1, and t1 ≤ t2 such that t2 ≤ T , V = ± (St2∧Tn − St1∧Tn) 1Ft1 ∈ V0,T

for all Ft1 ∈ Ft1 and V is bounded from below by −Mn. So, we deduce
that EQ((St2∧Tn − St1∧Tn) 1Ft1 ) = 0 and finally EQ(ST

n

t2
|Ft1) = ST

n

t1
. This

implies that S is a local martingale under Q. At last, if V0,T =a V0,T , con-
sider an admissible simple strategy θ such that Iu(θ) ≥ m for all u ∈ [0, T ],
see 2.3. Suppose that there exists a local martingale measure Q for S. So,
there exists an increasing sequence (T n)n≥1 of stopping times such that
limn T

n = ∞ and the stopped process ST
n

is a martingale, for all n ≥ 1.
It is easily seen that EQ[IT∧Tn(θ)] = 0. Indeed, it suffices to successively ap-
ply to tower property knowing that the generalized conditional expectation
EQ(θτi−1

(
Sτi∧Tn − Sτi−1∧Tn

)
|Fτi−1

) = 0. Moreover, IT∧Tn(θ) ≥ m by the ad-
missibility property. Therefore, EQ[IT (θ)] ≤ lim infnEQ[IT∧Tn(θ)] ≤ 0, by
the Fatou lemma. The conclusion follows by Proposition 3.3.

3.2. The NFLVR condition

Let A∞t,T := At,T ∩ L∞(R,FT ) and Ac,∞t,T := Act,T ∩ L∞(R,FT ) be the sets

of bounded attainable claims. Then, we denote by A∞t,T and Ac,∞t,T the norm
closures of A∞t,T and Ac,∞t,T respectively with respect to the topology induced
by the norm ‖ · ‖∞.

Definition 3.6. The condition NFLVR holds at time t ≤ T for the discrete-
time portfolios (resp. continuous-time portfolios) if A∞t,T ∩L∞(R+,FT ) = {0}
(resp. Ac,∞t,T ∩L∞(R+,FT ) = {0}). We say that NFLVR holds if NFLVR holds
at any time t ≤ T .

We easily observe that NFL implies NFLVR. Actually, under some con-
ditions on the price process, NFL and NFLVR are equivalent [8, Corollary
1.2] to the existence of a local martingale measure, as we shall see. Note that
it is not trivial whether the NFLVR condition for discrete-time portfolios is
equivalent to the NFLVR condition for continuous-time portfolios. This is
not true in general, see [8] Example 6.5. But we have the following:

Proposition 3.7. Suppose that O0 ⊆ Ot for all t ≤ T . Suppose that the
topology O0 satisfies the Fatou property, is positively homogeneous and is
F0- lower bond preserving. Assume that Vt,T =a Vt,T is given by (2.2) for
all t ≤ T and S is a continuous process. Then, the conditions NFL and
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NFLVR for discrete-time portfolios and the conditions NFL and NFLVR for
continuous-time portfolios are equivalent to the existence of a local martingale
measure for S.

Proof. Recall that the NFL condition for discrete-time portfolios implies the
NFLVR condition for discrete-time portfolios. By [8, Theorem 7.6], there
exists a local martingale measure for S. By Corollary 3.5, we deduce that
NFL holds both for discrete-time and continuous-time portfolio processes.
The conclusion follows.

The result above implies that the price process S needs to be a semi-
martingale for the NFL condition to hold. The same holds if the NFLVR
condition holds even for discrete-time portfolio processes, see [8, Theorem
7.2] for locally bounded processes S. The next no-arbitrage condition AIP
we consider does not necessitate the price process to be a semimartingale.

4. The AIP condition

The AIP condition has been initially introduced in [5] for discrete-time mod-
els. This no-arbitrage condition states that the hedging prices of non neg-
ative European claims are non negative, or equivalently the hedging prices
of non negative hedgeable European claims are finite. The advantage of this
condition is that it is sufficient, at least in discrete-time, to deduce the super-
hedging prices without supposing that the price process is a semimartingale.

Our goal is to study the AIP condition for continuous-time processes and
relate it to the same condition for discrete-time processes. We recall that, if
H is a sub σ-algebra, the H-measurable essential supremum ess supH(Γ) of
a collection Γ of real-valued random variables is the smallest H-measurable
random variable that dominates Γ a.s., see [15, Section 5.3.1], and we define
ess infH(Γ) = − ess supH(−Γ). If the elements of Γ are H-measurable, we use
the notation ess sup(Γ) := ess supH(Γ).

Definition 4.1. A contingent claim hT ∈ L0(R,FT ) is said to be super-
hedgeable in discrete time (resp. continuous time) at time t if there exists
pt ∈ L0(R,Ft) (called a super-hedging price) and a discrete-time (resp.
continuous-time) portfolio process Vt,T such that pt + Vt,T ≥ hT .

Recall that the set of all super-hedgeable claims in discrete time (resp.
continuous time) from the zero initial endowment at time t is given by the set
At,T = Vt,T−L0(R+,FT ) (resp. Act,T ). We denote by Pt,T (hT ) (resp. Pct,T (hT ))
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the set of super-hedging prices in discrete time (resp. in continuous time) for
the contingent claim hT ∈ L0(R,FT ). The infimum super-hedging price in
discrete time (resp. in continuous time) is πt,T (hT ) = ess inf(Pt,T (hT )) (resp.
πct,T (hT ) = ess inf(Pct,T (hT ))). We adopt the notation Pt,T (0) = Pt,T (resp.
Pct,T (0) = Pct,T ), etc..when hT = 0. We observe that Pt,T = At,T ∩ L0(R, Ft)
and Pct,T = Act,T ∩ L0(R, Ft). Moreover,

Pt,T = {ess supFt(−vt,T ) : vt,T ∈ Vt,T}+ L0(R+, Ft), (4.4)

Pct,T = {ess supFt(−vt,T ) : vt,T ∈ Vct,T}+ L0(R+, Ft). (4.5)

Indeed, pt is a price in discrete time for 0 if there exists vt,T ∈ Vt,T such that
pt + vt,T ≥ 0 i.e pt > −vt,T , which is equivalent to pt > ess supFt(−vt,T ). We
have a similar characterization for Pct,T .

Definition 4.2. An instantaneous profit in discrete time (resp. in continuous
time) at time t < T is a strategy that super-replicates in discrete time (resp.
in continuous time) the zero contingent claim starting from a negative price
pt,T ∈ Pt,T ∩ L0(R−,Ft) (resp. pt,T ∈ Pct,T ∩ L0(R−,Ft) ) such that pt,T 6= 0.
In the absence of such an instantaneous profit, we say that the Absence of
Instantaneous Profit (AIP ) holds at time t, i.e.

Pt,T ∩ L0(R−,Ft) = At,T ∩ L0(R+, Ft) = {0}. (4.6)

Respectively, Pct,T ∩L0(R−,Ft) = Act,T ∩L0(R+, Ft) = {0} in continuous time.
We say that AIP holds if AIP holds at any t ≤ T .

Remark 4.3. The NFLVR condition implies AIP. 3

Remark 4.4. AIP in discrete time at time t ≤ T is equivalent to πt,T (0) = 0
or equivalently Pt,T = L0(R+,Ft). Indeed πt,T (0) ≤ 0 as 0 ∈ Pt,T . Moreover,
if AIP holds then Pt,T ⊂ L0(R+,Ft). To see it, consider pt,T ∈ Pt,T . Then
1{pt,T≤0}pt,T ∈ Pt,T hence 1{pt,T≤0}pt,T = 0 by AIP and pt,T ≥ 0. Conversely,
any pt ≥ 0 is a price for the zero claim since 0 ∈ Pt,T . The same holds in
continuous time. 3

The following lemma provides another financial interpretation of the AIP
condition. Precisely, when starting from the zero initial endowment, it is not
possible to obtain a terminal wealth which, estimated at time t, is strictly
positive on a non null Ft-measurable set. In particular, under AIP, there is
a possibility to face a loss when starting from zero.
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Lemma 4.5. The AIP condition holds in discrete time (resp. in continuous
time) if and only if , for any t ≤ T and for all vt,T ∈ Vt,T (resp. Vct,T ), we
have ess infFt(vt,T ) 6 0.

Proof. This is a direct consequence of (4.4).

5. The AIP condition for discrete-time portfolio processes

Proposition 5.1. Suppose that d = 1 and the discrete-time portfolio pro-
cesses are given by (2.1). The AIP condition holds in discrete time if and

only if, for all t1 < t2 < T , St1 ∈
[
ess infFt1 (St2), ess supFt1 (St2)

]
.

Proof. Suppose that AIP holds. Consider vt1,T = St2−St1 ∈ Vt1,T . By Lemma
4.5, we have ess infFt1 (vt1,T ) 6 0, i.e. ess infFt1 (St2) 6 St1 . Similarly, choosing
vt1,T = St1 − St2 ∈ Vt1,T , we get that ess supFt1 (St2) > St1 .

For the reverse implication, let us first show that ess infFt( vt,T ) 6 0 for ev-

ery discrete-time portfolios vt,T ∈ Vt,T . To do so, consider vt,T =
n∑
i=1

θti−1
∆Sti

where θti−1
∈ L0(R,Fti−1

) and the discrete dates are t0 = t ≤ · · · ≤ tn = T .

We claim that, for all i ≥ 1, γti−1
= ess infFti−1

(θti−1
∆Sti) 6 0. Indeed,

γti−1
= θti−1

ess infFti−1
(∆Sti) 6 0 by assumption on the set {θti−1

> 0}
and, otherwise, γti−1

= θti−1
ess supFti−1

(∆Sti) 6 0 on the set {θti−1
6 0}.

Therefore, ess infFti−1
(θti−1

∆Sti) 6 0. We deduce that

ess infFtn−1
(vt,T ) =

n−1∑
i=1

θti−1
∆Sti + ess infFtn−1

(θtn−1∆Stn) ≤
n−1∑
i=1

θti−1
∆Sti .

As the conditional essential supremum satisfies the tower property, we then
now consider the conditional essential supremum with respect to Ftn−2 in the
inequality above. By induction, we finally obtain that ess infFt(vt,T ) 6 0.

In the following, if H is a sub σ-algebra, we denote by suppH(X) the H-
measurable conditional support of any random variable X, i.e. the smallest
H-measurable random set suppH(X) such that X ∈ suppH(X) a.s., see [9].
The convex envelop of any A ⊆ Rd is denoted by conv(A).

Proposition 5.2. Suppose that d ≥ 1 and the discrete-time portfolio pro-
cesses are given by (2.1). Then, AIP holds in discrete time if and only if
St1 ∈ conv(suppFt1 (St2)) for any t1 ≤ t2 ≤ T .

11



Proof. Suppose that AIP holds and consider two dates t1 ≤ t2 in [0, T ]. Then,
AIP holds for the two time steps smaller model defined by (Sti)i=1,2. By [5],
we deduce that the minimal price of the zero claim for (Sti)i=1,2 is given by

0 = πt1,t2(St1 , St2) = −δconv(suppFt1
(St2 ))(St1),

where, for any I ⊆ Rd, δI = (+∞)1I with the convention (+∞) × (0) = 0.
Therefore, St1 ∈ conv(suppFt1 (St2).

Reciprocally, suppose that, for any t1 ≤ t2 ≤ T , St1 ∈ conv(suppFt1 (St2).

Then, 0 = πt1,t2(St1 , St2) for any t1 ≤ t2 ≤ T . Consider pt ∈ Pt,T such that
pt +

∑n
i=1 θti−1

∆Sti ≥ 0 for some strategies θti ∈ L0(Rd, Fti) and discrete

dates t = t0 < · · · < tn = T . Then, pt +
n−2∑
i=0

θti∆Sti+1
is a price for the zero

claim in the two time steps model (Sti)i=n−1,n. As 0 = πtn−1,tn(Stn−1 , Stn), we

get that pt +
n−2∑
i=0

θti∆Sti+1
≥ 0. By induction, we finally deduce that pt ≥ 0,

i.e. AIP holds.

The proof of the following proposition is similar to the one of Proposition
5.2.

Proposition 5.3. Suppose that the discrete-time portfolio processes are given
by (2.2). Then, AIP holds in discrete time if and only if Sτ1 ∈ conv(suppFτ1 (Sτ2))
for every stopping times τ1, τ2 ∈ T0,T such that τ1 ≤ τ2.

We know reformulate the proposition above when d = 1 in term of sub-
maxingales, see [2].

Definition 5.4. We say that a continuous-time process M = (Mt)t≤T adapted
to the filtration (Ft)t∈[0,T ] is a sub-maxingale (resp. super-maxingale) if, for
any u, t ∈ [0, T ] such that u ≤ t, we have ess supFuMt ≥ Mu (resp. we
have ess supFuMt ≤ Mu). Moreover, M is said a maxingale if it is both a
super-maxingale and a sub-maxingale.

Note that the notion of maxingale is an adaptation of the martingale
concept to the conditional supremum operator. Observe that, for a super-
maxingale M , ess supFuMt ≤Mu implies that Mu ≥Mt and we deduce that
the super-maxingales coincide with the non increasing processes.

Definition 5.5. We say that a continuous-time process M = (Mt)t≤T adapted
to the filtration (Ft)t∈[0,T ] is a strong sub-maxingale if, for any τ ∈ T0,T , the

12



stopped process M τ is a sub-maxingale.

An open issue is whether a sub-maxingale may be a strong sub-maxingale.
When the operator is the conditional expectation, the Doob’s stopping The-
orem [12] states that this is the case, at least when M is bounded from above
by a martingale, see [12, Theorem 1.39]. By corollary 10.6, we have:

Proposition 5.6. Let M = (Mt)t≤T be a right-continuous continuous-time
process adapted to the filtration (Ft)t∈[0,T ]. Then, M is a strong sub-maxingale
if and only if for all stopping times τ, S ∈ T0,T , ess supFS(Mτ ) ≥MS∧τ .

Proposition 5.7. Suppose that d = 1 and the discrete-time portfolio pro-
cesses are given by (2.2). The following statements are equivalent:

1.) AIP condition holds in discrete-time.

2.) We have Sτ1 ∈
[
ess infFτ1 (Sτ2), ess supFτ1 (Sτ2)

]
, for all τ1, τ2 ∈ T0,T

such that τ1 ≤ τ2.

3.) S and −S are strong sub-maxingales.

Proof. Suppose that AIP holds. Condition AIP for the discrete-time portfolio
of (2.2) implies the same for (2.1). By Proposition 5.1, we deduce that S and
−S are sub-maxingales. Moreover, For any t ∈ [0, T ] and τ ∈ T0,T such that
τ ≥ t a.s., (St − Sτ ) ∈ Vt,T . Therefore, AIP at time t implies by Lemma 4.5
that ess infFt(St − Sτ ) ≤ 0 a.s.. We deduce that

ess supFt Sτ ≥ St. (5.7)

For fixed τ ∈ T0,T , we deduce that Sτ is a sub-maxingale. To see it, consider
t1 < t2 ≤ T . On the set A = {τ ∧ t2 < t1} ∈ Ft1 , we have

1A ess supFt1 S
τ
t2

= 1A ess supFt1 St2∧τ∧t1 = 1ASτ∧t1 .

On B = Ω \ A, as (t2 ∧ τ) ∨ t1 ≥ t1, we deduce from (5.7) that

1B ess supFt1 S
τ
t2

= 1B ess supFt1 S(t2∧τ)∨t1 ≥ 1BSt1 = 1BSt1∧τ .

Therefore, we conclude that ess supFt1 S
τ
t2
≥ Sτt1 and, finally, S is a strong

sub-maxingale. By the same reasoning, −S is also a strong sub-maxingale.
Therefore, 1.) implies 3.). Moreover, 3.) implies 2.) by Lemma 10.6.

At last, if 2.) holds, we first observe that the generic term of a discrete-
time portfolio satisfies γτi−1

= ess infFτi−1
(θτi−1

∆Sτi) 6 0. Indeed, we have
13



γτi−1
= θτi−1

ess infFτi−1
(∆Sτi) 6 0 by assumption on the set {θτi−1

> 0} and,

otherwise, γτi−1
= θτi−1

ess supFτi−1
(∆Sτi) 6 0 on the set {θτi−1

6 0}. Then,

it suffices to follow the arguments of Proposition 5.1 to conclude that 1.)
holds by Lemma 4.5.

6. The AIP condition for continuous-time portfolio processes

In this section, we consider topologies (Ot)t∈[0,T ] such that Vct,T = Vct,T (Ot)
for all t ≤ T , and such that the AIP condition in continuous time and in
discrete time are equivalent, as stated in our main Theorem 6.2. Precisely,
we consider for any time t ≤ T , the topology on L0(R,FT ) induced by the
pseudo-distance:

d̂+
t (X, Y ) = E(ess supFt(X − Y )+ ∧ 1), X, Y ∈ L0(R, FT ). (6.8)

We send the readers to Section 9 for the definition and the main properties
of a pseudo-distance topology.

We notice that a sequence of discrete-time portfolios (V n
t,T )n≥1 of Vt,T is

convergent in Ot if and only if infn≥1 V
n
t,T > −∞ a.s., see Proposition 9.12. So,

Vct,T = Vct,T (Ot) is an a priori large class of so-called continuous-time portfo-
lios. In particular, if (V n

t,T )n≥1 is a sequence of usual stochastic integrals that
converge to some stochastic integral It,T (θ), then the convergence holds in
probability hence so does in Ot by Proposition 9.12. Any limit V c

t,T ∈ Vct,T sat-
isfies V c

t,T ≤ It,T (θ) by Proposition 9.16 but It,T does not necessarily belong to
V c
t,T . This means that It,T cannot necessarily be super-hedged asymptotically

by simple strategies.
Let us give a financial interpretation of the convergence in Ot. By Propo-

sition 9.26, V n
t,T converges to V c

t,T ∈ Vct,T if V c
t,T ≤ V n

t,T + αnt for all n ≥ 1,
where αnt ∈ L0(R+,Ft) converges to 0 in probability. Therefore, it is possi-
ble to reach (actually super-replicates) the continuous-time portfolio value
V c
t,T from discrete-time portfolios up to an arbitrary small error. This is why

we believe that this topology is well adapted to finance. By Proposition
9.16, Proposition 9.9 and Proposition 9.26, we obtain that Ot satisfies the
Fatou property, is Ft-positively homogeneous and is Ft-low bound preserv-
ing. This implies that the NFL and the NFLVR conditions in discrete-time
and continuous-time are equivalent as stated in Section 3 for these pseudo-
distance topologies. We also have:
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Lemma 6.1. Suppose that, for any t ≤ T , Ot is the pseudo-distance topol-
ogy defined by (6.8) and Vct,T = Vct,T (Ot). Then, the NFLVR condition in
continuous-time is equivalent to the NA condition Act,T ∩ L0(R+,FT ) = {0}
in continuous-time, for all t ≤ T .

Proof. Notice that by Proposition 9.26, Ac,∞t,T is closed in L∞ hence we have

Ac,∞t,T = Ac,∞t,T and NFLVR reads as Act,T ∩ L∞(R+,FT ) = {0}, which is
equivalent to the NA condition as Act,T − L0(R+,FT ) ⊆ Act,T .

The main result of this section is the following:

Theorem 6.2. Suppose that, for any t ≤ T , Ot is the pseudo-distance topol-
ogy defined by (6.8) and Vct,T = Vct,T (Ot). Then, AIP holds in continuous time
if and only if AIP holds in discrete time.

Proof. It suffices to prove that AIP holds in continuous time if it holds in
discrete time. By Lemma 4.5, we have ess infFt(vt,T ) 6 0 for all vt,T ∈ Vt,T . We
have to show the same for vct,T ∈ Vct,T . By Proposition 9.26, V c

t,T ≤ V n
t,T + αnt

for all n ≥ 1, where αnt ∈ L0(R+,Ft) converges to 0 in probability and
V n
t,T ∈ Vt,T . As αnt is Ft-measurable, we deduce that

ess infFt V
c
t,T ≤ ess infFt V

n
t,T + αnt ≤ αnt .

As n→ +∞, we deduce that ess infFt V
c
t,T ≤ 0 hence AIP holds in continuous

time by Lemma 4.5.

7. The NUPBR no-arbitrage condition

The No Unbounded Profit with Bounded Risk no-arbitrage condition NUPBR
has been introduced in [16]. In our setting, this condition may be adapted if
we only consider admissible portfolios. This is why, we suppose that the port-
folio processes are generated by an operator I as in Remark 2.1. We define
for m ∈ (0,∞), aVt,T (m) (resp. aVct,T (m) in continuous time) the set of all
admissible portfolio values Vt,T = I(θ) ∈a Vt,T such that Vt,u = Iu(θ) ≥ −m
for all u ∈ [t, T ].

We also consider the family of topologies (Ot)t∈[0,T ] defined on the spaces
SP(R, (Fu)u∈[t,T ]) of all (Fu)t∈[t,T ]-adapted real-valued stochastic processes
on [t, T ] induced by the pseudo-distance:

d̂+
t (X, Y ) = E(ess supu∈[t,T ] ess supFt(Xu − Yu)+ ∧ 1), (7.9)

X, Y ∈ SP(R, (Fu)u∈[t,T ]).
15



By the same reasoning as in the proof of Proposition 9.26, a sequence
(Xn)n≥1 ∈ SP(R, (Fu)u∈[t,T ]) converges to X ∈ SP(R, (Ft)u∈[u,T ]) in Ot if and
only if there exists a sequence (αnt )n≥1 such that αnt tends to 0 in probability
as n → ∞ and Xu ≤ Xn

u + αnt for all u ∈ [t, T ]. Moreover, adapting the
Proposition 9.12, we may show that a sequence (Xn)n≥1 ∈ SP(R, (Fu)u∈[t,T ])
is convergent in Ot if and only if infnX

n
u > −∞ a.s. for all u ∈ [t, T ].

With (Ot)t∈[0,T ] given by (7.9), we define Vct,T as the terminal values V c
t,T (T )

of limit processes V c
t,T such that V c

t,T = limn V
n
t,T where V n

t,T = (V n
t,T (u))u∈[0,T ]

are the discrete time processes associated to Vt,T , see Remark 2.1.

Definition 7.1. We say that NUPBR holds in discrete time (resp. in con-
tinuous time) at time t ≤ T if, for any m > 0, aVt,T (m) (resp. aVct,T (m)) is
bounded in probability. We say that NUPBR holds if it holds at any time.

Recall that a sequence (Xn)n≥0 of random variables is bounded in prob-
ability if, for all ε > 0, there exists n0 ≥ 1 and M > 0 such that, for all
n ≥ n0, P (|Xn| > M) ≤ ε . More generally, a set C ⊆ L0(R,FT ) is bounded
in probability if any sequence (Xn)n≥0 of C is bounded in probability.

In the setting of semimartingales, it is shown in [16] that NUPBR + NA,
i.e. V0,T ∩L0(R+,FT ) = {0}, is equivalent to NFLVR. In particular, NUPBR
alone does not necessarily implies NA. This is due to the fact that a portfolio
Vt,T ∈ Vt,T such that Vt,T ≥ 0 is not necessary admissible. Otherwise, if
Vt,T is admissible, then by [16, Theorem 3.12], se get that Vt,T (u) ≥ 0 for all
u ∈ [t, T ] by the super-martingale property. Then, necessary Vt,T = 0, i.e. NA
would hold since, otherwise, the sequence V n

t,T = nVt,T , n ≥ 1, is unbounded
in probability. In conclusion, NUPBR holds at time t in continuous time (resp.
in discrete time) implies NA (and so AIP) at time t only for the restricted
sets aVct,T and aVt,T respectively.

Our main result of this section is the following. Before, we recall a defini-
tion:

Definition 7.2. We say that a subset Γ of L0(R,FT ) is infinitely
Ft-decomposable (resp. Ft-decomposable) if for any partition of Ω (resp. finite
partition) by elements (F n

t )∞n=1 of Ft and any sequence (Xn)n≥1 of Γ, we have∑∞
n=1X

n1Fnt ∈ Γ.

Theorem 7.3. Suppose that, for t ≤ T , Ot is the pseudo-distance topol-
ogy defined by (7.9) and Vct,T = Vct,T (Ot). Suppose that Vt,T is infinitely Ft-
decomposable. Then, NUPBR holds in discrete time if and only if it holds in
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continuous time.

Proof. It suffices to show that NUPBR holds in continuous time if it holds in
discrete time. To do so, suppose that aVct,T (m) is not bounded in probability
for some m > 0. Then, there exists a sequence (V c,n

t,T )n≥1 ∈a Vct,T (m) and
ε ∈ (0, 1) such that P (V c,n

t,T > n) > ε for all n ≥ 1. By Proposition 9.26,
for all n ≥ 1, there exists a sequence (V n,m

t,T )m≥1 ∈a Vt,T and a sequence
(αn,mt )m≥1 ∈ L0(R+,Ft) such that αn,mt converges to 0 in probability as
m → ∞ and V c,n

t,T (u) ≤ V n,m
t,T (u) + αn,mt , for all m ≥ 1 and u ∈ [0, T ].

We may assume w.l.o.g. that αn,mt converges to 0 a.s. as m → ∞. Then,
there exists an integer-valued Ft-measurable random variable mn

t such that

α
n,mnt
t ∈ L0([0, 1],Ft). As Vt,T is infinitely Ft-decomposable, we deduce that

V
n,mnt
t,T ∈ Vt,T . Note that V c,n

t,T (u) ≤ V
n,mnt
t,T (u) + 1 hence V

n,mnt
t,T ∈a Vt,T (m+ 1)

for all n ≥ 1. Moreover, ε < P (V c,n
t,T > n) ≤ P (V

n,mnt
t,T > n− 1), for all n ≥ 1.

This implies that the sequence (V
n,mnt
t,T )n≥1 is not bounded in probability,

contrarily to the assumption NUPBR for Vt,T . This contradiction allows one
to conclude that NUPBR holds in continuous time.

8. Super-hedging prices

8.1. Super-hedging prices without no-arbitrage condition

Recall that the super-hedging prices (resp. the infimum super-hedging price)
of a payoff hT ∈ L0(R,FT ) are defined after Definition 4.1. Our main result
is the following:

Theorem 8.1. Suppose that, for any t ≤ T , Ot is the pseudo-distance topol-
ogy defined by (6.8) and Vct,T = Vct,T (Ot). Then, the infimum super-hedging
prices of a payoff hT ∈ L0(R,FT ), in discrete time and in continuous time
respectively, coincide i.e.

πt,T (hT ) = ess inf(Pt,T (hT )) = πct,T (hT ) = ess inf(Pct,T (hT )).

Proof. As Pt,T (hT ) ⊆ Pct,T (hT ), we have πct,T (hT ) ≤ πt,T (hT ). Consider a price
pt ∈ Pct,T (hT ) such that pt + V c

t,T ≥ hT for some V c
t,T ∈ Vvt,T . By Proposition

9.26, we have V c
t,T ≤ V n

t,T +αnt for all n ≥ 1, where αnt ∈ L0(R+,Ft) converges
to 0 in probability and V n

t,T ∈ Vt,T . We deduce that pt + αnt ∈ Pt,T (hT )
hence pt + αnt ≥ πt,T (hT ). As n → ∞, we deduce that pt ≥ πt,T (hT ) hence
πct,T (hT ) ≥ πt,T (hT ). The conclusion follows.
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Remark 8.2.

1.) Note that, at any time, Pct,T (hT ) may be empty. In that case, we also
have Pct,T (hT ) = ∅ and πt,T (hT ) = πct,T (hT ) = ∞. Reciprocally, if we have
Pct,T (hT ) = ∅, then πt,T (hT ) = ∞ and we deduce that πct,T (hT ) = ∞ by
Theorem 8.1.

2.) If Vt,T is a positive cone, then Pt,T and Pct,T are positive cones if Ot
is Ft-positively homogeneous. Therefore, πt,T = πt,T (0) < 0 implies that
πt,T = πct,T (hT ) = −∞. Let us consider a payoff hT ∈ L0(R,FT ) such that
hT ≤ αST + β for some α, β ∈ R. Then, for all price pt,T ∈ Pt,T , we deduce
that pt,T + αSt + β ∈ Pt,T (hT ). Therefore, πt,T = πct,T = −∞ implies that
πt,T (hT ) = πct,T (hT ) = −∞. This is why the condition AIP is financially
meaning as it avoids this unrealistic situation where the prices of a positive
payoff hT may be as negatively large as possible so that it is not possible to
compute the infimum price.

3.) If Vt,T = ∪n≥nVt,T (n) where Vt,T (n) is an increasing sequence of discrete-
time models, then observe that πt,T (hT ) = infn π

n
t,T (hT ) where πnt,T (hT ) are

the infimum prices associated to the models Vt,T (n), n ≥ 1. Moreover, if
Vt,T (n) is a model only composed of a finite number of dates, then πnt,T (hT )
may be computed as in [5]. This is the case in practice, if the trades only
may be executed at deterministic dates, e.g. every second. 3

8.2. Infinitely Ft-decomposable extension of the discrete-time
prices

In the following, we show that the discrete-time portfolio processes may be
extended without changing the infimum prices and we get a precise form
of the set of super-hedging prices. We denote by Partt(Ω) the set of all Ft-
measurable partitions of Ω and we consider

V id
t,T =

{
∞∑
n=1

Xn1Fnt : Xn ∈ Vt,T , (F n
t )∞n=1 ∈ Partt(Ω)

}
. (8.10)

Note that V id
t,T is infinitely Ft-decomposable. We say that V id

t,T is the discrete-
time infinitely Ft-decomposable extension of Vt,T . We then denote by P id

t,T (hT )
the set of all prices obtained from V id

t,T and πid
t,T (hT ) := ess infFt P id

t,T (hT ). We

denote by V id,c
t,T the continuous-time processes deduced from V id

t,T .
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Lemma 8.3. The AIP condition holds for Vt,T if and only AIP holds for its
infinitely Ft-decomposable extension.

Proof. It suffices to show that AIP holds for its Ft-decomposable extension
as soon as it holds for Vt,T . By Lemma 4.5, let us show that ess infFt(Vt,T ) ≤ 0
for all Vt,T ∈ V id

t,T . Suppose that V id
t,T =

∑∞
n=1 X

n1Fnt where Xn ∈ Vt,T and
(F n

t )∞n=1 ∈ Partt(Ω). Then,

1Fmt ess infFt(Vt,T ) = 1Fmt ess infFt(Vt,T1Fmt ) = 1Fmt ess infFt(X
n) ≤ 0.

The conclusion follows.

Lemma 8.4. Suppose that Vt,T is Ft-decomposable, t ≤ T , and consider a
payoff hT ∈ L0(R,FT ). Then, we have πid

t,T (hT ) = πt,T (hT ) and

Pt,T (hT ) ⊆ P id
t,T (hT ) ⊆ P t,T (hT ),

where P t,T (hT ) is the closure of Pt,T (hT ) in L0.

Proof. As Vt,T ⊆ V id
t,T , we have Pt,T (hT ) ⊆ P id

t,T ((hT ) and πid
t,T (hT ) ≤ πt,T (hT ).

Moreover, if pt ∈ P id
t,T ((hT ), then we have pt +

∑∞
i=1 V

i
t,T1F it ≥ hT for some

V i
t,T ∈ Vt,T , i ≥ 1 and a partition (F i

t )i≥1 of Ω by elements of Ft. Consider
p0
t ∈ Pt,T (hT ) and define pnt = pt1∪ni=1F

i
t

+ p0
t1Ω\∪ni=1F

i
t
, n ≥ 1. As Vt,T is

Ft-decomposable, pnt ∈ Pt,T (hT ). Moreover, pt = limn→∞ p
n
t . We then deduce

that P id
t,T ((hT ) ⊆ P t,T (hT ) hence πid

t,T (hT ) ≥ πt,T (hT ). The conclusion follows.

Proposition 8.5. Consider a payoff hT ∈ L0(R,FT ). Then, there exists
Λt ∈ Ft such that P id

t,T (hT ) = L0(Jt,T (hT ),Ft) and

Jt,T (hT ) = [πid
t,T (hT ),∞)1Λt + (πid

t,T (hT ),∞)1Ω\Λt .

Proof. It suffices to argue on the set of all ω such that πid
t,T (hT ) <∞. There-

fore, we suppose w.l.o.g. that there exists p0
t ∈ P id

t,T (hT ). Let us consider

Γt =
{

Λt ∈ Ft : πid
t,T (hT )1Λt + p0

t1Ω\Λt ∈ P id
t,T (hT )

}
.

Note that ∅ ∈ Γt. As V id
t,T is infinitely Ft-decomposable, P id

t,T (hT ) is in-
finitely Ft-decomposable by Lemma 10.8. We deduce that Λ1

t ∪ Λ2
t ∈ Γt

if Λ1
t ,Λ

2
t ∈ Γt. Then, the family {1Λt : Λt ∈ Γt} is directed upward. We

deduce that ess supΛt∈Γt 1Λt = 1Λ∞t
where Λ∞t is an increasing union of ele-

ments of Γt. As P id
t,T (hT ) is infinitely Ft-decomposable, we get that Λ∞t ∈ Γt.
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We may also show that Λ∞t is independent of p0
t . We then define Jt,T (hT )

as above with Λt = Λ∞t . We claim that P id
t,T (hT ) = L0(Jt,T (hT ),Ft). To

see it, consider a price p0
t ∈ P id

t,T (hT ) and suppose that p0
t = πid

t,T (hT ) on a
non null set of Ω \ Λt. Then, we get a contradiction with the maximality
of Λt. So, we obtain that P id

t,T (hT ) ⊆ L0(Jt,T (hT ),Ft). Reciprocally, con-
sider pt ∈ L0(Jt,T (hT ),Ft). Then, p0

t = pt + 1Λt > πid
t,T (hT ) a.s. hence

p0
t ∈ P id

t,T (hT ) by Lemma 10.9. Moreover, pt ≥ πid
t,T (hT )1Λt + p0

t1Ω\Λt by
construction. Since πid

t,T (hT )1Λt + p0
t1Ω\Λt ∈ P id

t,T (hT ) by definition of Λt, we
deduce that pt ∈ P id

t,T (hT ). Therefore, Pt,T (hT ) = L0(Jt,T (hT ),Ft).

Corollary 8.6. Suppose that Vt,T is Ft-decomposable, t ≤ T , and consider
a payoff hT ∈ L0(R,FT ). Then, the closure in L0 of Pt,T (hT ), P id

t,T (hT ) and

P id,c
t,T (hT ) coincide with L0([πt,T ,∞),Ft).

The natural question is whether P id
t,T (hT ) = Pt,T (hT ). Actually, this is not

the case in general, as shown in the following example:

Example 8.7. We consider the framework of our paper between time t = 1
and t = 2. Suppose that Ω = {ωi : i = 1, 2, 3, 4}, F1 = {A,Ac, ∅,Ω}
where A = {ω1, ω2}, Ac = Ω \ A, and F2 is the family of all subsets of Ω.
We consider any probability measure P on F2 such that P ({ωi}) > 0 for
all i = 1, 2, 3, 4. We assume that Vt,T = {V 1, V 2} where V 1(ωi) = i − 1
for i = 1, 2, 3, 4 and (V 2(ωi))

4
i=1 = {−1, 2, 3, 4}. At last, we suppose that

the payoff is h(ωi) = i for i = 1, 2, 3, 4. Then, the minimal prices at time
t = 1 associated to V 1, V 2 are respectively p1(V 1) = 1 and p1(V 2) = 21A.
Therefore, P1,2(h) = L0([1,∞),F1)∪L0([21A,∞),F1). Then, π1,2(h) = 1A /∈
P1,2(h). On the other hand, we may see that V id

t,T = {V 1, V 2, V 3, V 4} where
V 3 = V 11A+V 21Ac and V 4 = V 21A+V 11Ac . We then show that p1(V 3) = 1A
and p1(V 4) = 1 + 1A. It follows that πid

1,2(h) = π1,2(h) = 1A ∈ P id
1,2(h) and

P id
t,T (h) = L0([1A,∞),F1). We conclude that P id

t,T (h) 6= P1,2(h). 3

9. Topology defined by a semi-distance

Definition 9.1. Let E be a vector space. A semi-distance is a mapping d
defined on E×E with values in R+ such that the triangular inequality holds:

d(X, Y ) ≤ d(X,Z) + d(Z, Y ), X, Y, Z ∈ E.
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Example 9.2. At time t ≤ T , we define on L0(R, FT ) × L0(R, FT ) the
pseudo-distance:

d̂+
t (X, Y ) = E(ess supFt((X − Y )+) ∧ 1), X, Y ∈ L0(R, FT ).

Observe that only the triangle inequality is satisfied by d+
t . In general

d+
t (X, Y ) 6= d+

t (Y,X). For example, if X + 1 ≤ Y a.s., then d+
t (X, Y ) = 0

but d+
t (Y,X) = 1. In particular, d+

t (X, Y ) = 0 does not necessarily imply
that X = Y a.s. 3

Example 9.3. Another pseudo-distance is given by

d+(X, Y ) = E((X − Y )+ ∧ 1).

Notice that d+ ≤ d̂+
t . 3

A pseudo-distance d allows us to define a topologie on L0(R, FT ). To do
so, let us define, for every X0 ∈ L0(R,FT ), the set

Bε(X0) =
{
X ∈ L0(R,FT ) : d(X0, X) ≤ ε

}
that we call ball of radius ε ∈ R+, centered at X0 ∈ L0(R,FT ). A set
V ⊆ L0(R,FT ) is said a neighborhood of X ∈ L0(R,FT ) if there is ε ∈ (0,∞)
such that Bε(X) ⊂ V . A setO ⊂ L0(R,FT ) is said open if it is a neighborhood
of all X ∈ O. We denote by Td the collection of all open sets.

Lemma 9.4. The family Td of open sets defined from the pseudo-distance d
is a topology.

Proof. It is clear that L0(R,FT ) is a neighborhood of all its elements, i.e.
L0(R,FT ) ∈ Td, and ∅ ∈ Td by convention. Let (Oi)i∈I be a family of open
sets. Let x ∈

⋃
i∈I Oi, so that x ∈ Oi for some i ∈ I. As Oi is open, Oi is a

neighborhood of x and, consequently,
⋃
i∈I Oi is a neighborhood of x.

Let (Oi)i∈I be a finite family of open sets. Let x ∈
⋂
i∈I Oi, so that x ∈ Oi

for every i ∈ I. So, for every i ∈ I, there exist εi ∈ (0,∞) such that Bεi(x) ⊂
Oi. Let ε = infi∈I(εi) ∈ (0,∞). We have Bε(x) ⊂ Oi for every i ∈ I. We
conclude that

⋂
i∈I Oi is open. 2

In the following, we denote by T̂t the topology associated to the pseudo-
distance d̂+

t given in Example 9.2. Similarly, we denote by B̂ε(x) the associ-
ated balls. We also denote by T the topology defined by d+ as in Example
9.3 while the associated balls are just denoted by Bε(x).
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Remark 9.5. We observe several basic properties which are of interest:

1) The topology defined by the pseudo-distance is not separated in general.
Take for example X, Y ∈ L0(R,FT ) such that Y > X a.s. For every ε ∈ R+,
X − Y < 0 ≤ ε hence (X − Y )+ = 0 ≤ ε. So,

d̂+
t (X − Y ) = E(ess supFt(X − Y )+ ∧ 1) ≤ ε ∧ 1

and we conclude that Y ∈ B̂ε(X).

2) A sequence (Xn)n∈N of elements in L0(R,FT ) converges to X ∈ L0(R,FT )
with respect to Td if, for all ε ∈ R+, there exist n0 ∈ N such that, for any
n ≥ n0, Xn ∈ Bε(X).

3) If A is a subset of E, then X belongs to the closure of A with respect to Td
if and only if X = limn(Xn), i.e. d(X,Xn)→ 0, where (Xn)n∈N is a sequence
of elements of A. Indeed, this is a direct consequence of the construction of
the balls from d.
4) If (Xn)n∈N converges to X with respect to T̂t then (Xn)n∈N converges to
X with respect to T , see Examples 9.2 and 9.3.
5) If (Xn)n∈N converges to X with respect to T̂t and (X̃n)n∈N is another
sequence such that X̃n ≥ Xn a.s., for all n ∈ N, then (X̃n)n∈N converges to

X with respect to T̂t. 3

Remark 9.6. We recall that d(X, Y ) = E(|X − Y | ∧ 1) is the distance
generating the convergence in probability. So, a sequence (Xn)n∈N of elements

in L0(R,FT ) converges toX ∈ L0(R,FT ) with respect to T̂t, see Example 9.2,
if and only ess supFt(X −Xn)+ converges to 0 in probability. Consequently
there exists a subsequence (Xnk)k of (Xn)n such that ess supFt(X − Xnk)

+

converges to 0 almost surely, i.e. for every ε ∈ R+ there exists k0 such that, for
all k > k0, we have ess supFt(X−Xnk)

+ ≤ ε, which implies that X ≤ ε+Xnk .
3

Lemma 9.7. If F is a closed set for T (resp. for T̂t), then F is a lower set,
i.e. F − L0(R+,FT ) ⊆ F .

Proof. Indeed, consider Z ≤ γ where γ ∈ F . Then, (Z − γ)+ = 0 hence the
constant sequence (γn = γ)n≥1 converges to Z and, finally, Z ∈ F . Note that,

if F is closed for T , it is closed for T̂t.

Lemma 9.8. Let d be a pseudo-distance on E ×E. Consider two sequences
(Xn)n∈N and (Yn)n∈N of elements in E which converge to X, Y ∈ L0(R,FT )
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respectively with respect to Td. If d(a + b, a + c) ≤ d(b, c) for all a, b, c ∈ E,
then (Xn + Yn)n∈N converges to X + Y .

Proof. It suffices to observe that

d(X + Y,Xn + Yn) ≤ d(X + Y,Xn + Y ) + d(Xn + Y,Xn + Yn)

≤ d(X,Xn) + d(Y, Yn).

2

Proposition 9.9. Consider the pseudo-distance d̂+
t from Example 9.2. Let

(Xn)n∈N and (Yn)n∈N be two sequences of elements in L0(R,FT ) which con-

verge respectively to X, Y ∈ L0(R,FT ) with respect to T̂t. The following con-

vergences hold with respect to T̂t:
1) The sequence (αtXn)n∈N converges to αtX, for all αt ∈ L0(R+,Ft).

2) The sequence (αXn)n∈N converges to αX, for all α ∈ L∞(R+,FT ).

3) The sequence (ess supFt(Xn))n≥1 converges to ess supFt(X).

Moreover, the two first statements remain true if we replace T̂t by T .

Proof. Recall that ess supFt(αtX − αtXn)+ = αt ess supFt(X − Xn)+ if αt
belongs to L0(R+,Ft). Then, for all γ > 0,

d+
t (αtX,αtXn) = E(αt ess supFt(X −Xn)+ ∧ 1.1ess supFt (X−Xn)+<γ)

+E(αt ess supFt(X −Xn)+ ∧ 1.1ess supFt (X−Xn)+≥γ)

≤ E(αtγ ∧ 1) + P (ess supFt(X −Xn)+ ≥ γ).

By the dominated convergence theorem, we may fix γ small enough such
that E(αtγ ∧ 1) ≤ ε/2, where ε > 0 is arbitrarily chosen. Moreover, by
assumption, P (ess supFt(X −Xn)+ ≥ γ) ≤ ε/2, if n is large enough. We get
that d+

t (αtX,αtXn) ≤ ε, if n is large enough, i.e. αtXn → αtX.

The second statement is a consequence of the first one as we may observe
that, for all α ∈ L∞(R+,FT ),

d+
t (αX,αXn) ≤ d+(‖α‖∞X, ‖α‖∞Xn).

At last, notice that the following inequality holds

ess supFt(X) = ess supFt(X+Xn−Xn) ≤ ess supFt(X−Xn)+ess supFt(Xn).
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Therefore,

ess supFt(X)− ess supFt(Xn) ≤ ess supFt(X −Xn)+,

ess supFt((ess supFt(X)− ess supFt(Xn))+) ≤ ess supFt(X −Xn)+,

d+
t (ess supFt(X), ess supFt(Xn)+) ≤ E(ess supFt((X −Xn)+) ∧ 1).

The conclusion follows.

Remark 9.10. If a sequence (Xn)n converges to X with respect to T̂ or
T it does not imply that (−Xn)n converges to −X. Take for example the
sequence (−1)n. We have (−1 − (−1)n)+ = 0 for any n ∈ N. Then, (−1)n

converges to −1 for T̂ and T . But (1 − (−1)n+1)+ ∧ 1 = 1 when n is even.
Then (1− (−1)n+1)+ does not converge to 0 in probability. So, −(−1)n does

not converge to −1 for T nor for T̂ . 3

Lemma 9.11. Let (Xn)n∈N be a sequence of elements in L0(R,FT ) that
converge to X ∈ L0(R,FT ) with respect to T . Then, for every random sub-
sequence (nk)k≥1, (Xnk)k converges to X with respect to T . The same holds

with respect to T̂t if the random subsequence (nk)k≥1 is Ft-measurable.

Proof. Note that (X −Xnk)
+ =

∑∞
j=k(X −Xj)

+1nk=j. Therefore,

P((X −Xnk)
+ ≥ ε) = P(

∞∑
j=k

{(X −Xj)
+ ≥ ε} ∩ {nk = j}),

≤
∞∑
j=k

P
(
{(X −Xj)

+ ≥ ε} ∩ {nk = j}
)
.

Let α > 0. Consider M such that
∑∞

j=M+1 P(nk = j) ≤ α/2 and k0 such that,
for every k ≥ k0, we have P((X −Xk)

+ ≥ ε) ≤ α/2M . Then,

P((X −Xnk)
+ ≥ ε) ≤

M∨k∑
j=k

P({(X −Xj)
+ ≥ ε) +

∞∑
j=M+1

P(nk = j)

≤ Mα/2M + α/2 ≤ α.

So (X −Xnk)
+ converges to zero in probability hence (Xnk)k converges to X

with respect to T .
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For the second statement, it suffices to observe that, when (nk)k≥1 is Ft-
measurable, we have:

(X −Xnk)
+ ≤

∞∑
j=k

ess supFt(X −Xj)
+1nk=j,

ess supFt(X −Xnk)
+ ≤

∞∑
j=k

ess supFt(X −Xj)
+1nk=j.

It is then possible to repeat the previous reasoning, replacing (X −Xj)
+ by

ess supFt(X −Xj)
+, j ≥ 1.

Proposition 9.12. A sequence (Xn)n∈N of elements in L0(R,FT ) converges

with respect to T̂t (respectively T ) if and only if

inf
n

(Xn) > −∞.

Moreover, infn(Xn) is a limit of (Xn)n∈N for T̂t and Tt.

Proof. Suppose that (Xn)n∈N converges to X with respect to T and suppose
that infn(Xn) = −∞ on a non null set. Then, on this set, there exists a
random subsequence Xnk that converges to −∞ almost surely. By Lemma
9.11, (Xnk)n∈N converges to X with respect to T . In other words, (X−Xnk)

+

converges to zero in probability. Therefore, there exits a subsequence Xnkj

such that (X−Xnkj
)+ converges to zero almost surely. This is in contradiction

with the fact that Xnkj
converges to −∞.

Now suppose that infn(Xn) > −∞. We have Xn ≥ infn(Xn) > −∞. So
(infn(Xn)−Xn)+ = 0. This implies that ess supFt(infn(Xn)−Xn)+ = 0 hence

(Xn)n≥1 converges to infn(Xn) with respect to T̂t.

Corollary 9.13. A sequence (Xn)n∈N of elements in L0(R,FT ) is such that

(Xn)n∈N and (−Xn)n∈N converge with respect to T̂t (respectively T ) if and
only if supn(|Xn|) <∞ almost surely.

Corollary 9.14. A sequence (Xn)n∈N of elements in L0(R,FT ) converges

with respect to T̂t if and only if (Xn)n∈N converges with respect to T ( not
necessarily with the same limits).

Lemma 9.15. A sequence (Xn)n∈N of elements in L0(R,FT ) is such that

(Xn)n∈N converges to X and (−Xn)n∈N converges to −X with respect to T̂t
if and only if ess supFt(|X −Xn|) converges to 0 in probability.

25



Proposition 9.16. If a sequence (Xn)n∈N of elements in L0(R,FT ) con-

verges to X ∈ L0(R,FT ), with respect to T̂t (resp. T ), then there exists a
deterministic subsequence (nk)k≥1 such that

X ≤ lim inf
k

(Xnk).

Proof. Recall that a sequence (Xn)n∈N of elements in L0(R,FT ) converges to
X ∈ L0(R,FT ) if and only if ess supFt(X−Xn)+ converges to 0 in probability.
Therefore, there exists a subsequence (nk)k≥1 such that ess supFt(X−Xnk)

+

converges to 0 almost surely. As

X −Xnk ≤ ess supFt(X −Xnk)
+

then lim infk[X − ess supFt(X −Xnk)
+] ≤ lim infk(Xnk). So, we deduce that

X ≤ lim inf
k

(Xnk).

The same reasoning holds for T .

Definition 9.17. For a converging sequence X = (Xn)n we denote by L̂(X)

(resp. L(X) ) the set of all limits with respect to T̂t and Tt respectively.

Lemma 9.18. If a sequence (Xn)n converges to X in probability then (Xn)n
converges to X for the topology T and L(X) = L0((−∞, X],FT ).

Proof. If |Xn −X| converges to zero in probability then the same holds for
(Xn−X)+. Indeed, (Xn−X)+ ≤ |Xn−X|. Therefore, (Xn)n converges to X
for the topology T . Moreover, there exists a subsequence (nk)k≥1 such that
(Xnk)k≥1 converges to X a.s. but also in T by the first part. By Proposition
9.16, any Z ∈ L(X) satisfies Z ≤ X. The conclusion follows.

Remark 9.19. The convergence almost surely to a limit X does not imply
the convergence for T̂ to X. Also the convergence for T̂ and T does not
necessarily imply the almost surely convergence. To see it, let us consider the
two following examples.

1) We consider Ω = [0, 1] equipped with the Lebesgue measure. Take the
sequence Xn(ω) = −1 on [0, 1/n] and Xn(ω) = 1/2n on (1/n, 1], n ≥ 1.
It is clear that (Xn)n converges to X0 = 0 almost surely. But observe

that ess supF0
(X0 − Xn)+ = 1. So, Xn does not converge to 0 for T̂0.

Note that Xn converges to −1 for T̂0 and T .
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2) We consider Ω = R+ equipped with the Lebesgue measure. Consider
Xn(ω) = cos(nω) for any ω ∈ R and Yn(ω) = (−1)n, n ≥ 0. Then,
(Xn)n and (Yn)n do not converge almost surely but (Xn)n and (Yn)n
converge for T and T̂ towards −1. 3

Definition 9.20 (Cauchy sequence). A sequence (Xn)n is said a Cauchy
sequence for the pseudo-distance d if :

∀ε > 0,∃n0, ∀n,m ≥ n0, d(Xn, Xm) ≤ ε.

Remark 9.21. If a sequence (Xn)n is convergent for T̂ (or T ) it is not
necessarily a Cauchy sequence. Take the sequence Xn = (−1)n. It converges
but it is not a Cauchy one. In fact

d+
t (X2n, X2n+1) = 1,∀n ∈ N.3

Proposition 9.22. Every Cauchy sequence for d+
t is convergent in probabil-

ity.

Proof. Let (Xn)n be a Cauchy sequence for d+
t :

∀ε > 0, ∃n0,∀n,m ≥ n0, d
+
t (Xn, Xm) ≤ ε.

So, we also have d+
t (Xm, Xn) ≤ ε. In other terms E((Xn−Xm)+∧1) ≤ ε and

E((Xm−Xn)+∧1) ≤ ε. Then E(|Xn−Xm|∧1) ≤ ε. Then (Xn)n is a Cauchy
sequence for the convergence in probability. Consequently it is convergent for
the convergence in probability.

Example 9.23. Let C ∈ R. Consider the sequence X = (Xn)n of elements

in L0(R,FT ) such that Xn = C for every n ∈ N. Consider any Z ∈ L̂(X).
By Proposition 9.16, Z ≤ C. On the other hand, (C − Xn)+ = 0 hence

(Xn) converges to C in T̂t. By similar arguments, we finally deduce that

L̂(X) = L(X) = L0((−∞, C],FT ). 3

Example 9.24. Consider the sequence X = (Xn)n of elements in L0(R,FT )
such that Xn = (−1)n for every n ∈ N. We have L(X) = L0((−∞,−1],FT ).
Indeed, as E[(−1 − (−1)n) ∧ 1] = 0, −1 is a limite of X for T . So for any
Z ≤ −1, Z is a limit for X. Now consider any Z ∈ L(X). Let us show
that, Z ≤ −1. We know that (Z − (−1)n)+ converges to zero in probability.
Then, if An = {(Z − (−1)n)+ ≤ ε}, P(An) converges to 1 when n → ∞.
On An, Z − (−1)n ≤ ε hence Z ≤ ε − 1 when n is odd. As n to ∞ we
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deduce that Z ≤ ε − 1 almost surely. To see it, suppose by contradiction
that P(B) > 0 where B = {Z > ε − 1}.Therefore, there exists n0 such that
P(B ∩ An) > 0 for any n ≥ n0. If not, there exists a subsequence (Ank)
such that P(B ∩ Ank) = 0. Hence, P(Ank) = P(Bc ∩ Ank) ≤ P(Bc) < 1,
in contradiction with limk→∞ P(Ank) = 1. Finally, P(B ∩ An) > 0 for any
n ≥ n0 in contradiction with the inequality Z ≤ ε− 1 on An, when n is odd.
We conclude that Z ≤ ε− 1 a.s. and the result follows. We also deduce that
L̂(X) = L(X). 3

Example 9.25. Consider the sequenceX = (Xn)n of elements in L0([0, 1],FT ),
equipped with the Lebesgue measure, such that Xn(ω) = −1[0,1/n] for ev-
ery n ≥ 1. We suppose that F0 is trivial. We know by Lemma 9.18 that
L(X) = L0((−∞, 0],FT ) but L̂(X) ⊂ L0((−∞, 0],FT ). Indeed, 0 is not a

limit for T̂0 as ess supF0
(0−Xn)+ = 1.

Moreover, consider X̂∞ ∈ L̂(X). Observe that the deterministic sequence

αn = ess supF0
(X̂∞−Xn)+ converges to 0 and X̂∞−Xn ≤ (X̂∞−Xn)+ ≤ αn.

We finally conclude that L̂(X) is the family of all X̂∞ such that X̂∞ ≤
infn(Xn + αn) for some non negative deterministic sequence (αn)n≥1 with
limn→∞ αn = 0. For example, take αn = 1 if n < n0, n0 > 0 is fixed, and
αn = 0 otherwise. Then, Zn0 = infn≥n0 Xn ∈ L̂(X). 3

Proposition 9.26. If a sequence X = (Xn)n of elements in L0(R,FT ) con-

verges in T̂ , then the set L̂(X) coincides with the family of all X̂∞ such that

X̂∞ ≤ infn(Xn+αn) for some sequence (αn)n≥1 in L0(R+,Ft) that converges
to zero in probability. If a sequence X = (Xn)n of elements in L0(R,FT ) con-
verges in T , then the set L(X) coincides with the family of all X∞ such that
X∞ ≤ infn(Xn+αn) for some sequence (αn)n≥1 in L0(R+,FT ) that converges
to zero in probability.

Proof. Consider a sequence X = (Xn)n of elements in L0(R,FT ) converging

for T̂ . Let X̂∞ ∈ L̂(X). By definition, αn = ess supFt(X̂∞ −Xn)+ converges

to 0 in probability. As X̂∞ − Xn ≤ ess supFt(X̂∞ − Xn)+ ≤ αn, then we

deduce that X̂∞ ≤ infn(Xn + αn). Conversely, if X̂∞ ≤ infn(Xn + αn), then

X̂∞ ≤ Xn + αn. Therefore, ess supFt(X̂∞ − Xn)+ ≤ αn and the conclusion
follows. For the second statement it suffices to consider αn = (X∞−Xn)+.
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10. Appendix

10.1. Super-maxingales and sub-maxingales

Lemma 10.1. Let (Mt)t∈[0,T ] be a sub-maxingale. Let τ be a stopping time
such that τ(Ω) = {t1, t2, · · · , tn} where (ti)

n
i=1 is an increasing sequence of

discrete dates. Then, for all i = 1, · · · , n, we have ess supFti (Mτ ) ≥Mτ∧ti.

Proof. We have:

ess supFti (Mτ∧ti+1
) = ess supFti (Mτ∧ti+1

1{τ≤ti}) + ess supFti (Mτ∧ti+1
1{τ>ti}),

= 1{τ>ti} ess supFti (Mti+1
) + 1{τ≤ti} ess supFti (Mτ∧ti),

≥ 1{τ>ti}Mti + 1{τ≤ti}Mτ∧ti = Mτ∧ti .

If j > i + 1, argue by induction. By the tower property, we first have
ess supFti (Mτ∧tj) = ess supFti (ess supFtj−1

(Mτ∧tj)). Therefore, by the first

step above, ess supFti (Mτ∧tj) ≥ ess supFti (Mτ∧tj−1
) and we conclude by in-

duction.

Lemma 10.2. Let τ be a stopping time such that τ(Ω) = {t1, t2, · · · , tn}
where (ti)

n
i=1 is an increasing sequence of discrete dates. Then, for any ran-

dom variable X, we have

ess supFτ (X1{τ=ti}) = ess supFti (X)1{τ=ti}.

Proof. As 1{τ=ti} is Fτ -mesurable, then ess supFτ (X1{τ=ti}) = ess supFτ (X)1{τ=ti}.
Since X1{τ=ti} ≤ ess supFti (X)1{τ=ti}, we deduce that

ess supFτ (X1{τ=ti}) ≤ ess supFτ (ess supFti (X)1{τ=ti}).

We claim that Z = ess supFti (X)1{τ=ti} is Fτ -mesurable. For any k ∈ R,

{Z ≤ k} = {0 ≤ k} ∩ {τ 6= ti} ∪ {τ = ti} ∩ {ess supFti (X) ≤ k}.

Note that {0 ≤ k} = ∅ or Ω and {τ 6= ti} ∈ Fτ hence {0 ≤ k}∩{τ 6= ti} ∈ Fτ .
Now let us show that B = {τ = ti} ∩ {ess supFti (X) ≤ k} ∈ Fτ . To do so,

we evaluate B ∩ {τ ≤ t} for t ≥ 0. Note that tj ≤ t < tj+1 for some
tj ∈ {t0, · · · , tn, tn+1}, where tn+1 = ∞. So, we deduce that B ∩ {τ ≤ t}
coincides with B ∩ {τ ≤ tj} = ∅ if tj < ti. Otherwise, we obtain that
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B ∩ {τ ≤ t} = B ∈ Fti ⊆ Ftj ⊆ Ft. Therefore, B ∩ {τ ≤ t} ∈ Ft, for
all t ∈ R, hence B ∈ Fτ . Finally, Z is Fτ -mesurable and the inequality
ess supFτ (X1{τ=ti}) ≤ ess supFti (X)1{τ=ti} holds. For the reverse inequality

it suffices to show that Y = ess supFτ (X1{τ=ti}) is Fti-measurable. Since
{τ 6= ti} ∈ Fτ , we get that Y 1{τ 6=ti} = 0 and

{Y ≤ k} = ({0 ≤ k} ∩ {τ 6= ti}) ∪ (A ∩ {τ = ti}),

with A = {ess supFτ (X1{τ=ti}) ≤ k}. As A ∈ Fτ , A ∩ {τ ≤ ti} ∈ Fti
and, finally, A ∩ {τ = ti} = A ∩ {τ = ti} ∩ {τ ≤ ti} ∈ Fti . Therefore, for
all k ∈ R, {Y ≤ k} ∈ Fti , i.e. Y is Fti-measurable. At last, notice that
ess supFτ (X1{τ=ti}) ≥ X1{τ=ti} and, since Y is Fti-measurable, we get that
ess supFτ (X1{τ=ti}) ≥ ess supFti (X1{τ=ti}). The conclusion follows.

Lemma 10.3. Let (Mt)t∈[0,T ] be a sub-maxingale. Let τ , S be two stopping
times. Suppose that S(Ω) = {t1, t2, · · · , tn} where (ti)

n
i=1 is an increasing

sequence of discrete dates and suppose that τ(Ω) is also a finite set. Then
ess supFS(Mτ ) ≥Mτ∧s.

Proof. By lemma 10.2, we obtain ess supFS(Mτ ) =
n∑
i=1

ess supFti (Mτ )1{S=ti}.

By lemma 10.1, we deduce that

ess supFS(Mτ ) ≥
n∑
i=1

Mτ∧ti1{S=ti} =
n∑
i=1

Mτ∧S1{S=ti} = Mτ∧S.

Lemma 10.4. Let τ ∈ [0, T ] be a stopping time. Suppose that the filtration
(Ft)t∈[0,T ] is right-continuous. There exists a non increasing sequence (τn)n
of stopping times converging to τ such that, for any X ∈ L0(R,FT ),

ess supFτ (X) = lim
n
↑ ess supFτn (X).

Moreover, τn(Ω) is finite for all n ≥ 1.

Proof. Let τ be a stopping time taking values in [0, T ]. For any n ≥ 1, we
define τn(ω) = T (i + 1)/2n where i = i(ω) is uniquely defined such that
Ti/2n < τ(ω) ≤ T (i+ 1)/2n for i ≥ 1 or 0 ≤ τ(ω) ≤ T/2n when i = 0. Note
that τn(Ω) is finite and τn ≥ τ . It is easily seen that (τn)n is non increasing,
positive and limn τn = τ . Moreover, τn is a stopping time. Indeed, for any
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fixed t ∈ [0, T ), there exists i ∈ N such that Ti/2n ≤ t < T (i + 1)/2n. Then
{τn ≤ t} = {τ ≤ Ti/2n} ∈ FT i/2n ⊂ Ft and the conclusion follows.

As (τn)n is non increasing, then (Fτn)n non increasing. As we know that
ess supFτn+1

(X) ≥ X and ess supFτn+1
(X) is Fτn-measurable (τn+1 ≤ τn), we

deduce that ess supFτn (X) ≤ ess supF
τ(n+1)

(X), i.e. (ess supFτn (X))n is non

decreasing.
Similarly, τn ≥ τ implies that ess supFτn (X) ≤ ess supFτ (X). Therefore,

limn ↑ ess supFτn (X) ≤ ess supFτ (X). To obtain the reverse inequality, we
consider the sequence (ess supFτ+T/n(X))n. Since τ + T/n ≥ τn, then

lim
n
↑ ess supFτ+T/n(X) ≤ lim ↑ ess supFτn (X) ≤ ess supFτ (X).

It suffices to see that Z = limn ↑ ess supFτ+T/n(X) is Fτ -measurable to

conclude. Indeed, Z ≥ X hence Z ≥ ess supFτ (X) and inequalities above are
equalities. For all k ∈ R, t ≥ 0, and any n0 ≥ 1

{Z ≤ k} ∩ {τ ≤ t} =
⋂
n≥1

{ess supFτ+T/n(X) ≤ k} ∩ {τ ≤ t},

=
⋂
n≥n0

{ess supFτ+T/n(X) ≤ k} ∩ {τ + T/n ≤ t+ T/n}.

Notice that ess supFτ+T/n(X) is Fτ+T/n-measurable. We deduce that:

{ess supFτ+T/n(X) ≤ k} ∈ Fτ+T/n,

{ess supFτ+T/n(X) ≤ k} ∩ {τ + T/n ≤ t+ T/n} ∈ Ft+T/n.

Therefore, for any ε > 0 and n0 ≥ 1 such that t + T/n ≤ t + ε, we have
Ft+T/n ⊆ Ft+ε and, finally, {Z ≤ k} ∩ {τ ≤ t} ∈ ∩ε>0Ft+ε = Ft+ = Ft. We
deduce that {Z ≤ k} ∈ Fτ , for all k ∈ R, i.e. Z is Fτ -measurable.

Lemma 10.5. Suppose that the filtration (Ft)t∈[0,T ] is right-continuous. Let
(Mt)t∈[0,T ] be a right-continuous sub-maxingale. Let τ , S be two stopping
times such that τ(Ω) is a finite set. Then, we have ess supFS(Mτ ) ≥Mτ∧S.

Proof. Let (Sn)n be a sequence of stopping times decreasing to S as given
in Lemma 10.4. Recall that Sn(Ω) is finite for all n. Moreover, we have
ess supFs(Mτ ) = limn ↑ ess supFsn (Mτ ). By Lemma 10.3, we deduce that
ess supFS(Mτ ) ≥ lim ↑ Mτ∧Sn . As (τ ∧ Sn)n decreases to τ ∧ S and M is
right-continuous, we conclude that ess supFs(Mτ ) ≥Mτ∧s.
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Corollary 10.6. Suppose that the filtration (Ft)t∈[0,T ] is right-continuous.
Let (Mt)t∈[0,T ] be a right-continuous strong sub-maxingale. Let τ , S be two
stopping times such that S, τ ≤ T . Then, ess supFS(Mτ ) ≥MS∧τ .

Proof. Let S, τ ∈ T0,T . As Sτ is a sub-maxingale, we apply Lemma 10.5 with
the stopping time S and the deterministic stopping time T . We get that
ess supFS(Mτ∧T ) ≥Mτ∧S∧T , i.e. . ess supFS(Mτ ) ≥Mτ∧S.

10.2. Auxiliary results

Lemma 10.7. Suppose that, at time t ≤ T , Ot is the pseudo-distance topol-
ogy defined by (6.8) and Vct,T = Vct,T (Ot). If Vt,T is Ft-decomposable, then Vct,T
is Ft-decomposable.

Proof. Consider V c,i
t,T ∈ Vct,T , i = 1, 2, and Ft ∈ Ft. By Proposition 9.26,

V c,i
t,T ≤ V n,i

t,T + αn,it where V n,i
t,T ∈ Vt,T and αn,it converges to 0 in probability as

n→∞, for i = 1, 2. We set

V n
t,T = V n,1

t,T 1Ft + V n,2
t,T 1Ω\Ft , αnt = αn,1t 1Ft + αn,2t 1Ω\Ft .

Note that V n
t,T ∈ Vt,T by assumption and αnt converges to 0 in probability.

Moreover, V c,1
t,T 1Ft+V

c,2
t,T 1Ω\Ft ≤ V n

t,T +αnt . Therefore, Proposition 9.26 implies

that V c,1
t,T 1Ft + V c,2

t,T 1Ω\Ft ∈ Vct,T and the conclusion follows.

Lemma 10.8. Let hT ∈ L0(R,FT ) be a payoff. If Vt,T (resp. Vct,T ) is Ft-
decomposable (resp. infinitely Ft-decomposable), then Pt,T (hT ) (resp. Pct,T (hT ))
is Ft-decomposable (resp. infinitely Ft-decomposable).

Proof. Suppose that Vt,T is Ft-decomposable and consider p1
t , p

2
t ∈ Pt,T (hT )

and Ft ∈ Ft. Then, pit + V i
t,T ≥ hT for some V i

t,T ∈ Vt,T , i = 1, 2. By as-
sumption, we have Vt,T = V 1

t,T1Ft + V 2
t,T1Ω\Ft ∈ Vt,T by assumption and

p1
t1Ft + p2

t1Ω\Ft + Vt,T ≥ hT . We deduce that p1
t1Ft + p2

t1Ω\Ft ∈ Pt,T (hT ).
By the same reasoning, the property holds for Vct,T and the infinite Ft-
decomposability is obtained similarly. The conclusion follows.

Lemma 10.9. Let hT ∈ L0(R,FT ) be a payoff. If Vt,T is infinitely Ft-
decomposable, then for any γt ∈ L0(R,Ft) such that γt > πt,T (hT ), there
exists a price pt ∈ Pt,T (hT ) such that pt < γt. In particular, γt ∈ Pt,T (hT ).

Proof. Since Vt,T is infinitely Ft-decomposable, Pt,T (hT ) is infinitely Ft-decomposable
by Lemma 10.8. Therefore, Pt,T (hT ) is directed downward and we deduce that
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πt,T (hT ) limn ↓ pnt where pnt ∈ Pt,T (hT ), see [15, Section 5.3.1]. Then, a.s.(ω),
there exits n(ω) such that pnt (ω) < γt(ω). We then define

Nt = inf{n ≥ 1 : pnt < γt} ∈ L0(N,Ft),

pt =
∞∑
j=1

pjt1{Nt=j}.

By assumption pt ∈ Pt,T (hT ) and pt < γt. The conclusion follows.
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[18] Lépinette E. and Molchanov I., Conditional cores and conditional con-
vex hulls of random sets. Journal of Mathematical Analysis and Appli-
cations, 478, 2, 368-392, 2019.

[19] Lo A.W. Long-term memory in stock market prices. Econometrica, 59,
5, 1279-1313, 1991.

[20] Pakkanen M. Stochastic integrals and conditional full support. Journal
of Applied Probability, 47, 3, 650-667, 2010.

[21] Rockafellar, R. T. and Wets R. J. B. Variational analysis, Grundlehren
der mathematischen Wissenschaften, 317. Springer-Verlag Berlin Hei-
delberg, 1998.

[22] Rogers L.C.G. Arbitrage with fractional Brownian motion. Mathemat-
ical Finance, 7, 95-105, 1997.

[23] Sayit H. Absence of arbitrage in a general framework. Annals of Fi-
nance, 9, 611-624, 2013.

[24] Sottinen T. Fractional Brownian motion, random walks and binary
market models. Finance and Stochastics, 5, 3, 343-355, 2001.

34


	Introduction
	Model
	The NFL and the NFLVR conditions
	The NFL condition
	The NFLVR condition

	The AIP condition
	The AIP condition for discrete-time portfolio processes
	The AIP condition for continuous-time portfolio processes
	The NUPBR no-arbitrage condition
	Super-hedging prices
	Super-hedging prices without no-arbitrage condition
	Infinitely Ft-decomposable extension of the discrete-time prices

	Topology defined by a semi-distance
	Appendix
	Super-maxingales and sub-maxingales
	Auxiliary results

	References

