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Observer-based Event-triggered Boundary
Control of a Class of Reaction-Diffusion PDEs

Bhathiya Rathnayake, Mamadou Diagne, Member, IEEE , Nicolás Espitia, and Iasson Karafyllis

Abstract— This paper presents an observer-based event-
triggered boundary control strategy for a class of reaction-
diffusion PDEs with Robin actuation. The observer only
requires boundary measurements. The control approach
consists of a backstepping output feedback boundary con-
troller, derived using estimated states, and a dynamic trig-
gering condition, which determines the time instants at
which the control input needs to be updated. It is shown
that under the proposed observer-based event-triggered
boundary control approach, there is a minimal dwell-time
between two triggering instants independent of initial con-
ditions. Furthermore, the well-posedness and the global
exponential convergence of the closed-loop system to the
equilibrium point are established. A simulation example is
provided to validate the theoretical developments.

Index Terms— Backstepping control design, event-
triggered control, linear reaction-diffusion systems, output
feedback.

I. INTRODUCTION

EVENT-triggered control (ETC) is a control implementa-
tion technique that closes the feedback loop only if an

event indicates that the control input error exceeds an appropri-
ate threshold. When an event occurs, the controller computes
the control value and transmits it to the actuator, completing
the feedback path. Therefore, unlike periodic sampled-data
control [1], [2], ETC only requires the control input to be
updated aperiodically (only when needed). For networked
and embedded control systems, the periodic computation and
transmission of the control inputs are sometimes not desirable
due to task scheduling limitations and bandwidth constraints
in the communication [3]–[6]. Despite the developments in
aperiodic sampled-data control [7]–[10], they lack explicit
criteria for selecting appropriate sampling schedules. ETC, on
the other hand, provides a rigorous resource-aware method of
implementing the control laws into digital platforms [11]–[13].

B. Rathnayake is with the Department of Electrical, Computer, and
Systems Engineering, Rensselaer Polytechnic Institute, New York,
12180, USA. Email: rathnb@rpi.edu

M. Diagne is with the Department of Mechanical, Aerospace, and Nu-
clear Engineering, Rensselaer Polytechnic Institute, New York, 12180,
USA. Email: diagnm@rpi.edu

N. Espitia is with CRIStAL UMR 9189 CNRS - Centre de Recherche
en Informatique Signal et Automatique de Lille - CNRS, Centrale Lille,
Univ. Lille, F-59000 Lille, France. Email: nicolas.espitia-hoyos@univ-
lille.fr

I. Karafyllis is with the Department of Mathematics, National Technical
University of Athens, Greece. Email: iasonkar@central.ntua.gr

This work is supported by the National Science Foundation CAREER
award CMMI-1944051

In general, ETC consists of two main components: a feed-
back control law that stabilizes the system and an event-
triggered mechanism, which determines when the control
value has to be computed and sent toward the actuator. In
the literature, one can find two main approaches to the control
law design: emulation (e.g. [11]) and co-design (e.g. [5]). The
former requires a pre-designed continuous feedback controller
applied to the plant in a Zero-Order-Hold fashion between
two event times. In co-design, the feedback control law and
the event-triggered mechanism are simultaneously designed to
obtain the desired stability properties. An important property
that every ETC design should possess is the non-existence of
Zeno behavior [13]; otherwise, it will lead to the triggering
of an infinite number of control updates over a finite period,
making the design infeasible for digital implementation. Usu-
ally, ETC designs are ensured to be Zeno-free by showing the
existence of a guaranteed lower bound for the time between
two consecutive events, known as the minimal dwell-time.

In the case of finite-dimensional systems, ETC has grown
to be a mature field of research. During the past decade,
many significant results related to ETC have been reported
on systems described by linear and nonlinear ODEs in both
full-state and output feedback settings (see [11], [14]–[25]).
Recently, there has been a growing interest in periodic ETC
[16], [22], [23], which employs a sampled-data event-triggered
mechanism instead of the usual continuous-time event trigger.
With this, the system states and the triggering condition need
to be monitored and evaluated only at the sampling instants,
making ETC more realistic for digital implementation. Despite
some recent developments such as in [26]–[37], ETC strategies
for PDE systems have not reached the level of maturity seen by
finite-dimensional systems yet. Only recently, even the notions
of solutions of linear hyperbolic and parabolic PDEs under
sampled-data control have been clarified [8], [9].

One can find several recent works that employ event-
triggered boundary control strategies based on the emulation
approach for hyperbolic PDEs [27], [29], [33] and parabolic
PDEs [32], [34], [36]. The authors of [27] propose an output
feedback event-triggered boundary controller for 1-D linear
hyperbolic systems of conservation laws, using Lyapunov
techniques. By utilizing a dynamic triggering condition, an
event-based backstepping boundary controller is designed for a
coupled 2×2 hyperbolic system in [29] with Zeno-free guaran-
tees. This work is extended in [33] to obtain an event-triggered
output feedback boundary controller for a similar system.
In the case of 1D reaction-diffusion PDEs with constant
parameters and Dirichlet boundary actuation, the work [34]
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proposes an event-triggered boundary control strategy with a
suitable state-dependent triggering condition that determines
when the continuous boundary backstepping controller has to
be sampled/updated. By following ISS properties (w.r.t the
input holding error) and small-gain arguments, it is proved
the global exponential stability of the closed-loop system.
Furthermore, the avoidance of the Zeno phenomena through
the derivation of a uniform minimal dwell-time (independent
of the initial condition) is guaranteed. To the best of our
knowledge, [34] is the first work to report event-based infinite
dimensional boundary control design for parabolic PDEs.

The design of event-triggered control strategies for PDEs
appear to be more realistic, and in turn challenging, as long
as both the control and the triggering condition depend on
estimated states for which the need to design observers is a
crucial task. Indeed, the importance of event-triggered output
feedback control cannot be stressed enough as the use of full
state measurements is either impossible or prohibitively ex-
pensive for many practical applications. Some studies such as
[26], [38], [39] report several event-triggered output feedback
designs for parabolic PDEs. All these works, nevertheless, rely
on in-domain control and distributed observation. Event-based
boundary control of parabolic PDEs with boundary sensing
only is quite challenging, and only few works such as [32],
[36] relying on modal decomposition have dealt with it. To the
best of our knowledge, [32], [36] are the first contributions to
come up with sampled-data and observer-based event triggered
boundary control for 1D reaction-diffusion systems in the
presence of time-varying input delays. While relying on modal
decomposition, those contributions propose an observer-based
event-triggered strategy that includes a novel switching-based
dynamic triggering condition depending on the finite modes of
the estimated state. The triggering condition includes a suitable
waiting-time parameter (for time regularization) allowing the
avoidance of the Zeno phenomena. Nevertheless, an infinite-
dimensional control approach such as backstepping [40] for
observer-based event-triggered boundary control of parabolic
PDEs is missing. The possibility of avoiding Zeno behavior in
ETC of general parabolic PDE systems with boundary actua-
tion and boundary observation is challenging and, in general,
not known. The choice of the actuation type when using back-
stepping is critical as both Dirichlet and Neumann actuation
pose a severe impediment in establishing a minimal dwell-
time and hence well-posedness and convergence results, due
to unbounded local terms. However, we have identified that a
class of reaction-diffusion equations with Robin actuation is
conducive for event-triggered backstepping boundary control
with boundary sensing. This paper proposes an observer-based
event-triggered backstepping boundary controller for the class
of PDEs mentioned above using emulation. The observer only
requires boundary observation. The main contributions are as
follows:
• We consider a class of reaction-diffusion systems with

Robin actuation. We perform emulation on an observer-
based backstepping boundary control design and propose
a dynamic triggering condition under which Zeno behav-
ior is excluded. It is proved the existence of a minimal-
dwell-time independent of the initial conditions.

• We prove the well-posedness of the closed-loop system
and its global exponential convergence to the equilibrium
point in L2-sense.

The paper is organized as follows. Section 2 introduces the
class of linear reaction-diffusion system and the continuous-
time output feedback boundary control. Section 3 presents
the observer-based event-triggered boundary control and some
properties. In Section 4, we discuss the main results of this
paper. We provide a numerical example in Section 5 to
illustrate the results and conclude the paper in Section 6.

Notation: R+ is the nonnegative real line whereas N is the
set of natural numbers including zero. By C0(A; Ω), we denote
the class of continuous functions on A ⊆ Rn, which takes
values in Ω ⊆ R. By Ck(A; Ω), where k ≥ 1, we denote the
class of continuous functions on A, which takes values in Ω
and has continuous derivatives of order k. L2(0, 1) denotes
the equivalence class of Lebesgue measurable functions f :

[0, 1] → R such that ‖f‖ =
( ∫ 1

0
|f(x)|2

)1/2
< ∞. Let u :

[0, 1] × R+ → R be given. u[t] denotes the profile of u at
certain t ≥ 0, i.e.,

(
u[t]
)
(x) = u(x, t), for all x ∈ [0, 1]. For

an interval J ⊆ R+, the space C0
(
J ;L2(0, 1)

)
is the space

of continuous mappings J 3 t → u[t] ∈ L2(0, 1). Im(·),
and Jm(·) with m being an integer respectively denote the
modified Bessel and (nonmodified) Bessel functions of the
first kind.

II. OBSERVER-BASED BACKSTEPPING BOUNDARY
CONTROL AND EMULATION

Let us consider the following 1-D reaction-diffusion system
with constant coefficients:

ut(x, t) = εuxx(x, t) + λu(x, t), (1a)
ux(0, t) = 0, (1b)

ux(1, t) + qu(1, t) = U(t), (1c)

and the initial condition u[0] ∈ L2(0, 1), where ε, λ > 0,
u : [0, 1] × [0,∞) → R is the system state and U(t) is the
control input.

Assumption 1: The plant’s parameters q, λ, and ε satisfy the
following inequality:

q > (λ+ ε)/2ε.

Remark 1: Assumption 1 is required to avoid a trace term
for which it is impossible to obtain a useful bound on its rate
of change. In order to overcome this, it is required that q −
λ/2ε is sufficiently large. Furthermore, It should be mentioned
that an eigenfunction expansion of the solution of (1) with
U(t) = 0 (zero input) shows that the system is unstable when
λ > επ2/4, no matter what q > 0 is.

We propose an observer for the system (1) using u(0, t)
as the available measurement/output. Note that the output is
anticollocated with the input. The observer consists of a copy
of the system (1) with output injection terms, which is stated
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as follows:

ût(x, t) = εûxx(x, t) + λû(x, t)

+ p1(x)
(
u(0, t)− û(0, t)

)
,

(2a)

ûx(0, t) = p10
(
u(0, t)− û(0, t)

)
, (2b)

ûx(1, t) + qû(1, t) = U(t), (2c)

and the initial condition û[0] ∈ L2(0, 1). Here, the function
p1(x) and the constant p10 are observer gains to be determined.
Let us denote the observer error by ũ(x, t), which is defined
as

ũ(x, t) := u(x, t)− û(x, t). (3)

By subtracting (2) from (1), one can see that ũ(x, t) satisfies
the following PDE:

ũt(x, t) = εũxx(x, t) + λũ(x, t)− p1(x)ũ(0, t),
(4a)

ũx(0, t) = −p10ũ(0, t), (4b)
ũx(1, t) + qũ(1, t) = 0. (4c)

Proposition 1: Subject to Assumption 1 and the the invert-
ible backstepping transformation

ũ(x, t) = w̃(x, t)−
∫ x

0

P (x, y)w̃(y, t)dy, (5)

where

P (x, y) =
qλ/ε√
λ/ε+ q2

×
∫ x−y

0

e−qτ/2I0

(√
λ(2− x− y)(x− y − τ)/ε

)
× sinh

(√λ/ε+ q2

2
τ
)
dτ

− λ

ε
(1− y)

I1

(√
λ
(
(1− y)2 − (1− x)2

)
/ε
)

√
λ
(
(1− y)2 − (1− x)2

)
/ε

,

(6)

for 0 ≤ y ≤ x ≤ 1, then the observer error system (4) with
the gains p1(x) and p10 chosen as

p1(x) = εPy(x, 0), p10 = P (0, 0) = − λ

2ε
, (7)

gets transformed to the following globally L2-exponentially
stable observer error target system

w̃t(x, t) = εw̃xx(x, t), (8a)
w̃x(0, t) = 0, (8b)
w̃x(1, t) = −qw̃(1, t). (8c)

Proof: See Appendix A.

The inverse transformation of (5) can be shown to be as
follows:

w̃(x, t) = ũ(x, t) +

∫ x

0

Q(x, y)ũ(y, t)dy, (9)

where Q(x, y) is

Q(x, y) =
qλ/ε√
−λ/ε+ q2

×
∫ x−y

0

e−qτ/2J0

(√
λ(2− x− y)(x− y − τ)/ε

)
× sinh

(√−λ/ε+ q2

2
τ
)
dτ

− λ

ε
(1− y)

J1

(√
λ
(
(1− y)2 − (1− x)2

)
/ε
)

√
λ
(
(1− y)2 − (1− x)2

)
/ε

,

(10)

for 0 ≤ y ≤ x ≤ 1.

Proposition 2: The invertible backstepping transformation

ŵ(x, t) = û(x, t)−
∫ x

0

K(x, y)û(y, t)dy, (11)

where

K(x, y) = −λ
ε
x
I1
(√

λ(x2 − y2)/ε
)√

λ(x2 − y2)/ε
, (12)

for 0 ≤ y ≤ x ≤ 1, and a control law U(t) chosen as

U(t) =

∫ 1

0

(
rK(1, y) +Kx(1, y)

)
û(y, t)dy, (13)

map the system (2) with the gains p1(x) and p10 chosen as in
(7), into the following target system:

ŵt(x, t) = εŵxx(x, t) + g(x)w̃(0, t), (14a)

ŵx(0, t) = − λ

2ε
w̃(0, t), (14b)

ŵx(1, t) = −rŵ(1, t), (14c)

with

g(x) = p1(x)− λ

2
K(x, 0)−

∫ x

0

K(x, y)p1(y)dy, (15)

and

r = q − λ

2ε
. (16)

Proof: See Appendix B.

The inverse transformation of (11) can be shown to be as
follows:

û(x, t) = ŵ(x, t) +

∫ x

0

L(x, y)ŵ(y, t)dy, (17)

where

L(x, y) = −λ
ε
x
J1
(√

λ(x2 − y2)/ε
)√

λ(x2 − y2)/ε
, (18)

for 0 ≤ y ≤ x ≤ 1.

Proposition 3: Subject to Assumption 1, the closed-loop
system which consists of the plant (1) and the observer (2) with
the continuous-time control law (13), is globally exponentially
stable in L2-sense.

Proof: See Appendix C.
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A. Emulation of the Observer-based Backstepping
Boundary Control

We strive to stabilize the closed-loop system containing the
plant (1) and the observer (2) while sampling the continuous-
time controller U(t) given by (13) at a certain sequence of time
instants (tj)j∈N. These time instants will be given a precise
characterization later on based on an event trigger. The control
input is held constant between two successive time instants
and is updated when a certain condition is met. Therefore, we
define the control input for t ∈ [tj , tj+1), j ∈ N as

Uj := U(tj) =

∫ 1

0

(
rK(1, y) +Kx(1, y)

)
û(y, tj)dy. (19)

Accordingly, the boundary conditions (1c) and (2c) are mod-
ified, respectively, as follows:

ux(1, t) + qu(1, t) = Uj , (20)

ûx(1, t) + qû(1, t) = Uj . (21)

The deviation between the continuous-time control law and its
sampled counterpart, referred to as the input holding error, is
defined as follows:

d(t) :=

∫ 1

0

(
rK(1, y) +Kx(1, y)

)(
û(y, tj)− û(y, t)

)
dy.

(22)

for t ∈ [tj , tj+1), j ∈ N. It can be shown that the backstep-
ping transformation (11), applied on the system (2a),(2b),(21)
between tj and tj+1, yields the following target system, valid
for t ∈ [tj , tj+1), j ∈ N:

ŵt(x, t) = εŵxx(x, t) + g(x)w̃(0, t), (23a)

ŵx(0, t) = − λ

2ε
w̃(0, t), (23b)

ŵx(1, t) = −rŵ(1, t) + d(t), (23c)

where g(x) and r are given by (15) and (16), respectively.
It is straightforward to see that the observer error system

ũ for t ∈ [tj , tj+1), j ∈ N under the modified boundary
conditions (20) and (21) will still be the same as (4). Therefore,
the application of the backstepping transformation (5) on ũ
between tj and tj+1 yields the following observer error target
system

w̃t(x, t) = εw̃xx(x, t), (24a)
w̃x(0, t) = 0, (24b)
w̃x(1, t) = −qw̃(1, t), (24c)

valid for t ∈ [tj , tj+1), j ∈ N.

B. Well-posedness Issues
Proposition 4: For every given initial data

u[tj ], û[tj ] ∈ L2(0, 1), there exist unique mappings
u, û ∈ C0([tj , tj+1];L2(0, 1)) ∩ C1((tj , tj+1) × [0, 1])
with u[t], û[t] ∈ C2([0, 1]) which satisfy (1b),(2b),(19)-(21)
for t ∈ (tj , tj+1] and (1a), (2a) for t ∈ (tj , tj+1], x ∈ (0, 1).

Proof: The initial condition w̃[tj ] for the system (24) can
be uniquely determined by using (3) and (9) once u[tj ]
and û[tj ] are given. Therefore, from the straightforward

Fig. 1: Event-triggered observer-based closed-loop system.

application of Theorem 4.11 in [41], we can show that
there exist unique mappings u, w̃ ∈ C0([tj , tj+1];L2(0, 1)) ∩
C1((tj , tj+1)×[0, 1]) with u[t], w̃[t] ∈ C2([0, 1]) which satisfy
(1b),(19),(20),(24b),(24c) for t ∈ (tj , tj+1] and (1a),(24a)
for t ∈ (tj , tj+1], x ∈ (0, 1). Further, due to (3) and
the transformation (5), there also exists a unique mapping
û ∈ C0([tj , tj+1];L2(0, 1)) ∩ C1((tj , tj+1) × [0, 1]) with
û[t] ∈ C2([0, 1]) which satisfy (2b),(19),(21) for t ∈ (tj , tj+1]
and (2a) for t ∈ (tj , tj+1], x ∈ (0, 1).

III. OBSERVER-BASED EVENT-TRIGGERED BOUNDARY
CONTROL

Let us now present the observer-based event-triggered
boundary control approach considered in this work. It consists
of two components: 1) an event-triggered mechanism which
decides the time instants at which the control value needs to
be sampled/updated and 2) the observer-based backstepping
output feedback controller. The structure of the closed-loop
system consisting of the plant, the observer-based controller,
and the event trigger is illustrated in Fig. 1. The event-
triggering condition is based on the square of the input holding
error d(t) and a dynamic variable m(t) which depends on the
information of the systems (23) and (24).

Definition 1: Let γ, η, ρ, β1, β2, β3 > 0. The observer-
based event-triggered boundary control strategy consists of
two components.

1) (The event-trigger) The set of event times I =
{t0, t1, t2, . . .} with t0 = 0 forms an increasing se-
quence via the following rules:
• if {t ∈ R+|t > tj ∧ d2(t) > −γm(t)} = ∅ then the

set of the times of the events is {t0, . . . , tj}.
• if {t ∈ R+|t > tj ∧ d2(t) > −γm(t)} 6= ∅ then the

next event time is given by:

tj+1 = inf{t ∈ R+|t > tj ∧ d2(t) > −γm(t)},
(25)

where d(t) is given by

d(t) =

∫ 1

0

(
rK(1, y) +Kx(1, y)

)
×
(
û(y, tj)− û(y, t)

)
dy,

(26)
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for all t ∈ [tj , tj+1) and m(t) satisfies the ODE

ṁ(t) =− ηm(t) + ρd2(t)− β1‖ŵ[t]‖2

− β2|ŵ(1, t)|2 − β3|w̃(0, t)|2,
(27)

for all t ∈ (tj , tj+1) with m(t0) = m(0) < 0 and
m(t−j ) = m(tj) = m(t+j ).

2) (The control action) The output boundary feedback
control law

Uj =

∫ 1

0

(
rK(1, y) +Kx(1, y)

)
û(y, tj)dy, (28)

for all t ∈ [tj , tj+1), j ∈ N.

In Definition 1, it is worth noting that the initial condition
for m(t) in each time interval has been chosen such that m(t)
is time-continuous.

Proposition 4 allows us to define the solution of the closed-
loop system under the observer-based event-triggered bound-
ary control (25)-(28) in the interval [0, F ), where F = sup(I).

Lemma 1: Under the definition of the observer-based event-
triggered boundary control (25)-(28), it holds that d2(t) ≤
−γm(t) and m(t) < 0, for t ∈ [0, F ) where F = sup(I).

Proof: From Definition 1, the events are triggered to
guarantee d2(t) ≤ −γm(t), t ∈ [0, F ). This inequality in
combination with (27) yields:

ṁ(t) ≤ −(η + γρ)m(t)− β1‖ŵ[t]‖2

− β2|ŵ(1, t)|2 − β3|w̃(0, t)|2,
(29)

for t ∈ (tj , tj+1), j ∈ N. Thus, considering the time-continuity
of m(t), we can obtain the following estimate:

m(t) ≤ m(tj)e
−(η+γρ)(t−tj)

−
∫ t

tj

e−(η+γρ)(t−τ)
(
β1‖ŵ[τ ]‖2

+ β2|ŵ(1, τ)|2 + β3|w̃(0, τ)|2
)
dτ,

(30)

for t ∈ [tj , tj+1], j ∈ N. From Definition 1, we have
that m(t0) = m(0) < 0. Therefore, it follows from (30) that
m(t) < 0 for all t ∈ [0, t1]. Again using (30) on [t1, t2], we
can show that m(t) < 0 for all t ∈ [t1, t2]. Applying the same
reasoning successively to the future intervals, it can be shown
that m(t) < 0 for t ∈ [0, F ).

Lemma 2: For d(t) given by (26), it holds that

ḋ2(t) ≤ ρ1d2(t) + α1‖ŵ[t]‖2 + α2|ŵ(1, t)|2 + α3|w̃(0, t)|2,
(31)

for some ρ1, α1, α2, α3 > 0, for all t ∈ (tj , tj+1), j ∈ N.
Proof: From (26), we can show for t ∈ (tj , tj+1), j ∈ N

ḋ(t) = −
∫ 1

0

k(y)ût(y, t)dy, (32)

where

k(y) = rK(1, y) +Kx(1, y). (33)

Using (2a) on (32) and integrating by parts twice in the interval
(tj , tj+1), j ∈ N, we can show that

ḋ(t) = −ε
∫ 1

0

k(y)ûyy(y, t)dy − λ
∫ 1

0

k(y)û(y, t)dy

−
∫ 1

0

k(y)p1(y)dyũ(0, t)

= −εk(1)ûx(1, t) + εk(0)ûx(0, t) + ε
dk(x)

dx

∣∣∣
x=1

û(1, t)

− εdk(x)

dx

∣∣∣
x=0

û(0, t)− ε
∫ 1

0

d2k(y)

dy2
û(y, t)dy

− λ
∫ 1

0

k(y)û(y, t)dy −
∫ 1

0

k(y)p1(y)dyũ(0, t).

(34)

Furthermore, using (2b),(21), (26), and (28), we can show that

ḋ(t) =− εk(1)d(t) +
(
εqk(1) + ε

dk(x)

dx

∣∣∣
x=1

)
û(1, t)

−
∫ 1

0

(
ε
d2k(y)

dy2
+ εk(1)k(y) + λk(y)

)
û(y, t)dy

−
(λk(0)

2
+

∫ 1

0

k(y)p1(y)dy
)
ũ(0, t).

(35)

It is worth mentioning that above we have used the fact that
dk(x)/dx

∣∣∣
x=0

= 0, which can be shown using (33) and (12).
Using Young’s and Cauchy-Schwarz inequalities on (17), we
also can show that

‖û[t]‖2 ≤
(

1+
(∫ 1

0

∫ x

0

L2(x, y)dydx
)1/2)2

‖ŵ[t]‖2, (36)

û2(1, t) ≤ 2ŵ2(1, t) + 2

∫ 1

0

L2(1, y)dy‖ŵ[t]‖2. (37)

Using Young’s and Cauchy-Schwarz inequalities repeatedly on
(35) along with (36) and (37), we can show that

ḋ2(t) ≤ρ1d2(t) + α1‖ŵ[t]‖2 + α2|ŵ(1, t)|2

+ α3|w̃(0, t)|2,
(38)

where

ρ1 = 6ε2k2(1), (39)

α1 = 3

(
1 +

(∫ 1

0

∫ x

0

L2(x, y)dydx
)1/2)2

×
∫ 1

0

(
ε
d2k(y)

dy2
+ εk(1)k(y) + λk(y)

)2
dy

+ 6
(
εqk(1) + ε

dk(x)

dx

∣∣∣
x=1

)2 ∫ 1

0

L2(1, y)dy,

(40)

α2 = 6
(
εqk(1) + ε

dk(x)

dx

∣∣∣
x=1

)2
, (41)

α3 = 6
(λk(0)

2
+

∫ 1

0

k(y)p1(y)dy
)2
. (42)
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IV. MAIN RESULTS

Theorem 1: Under the observer-based event-triggered
boundary control in Definition 1, with β1, β2, β3 chosen as

β1 =
α1

γ(1− σ)
, β2 =

α2

γ(1− σ)
, β3 =

α3

γ(1− σ)
, (43)

where α1, α2, α3 given by (40)-(42) and σ ∈ (0, 1), there
exists a minimal dwell-time τ > 0 between two triggering
times, i.e., there exists a constant τ > 0 such that tj+1−tj ≥ τ,
for all j ∈ N, which is independent of the initial conditions
and only depends on the system and control parameters.

Proof: From Lemma 1, we have that d2(t) ≤ −γ(1 −
σ)m(t) − γσm(t), where σ ∈ (0, 1) and m(t) < 0 for
t ∈ [0, F ), where F = sup(I). Let us define the function

ψ(t) :=
d2(t) + γ(1− σ)m(t)

−γσm(t)
. (44)

Note that ψ(t) is continuous in [tj , tj+1). A lower bound for
the inter-execution times is given by the time it takes for the
function ψ to go from ψ(tj) to ψ(t−j+1) = 1, where ψ(tj) < 0,
which holds since d(tj) = 0. Here t−j+1 is the left limit at
t = tj+1. Therefore, by the intermediate value theorem, there
exists a t

′

j > tj such that ψ(t′j) = 0 and ψ(t) ∈ [0, 1] for
t ∈ [t

′

j , t
−
j+1]. The time derivative of ψ on [t

′

j , tj+1) is given
by

ψ̇(t) =
2d(t)ḋ(t) + γ(1− σ)ṁ(t)

−γσm(t)
− ṁ(t)

m(t)
ψ(t). (45)

From Young’s inequality, we have that

ψ̇(t) ≤ d2(t) + ḋ2(t) + γ(1− σ)ṁ(t)

−γσm(t)
− ṁ(t)

m(t)
ψ(t). (46)

Using Lemma 2 and (27), we can show that

ψ̇(t) ≤

(
1 + ρ1 + γ(1− σ)ρ

)
d2(t)

−γσm(t)
+

(1− σ)η

σ

+ ηψ(t) +
γσρd2(t)

−γσm(t)
ψ(t) +

(
α1 − γ(1− σ)β1

)
‖ŵ[t]‖2

−γσm(t)

+

(
α2 − γ(1− σ)β2

)
|ŵ(1, t)|2

−γσm(t)

+

(
α3 − γ(1− σ)β3

)
|w̃(0, t)|2

−γσm(t)

+
β1‖ŵ[t]‖2 + β2|ŵ(1, t)|2 + β3|w̃(0, t)|2

m(t)
ψ(t).

(47)

Let us choose β1, β2, β3 as in (43), where α1, α2, α3 are given
by (40)-(42), respectively. Also, note that the last term in the
right hand side of (47) is negative. Therefore, we have

ψ̇(t) ≤

(
1 + ρ1 + γ(1− σ)ρ

)
d2(t)

−γσm(t)
+

(1− σ)η

σ

+ ηψ(t) +
γσρd2(t)

−γσm(t)
ψ(t).

(48)

We also can write that

ψ̇(t) ≤
(

1 + ρ1 + γ(1− σ)ρ
)(d2(t) + γ(1− σ)m(t)

)
−γσm(t)

+
(1− σ)η

σ
+ ηψ(t) + γσρ

d2(t) + γ(1− σ)m(t)

−γσm(t)
ψ(t)

+
(

1 + ρ1 + γ(1− σ)ρ
) (1− σ)

σ
+ γρ(1− σ)ψ(t).

(49)

We can rewrite (49) as

ψ̇(t) ≤ a1ψ2(t) + a2ψ(t) + a3, (50)

where

a1 = γσρ > 0, (51)
a2 = 1 + ρ1 + 2γ(1− σ)ρ+ η > 0, (52)

a3 =
(
1 + ρ1 + γ(1− σ)ρ+ η

)1− σ
σ

> 0. (53)

By the Comparison principle, it follows that the time needed
for ψ to go from ψ(t

′

j) = 0 to ψ(t−j+1) = 1 is at least

τ =

∫ 1

0

1

a1s2 + a2s+ a3
ds. (54)

Therefore, tj+1 − t
′

j ≥ τ . As tj+1 − tj ≥ tj+1 − t
′

j , we can
conclude that tj+1−tj ≥ τ . Thus, τ can be considered a lower
bound for the minimal dwell-time. Note that τ is independent
of initial conditions and only depends on system and control
parameters.

Corollary 1: For every given initial data
u[0], û[0] ∈ L2(0, 1), there exist unique mappings
u, û ∈ C0(R+;L2(0, 1)) ∩ C1(J × [0, 1]) with u[t], û[t] ∈
C2([0, 1]) which satisfy (1b),(2b),(19)-(21) for all
t > 0 and (1a), (2a) for all t > 0, x ∈ (0, 1), where
J = R+\{tj ≥ 0, j ∈ N}. The increasing sequence
{tj ≥ 0, j ∈ N} is determined by the set of rules given in
Definition 1.

Proof: This is a straightforward consequence of Proposition
4 and Theorem 4.10 in [41]. The solutions are constructed
iteratively between consecutive triggering times.

Theorem 2: Let γ, η > 0 be design parameters, σ ∈ (0, 1),
and g(x) and r be given by (15) and (16), respectively, while
β1, β2, β3 are chosen according to (43). Further, subject to
Assumption 1, let us choose parameters B, κ1, κ2, κ3 > 0
such that

B

(
εmin

{
r − 1

2
,

1

2

}
− ε

2κ1
− 5λ

8κ2
− ‖g‖

2

κ3

)
− 2β1 − β2 > 0,

(55)

A > 0 such that

Aεmin
{
q − 1

2
,

1

2

}
− 5λκ2B

8
− 5κ3B

4
− 5β3

2
> 0, (56)

and ρ as

ρ =
εκ1B

2
. (57)

Then, the closed-loop system which consists of the plant
(1a),(1b),(20) and the observer (2a),(2b),(21) with the event-
triggered boundary controller (25)-(28) has a unique solution
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and globally exponentially converges to zero, i.e., ‖u[t]‖ +
‖û[t]‖ → 0 as t→∞.

Proof: From Corollary 1, the existence and the unique-
ness of solutions to the plant (1a),(1b),(20) and the observer
(2a),(2b),(21) are guaranteed. Now let us show that the closed-
loop system is globally L2-exponentially convergent to zero.

Let us choose the following candidate Lyapunov function
noting that m(t) < 0 for t ≥ 0:

V =
A

2

∫ 1

0

w̃2(x, t)dx+
B

2

∫ 1

0

ŵ2(x, t)dx−m(t). (58)

Here ŵ and w̃ are the systems described by (23) and (24),
respectively. We can show that for t ∈ (tj , tj+1), j ∈ N

V̇ =−Aεqw̃2(1, t)−Aε
∫ 1

0

w̃2
x(x, t)dx

− rεBŵ2(1, t) + εBd(t)ŵ(1, t) +
λB

2
ŵ(0, t)w̃(0, t)

− εB
∫ 1

0

ŵ2
x(x, t)dx+B

∫ 1

0

g(x)ŵ(x, t)dxw̃(0, t)

− ṁ(t).
(59)

From Young’s and Cauchy-Schwarz inequalities, we can write
that

εBd(t)ŵ(1, t) ≤ εB

2κ1
ŵ2(1, t) +

εκ1B

2
d2(t), (60)

λB

2
ŵ(0, t)w̃(0, t) ≤ λB

4κ2
ŵ2(0, t) +

λκ2B

4
w̃2(0, t), (61)

B

∫ 1

0

g(x)ŵ(x, t)dxw̃(0, t) ≤‖g‖
2B

2κ3
‖ŵ[t]‖2 +

κ3B

2
w̃2(0, t).

(62)

Therefore, using (60)-(62),(27),(57), we can write (59) as

V̇ ≤−Aεqw̃2(1, t)−Aε‖w̃x[t]‖2 − rεBŵ2(1, t)

+
εB

2κ1
ŵ2(1, t) +

λB

4κ2
ŵ2(0, t) +

λκ2B

4
w̃2(0, t)

− εB‖ŵx[t]‖2 +
‖g‖2B

2κ3
‖ŵ[t]‖2 +

κ3B

2
w̃2(0, t)

+ β1‖ŵ[t]‖2 + β2ŵ
2(1, t)

+ β3w̃
2(0, t) + ηm(t).

(63)

From Agmon’s and Young’s inequalities, we have that

w̃2(0, t) ≤ w̃2(1, t) + ‖w̃[t]‖2 + ‖w̃x[t]‖2, (64)

ŵ2(0, t) ≤ ŵ2(1, t) + ‖ŵ[t]‖2 + ‖ŵx[t]‖2. (65)

Therefore, we can show from (63) that

V̇ ≤−
(
Aεq − λκ2B

4
− κ3B

2
− β3

)
w̃2(1, t)

−
(
Aε− λκ2B

4
− κ3B

2
− β3

)
‖w̃x[t]‖2

+
(λκ2B

4
+
κ3B

2
+ β3

)
‖w̃[t]‖2

−
(
rεB − εB

2κ1
− λB

4κ2
− β2

)
ŵ2(1, t)

−
(
εB − λB

4κ2

)
‖ŵx[t]‖2

+
( λB

4κ2
+
‖g‖2B

2κ3
+ β1

)
‖ŵ[t]‖2 + ηm(t).

(66)

From Poincaré Inequality, we have that

−‖w̃x[t]‖2 ≤ 1

2
w̃2(1, t)− 1

4
‖w̃[t]‖2, (67)

−‖ŵx[t]‖2 ≤ 1

2
ŵ2(1, t)− 1

4
‖ŵ[t]‖2. (68)

Furthermore, we have from (55) and (56) that

Aε− λκ2B

4
− κ3B

2
− β3 > 0, and εB − λB

4κ2
> 0. (69)

Therefore, using (66)-(69), we can show that

V̇ ≤−
(
Aε(q − 1

2
)− λκ2B

8
− κ3B

4
− β3

2

)
w̃2(1, t)

−
(Aε

4
− 5λκ2B

16
− 5κ3B

8
− 5β3

4

)
‖w̃[t]‖2

−
(
εB(r − 1

2
)− εB

2κ1
− λB

8κ2
− β2

)
ŵ2(1, t)

−
(εB

4
− 5λB

16κ2
− ‖g‖

2B

2κ3
− β1

)
‖ŵ[t]‖2 + ηm(t).

(70)

From (55) and (56), we can show that

Aε(q − 1

2
)− λκ2B

8
− κ3B

4
− β3

2
> 0, (71)

εB(r − 1

2
)− εB

2κ1
− λB

8κ2
− β2 > 0. (72)

Thus, using (70)-(72), we can obtain that

V̇ ≤ −
(Aε

4
− 5λκ2B

16
− 5κ3B

8
− 5β3

4

)
‖w̃[t]‖2

−
(εB

4
− 5λB

16κ2
− ‖g‖

2B

2κ3
− β1

)
‖ŵ[t]‖2 + ηm(t).

(73)

Again, we have from (55) and (56) that

b1 =
Aε

4
− 5λκ2B

16
− 5κ3B

8
− 5β3

4
> 0, (74)

b2 =
εB

4
− 5λB

16κ2
− ‖g‖

2B

2κ3
− β1 > 0. (75)

Therefore, we have for t ∈ (tj , tj+1), j ∈ N that

V̇ ≤ −%V, (76)

where
% = min

{2b1
A
,

2b2
B
, η
}
. (77)
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Concentrating on this time interval, we can show that
V (t−j+1) ≤ e−%(t

−
j+1−t

+
j )V (t+j ). Here t+j and t−j are the right

and left limits of t = tj . Since V (t) is continuous (as
m(t), ‖ŵ[t]‖,‖w̃[t]‖ are continuous), we have that V (t−j+1) =

V (tj+1) and V (t+j ) = V (tj), and therefore,

V (tj+1) ≤ e−%(tj+1−tj)V (tj). (78)

Hence, for any t ≥ 0 in t ∈ [tj , tj+1), j ∈ N, we can also
obtain the following:

V (t) ≤ e−%(t−tj)V (tj)

≤ e−%(t−tj) × e−%(tj−tj−1)V (tj−1)

≤ · · · ≤

≤ e−%(t−tj) ×
i=j∏
i=1

e−%(ti−ti−1)V (0)

= e−%tV (0).

(79)

Thus, recalling that m(0) < 0 from Definition 1, we have that

A

2
‖w̃[t]‖2 +

B

2
‖ŵ[t]‖2 −m(t)

≤ e−%t
(A

2
‖w̃[0]‖2 +

B

2
‖ŵ[0]‖2 −m(0)

)
.

(80)

As m(t) < 0, we also have that

A

2
‖w̃[t]‖2 +

B

2
‖ŵ[t]‖2

≤ e−%t
(A

2
‖w̃[0]‖2 +

B

2
‖ŵ[0]‖2 −m(0)

)
.

(81)

This implies that the systems ŵ and w̃ given by (23) and
(24), respectively, are globally exponentially convergent in
L2-sense to zero. Using (5) and (17), we can show that
‖ũ[t]‖2 ≤ P̃ 2‖w̃[t]‖2 and ‖û[t]‖2 ≤ L̃2‖ŵ[t]‖2, respectively.

Here P̃ = 1 +
( ∫ 1

0

∫ x
0
P 2(x, y)dydx

)1/2
and L̃ = 1 +( ∫ 1

0

∫ x
0
L2(x, y)dydx

)1/2
. Further from (3), we can show that

‖u[t]‖2 ≤ 2‖ũ[t]‖2 + 2‖û[t]‖2. Therefore, we can obtain from
(81) that

min
{ A

P̃ 2
,
B

L̃2

}
‖u[t]‖2

≤4e−%t
(A

2
‖w̃[0]‖2 +

B

2
‖ŵ[0]‖2 −m(0)

)
,

(82)

B

L̃2
‖û[t]‖2 ≤ 2e−%t

(A
2
‖w̃[0]‖2 +

B

2
‖ŵ[0]‖2 −m(0)

)
. (83)

Therefore, we can derive the following estimate:

‖u[t]‖+ ‖û[t]‖

≤

√√√√√12
(
A
2 ‖w̃[0]‖2 + B

2 ‖ŵ[0]‖2 −m(0)
)

min
{
A
P̃ 2
, B
L̃2

} e−
%t
2 ,

(84)

Using (9) and (11), we can show that ‖w̃[0]‖2 ≤
Q̃2‖ũ[0]‖2 and ‖ŵ[0]‖2 ≤ K̃2‖û[0]‖2, respectively. Here

Q̃ = 1 +
( ∫ 1

0

∫ x
0
Q2(x, y)dydx

)1/2
and K̃ = 1 +( ∫ 1

0

∫ x
0
K2(x, y)dydx

)1/2
. Then we have

‖u[t]‖+ ‖û[t]‖

≤

√√√√√12
(
AQ̃2‖u[0]‖2 + (AQ̃2 + BK̃2

2 )‖û[0]‖2 −m(0)
)

min
{
A
P̃ 2
, B
L̃2

} e−
%t
2 ,

(85)

which implies that ‖u[t]‖+ ‖û[t]‖ → 0 as t→∞.
Remark 2: In Theorem 2, we have established the global

exponential convergence of the closed-loop system to the
equilibrium point. It follows from (81) that we could have
obtained global exponential stability if we chose m(0) = 0.
However, if m(0) = 0, then m(t) ≤ 0 (this can be shown
by following the same arguments in the proof of Lemma 1).
Then, the function ψ(t) in (44) is not defined when m(t) = 0.
Therefore, the existence of a minimal-dwell time cannot be
proved easily by following the same arguments as in the proof
of Theorem 1. Hence, m(0) has to be chosen strictly negative.

Remark 3: The parameter η > 0 characterizes the decay rate
of m(t) governed by (27). Thus, η may be used to adjust the
sampling speed of the event-triggered mechanism. The larger
η, the faster is the sampling speed. The parameter γ can be
chosen to scale up/down the values of β1, β2, β3 given by
(43), as required. We consider σ ∈ (0, 1) as a free parameter
that can be tuned appropriately such that the conditions for
guaranteeing a minimal dwell-time are met.

Remark 4: We remark that if a periodic sampling scheme
where the control value is periodically updated in a sampled-
and-hold manner is to be used to stabilize the plant (1) and
the observer (2), one can choose a sampling period T upper
bounded by the minimal dwell-time τ (54). It will ensure the
closed-loop system’s global exponential convergence because
the relation (79) is guaranteed to hold for all T ≤ τ . However,
one should expect τ to be very small as the coefficients a1, a2,
and a3 given by (51)-(53) are usually large. This issue, on the
other hand, reinforces the motivation for ETC, that is sample
and update only when required.

V. NUMERICAL SIMULATIONS

We consider a reaction-diffusion system with ε = 1;λ =
3; q = 3 and the initial conditions u[0] = 10x2(x − 1)2 and
û[0] = 5x2(x−1)2 + 5x3(x−1)3. For numerical simulations,
both plant and observer states are discretized with uniform step
size of h = 0.005 for the space variable. Time discretization
was done using the implicit Euler scheme with a step size
∆t = 0.001 s.

The parameters for the event-trigger mechanism are chosen
as follows: m(0) = −0.5, γ = 1 × 104, η = 1 or 100 and
σ = 0.1. It can be shown using (40)-(42) that α1 = 2.8318×
103;α2 = 759.3750;α3 = 3.0115 × 103. Therefore, from
(43), we can obtain β1 = 0.3146;β2 = 0.0844;β3 = 0.3346.
Finding that ‖g‖2 = 16.3241, let us choose κ1 = 2.1;κ2 =
200;κ3 = 1×103 and B = 2.0571 to satisfy (55). Then, from
(57), we can obtain ρ = 5.2.
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Fig. 2 shows the zero-input response of the plant and it is
clear that the system is unstable. Fig. 3(a) shows the response
of the pant under ETC with η = 1 and Fig. 3(b) shows the
evolution of ‖u[t]‖, ‖û[t]‖ and ‖ũ[t]‖. The evolution of the
control input when η = 1 is presented in Fig. 4(a) along with
the corresponding continuous-time control input. The behavior
of the functions associated with the triggering condition (25)
for the case of η = 1 is depicted in Fig. 4(b) (for better
visualization, the functions

(
−m(t)0.2

)
and

(
d2(t)/γ

)0.2
have

been plotted). Fig. 5 compares the ETC control input for η = 1
and η = 100, and it can be seen that η = 100 results in faster
sampling than η = 1.

Finally, we conduct simulations for 100 different initial
conditions u[0] = x2(x − 1)2 sin(nπx), n = 1, . . . , 100 and
û[0] = 2u[t] on a time frame of 10 s. Next, we compute
the inter-execution times between two events and compare the
cases for slow and fast sampling, i.e., η = 1 and η = 100,
respectively. Fig. 6 shows the density of the inter-execution
times plotted in logarithmic scale, and it can be stated that
when η is smaller, the inter-executions times are larger and the
sampling is less often. For η = 1, the inter-execution times are
around 0.1 s, whereas for η = 100, the inter-execution times
are typically in the range 0.01 s − 0.1 s. The minimal dwell
time τ calculated using (54) when η = 1 and η = 100 are re-
spectively 2.1305×10−6 s and 2.1241×10−6 s. Therefore, the
fact that an analogous sampled-data controller guaranteeing
exponential convergence has to be implemented using these
conservative sampled periods indicates the importance and the
need of ETC.

VI. CONCLUSION

This paper has proposed an event-triggered output feedback
boundary control strategy for a class of reaction-diffusion sys-
tems with Robin boundary actuation. We have used a dynamic
event triggering condition to determine when the control value
needs to be updated. Under the proposed strategy, we have
proved the existence of a minimal-dwell time between two
updates independent of initial conditions, which excludes Zeno
behavior. Further, we have shown the well-posedness of the
closed-loop system and its global L2-exponential convergence
to the equilibrium point.

In our future work, we may look into event-triggered bound-
ary control of reaction-diffusion PDEs with in-domain point
measurements in the presence of actuator delays. We also may
consider periodic event-triggered boundary control (PETC) of
reaction-diffusion systems. The idea is to evaluate the trig-
gering condition periodically and to decide, at every sampling
instant, whether the feedback loop needs to be closed. PETC is
highly desirable as it not only guarantees a minimal dwell-time
equal to the sampling period but also provides a more realistic
approach toward digital implementations while reducing the
utilization of computational resources.

APPENDIX A
PROOF OF PROPOSITION 1

Using the conventional Lyapunov analysis, we can prove
the global L2-exponential stability for the system (8) for any
q > 1

2 (this is ensured by Assumption 1).

(a)

(b)

Fig. 2: Results for open-loop plant with ε = 1, λ = 3, q = 3
and u[0] = 10x2(x− 1)2. (a) u(x, t). (b) ‖u[t]‖.

(a)

(b)

Fig. 3: Results for the event-triggered closed-loop system with
ε = 1, λ = 3, q = 3,m(0) = −0.5, γ = 1 × 104, η = 1,
u[0] = 10x2(x − 1)2 and û[0] = 5x2(x − 1)2 + 5x3(x − 1)3

(a) u(x, t). (b) ‖u[t]‖, ‖û[t]‖ and ‖ũ[t]‖.
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(a)

(b)

Fig. 4: (a) The event-triggered control (ETC) input for the
system considered in Fig. 3 along with the corresponding
continuous-time control (CTC) input. (b) Trajectories involved
in the triggering condition (25) for the system in Fig. 3.

Fig. 5: Comparison of ETC input U(t) for different η: η =
1 and η = 100, for the same system considered in Fig. 3.

Let us show the gain kernel P (x, y) and the observer gains
p1(x) and p10, which transform (4) into (8) via (5), are given
by (6) and (7), respectively. This proves Proposition 1.

Taking the time derivative of (5) along the solutions of (4)
and applying integration by parts twice, we can show that

ũt(x, t) =w̃t(x, t)− εP (x, x)w̃x(x, t)

+ εP (x, 0)w̃x(0, t) + εPy(x, x)w̃(x, t)

− εPy(x, 0)w̃(0, t)− ε
∫ x

0

Pyy(x, y)w̃(y, t)dy.

(86)

Differentiating (5) w.r.t x and using Leibnitz differentiation

Fig. 6: Density of the inter-execution times (logarithmic scale)
computed for 100 different initial conditions: u[0] = x2(x −
1)2 sin(nπx), n = 1, . . . , 100 and û[0] = 2u[t] on a time
frame of 10 s, for the same system considered in Fig. 3 with
η = 1 and η = 100.

rule, we can obtain that

ũx(x, t) = w̃x(x, t)− P (x, x)w̃(x, t)−
∫ x

0

Px(x, y)w̃(y, t)dy,

(87)

ũxx(x, t) =w̃xx(x, t)− dP (x, x)

dx
w̃(x, t)− P (x, x)w̃x(x, t)

− Px(x, x)w̃(x, t)−
∫ x

0

Pxx(x, y)w̃(y, t)dy.

(88)

Therefore, from (4a),(5),(86) and (88), we can show that

0 =
(
p1(x)− εPy(x, 0)

)
w̃(0, t)−

(
λ− 2ε

dP (x, x)

dx

)
w̃(x, t)

+

∫ x

0

(
εPxx(x, y)− εPyy(x, y) + λP (x, y)

)
w̃(y, t)dy.

(89)

Let us choose Pxx(x, y)−Pyy(x, y) = −λεP (x, y), dP (x,x)
dx =

λ
2ε , and p1(x) = εPy(x, 0) so that (89) is valid for any w̃.
Further, let us choose p10 = P (0, 0) so that the boundary
conditions (4b) and (8b) are satisfied, and choose P (1, 1) = 0
and Px(1, y) = −qP (1, y) so that the conditions (4c) and (8c)
are met. Therefore, the gain kernel P (x, y) in (5) as a whole
should satisfy the following PDE:

Pxx(x, y)− Pyy(x, y) = −λ
ε
P (x, y), (90a)

Px(1, y) = −qP (1, y), (90b)

P (x, x) =
λ

2ε
(x− 1). (90c)

It can be shown that the change of variables x = 1 − ȳ and
y = 1− x̄ on (90) leads to the same PDE (108-110) in [42] to
which the explicit solution has been obtained. Therefore, the
solution to (90) can be shown to be given by (6). Above we
have obtained p1(x) = εPy(x, 0) and p10 = P (0, 0), which
are the same as stated in Proposition 1.
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APPENDIX B
PROOF OF PROPOSITION 2

Let us show that the gain kernel K(x, y) and the control law
U(t), which transform (2) into (14)-(16) via (11), are given
by (12) and (13), respectively. This proves Proposition 2.

Taking the time derivative of (11) along the solutions of (2)
and applying integration by parts twice, we can show that

ŵt(x, t) = ût(x, t)− λ
∫ x

0

K(x, y)û(y, t)dy

−
∫ x

0

K(x, y)p1(y)dyw̃(0, t)− εK(x, x)ûx(x, t)

+ εK(x, 0)ûx(0, t) + εKy(x, x)û(x, t)

− εKy(x, 0)û(0, t)− ε
∫ x

0

Kyy(x, y)û(y, t)dy,

(91)

Differentiating (11) w.r.t x and using Leibnitz differentiation
rule, we can obtain that

ŵx(x, t) = ûx(x, t)−K(x, x)û(x, t)−
∫ x

0

Kx(x, y)û(y, t)dy,

(92)

ŵxx(x, t) =ûxx(x, t)− dK(x, x)

dx
û(x, t)−K(x, x)ûx(x, t)

−Kx(x, x)û(x, t)−
∫ x

0

Kxx(x, y)û(y, t)dy.

(93)

Therefore, from (7),(11),(14a),(15),(91) and (93), we can show

0 =
(
λ+ 2ε

dK(x, x)

dx

)
û(x, t)dy − εKy(x, 0)û(0, t)

+

∫ x

0

(
εKxx(x, y)− εKyy(x, y)− λK(x, y)

)
û(y, t)dy.

(94)

Let us choose Kxx(x, y)−Kyy(x, y) = λ
εK(x, y),Ky(x, 0) =

0, and, dK(x,x)
dx = − λ

2ε so that (94) holds for any û. Further,
let us choose K(0, 0) = 0, so that the boundary conditions
(2b) and (14b) are met, and choose U(t) =

∫ 1

0

(
rK(1, y) +

Kx(1, y)
)
û(y, t)dy so that the boundary conditions (2c) and

(14c) are satisfied. Therefore, the gain kernel K(x, y) in (11)
as a whole should satisfy the following PDE:

Kxx(x, y)−Kyy(x, y) =
λ

ε
K(x, y), (95a)

Ky(x, 0) = 0, (95b)

K(x, x) = − λ

2ε
x. (95c)

The solution to (95) is given by (12) [40]. Further, the control
law obtained above is the same as (13).

APPENDIX C
PROOF OF PROPOSITION 3

Subject to Assumption 1, let us choose parameters δ1, δ2 >
0 such that

εmin
{
r − 1

2
,

1

2

}
− 5λ

8δ1
− ‖g‖

2

δ2
≥ 0, (96)

and H > 0 such that

Hεmin
{
q − 1

2
,

1

2

}
− 5λδ1

8
− 5δ2

4
≥ 0. (97)

Here g(x) and r are given by (15) and (16), respectively. Note
that r > 1/2 due to Assumption 1. Then, let us consider the
following Lyapunov candidate

V =
H

2

∫ 1

0

w̃2(x, t)dx+
1

2

∫ 1

0

ŵ2(x, t)dx, (98)

where w̃ and ŵ are the systems described by (8) and(14),
respectively. We can show that

V̇ = −Hεqw̃2(1, t)−Hε
∫ 1

0

w̃2
x(x, t)dx

− rεŵ2(1, t) +
λ

2
ŵ(0, t)w̃(0, t)

− ε
∫ 1

0

ŵ2
x(x, t)dx+

∫ 1

0

g(x)ŵ(x, t)dxw̃(0, t).

(99)

From Young’s and Cauchy-Schwarz inequalities, we can ob-
tain that

λ

2
ŵ(0, t)w̃(0, t) ≤ λ

4δ1
ŵ2(0, t) +

λδ1
4
w̃2(0, t), (100)∫ 1

0

g(x)ŵ(x, t)dxw̃(0, t) ≤‖g‖
2

2δ2
‖ŵ[t]‖2 +

δ2
2
w̃2(0, t).

(101)

Therefore, using (100) and (101), we can write (99) as

V̇ ≤ −Hεqw̃2(1, t)−Hε‖w̃x[t]‖2 − rεŵ2(1, t)

+
λ

4δ1
ŵ2(0, t) +

λδ1
4
w̃2(0, t)

− ε‖ŵx[t]‖2 +
‖g‖2

2δ2
‖ŵ[t]‖2 +

δ2
2
w̃2(0, t).

(102)

From Agmon’s and Young’s inequalities, we have that

w̃2(0, t) ≤ w̃2(1, t) + ‖w̃[t]‖2 + ‖w̃x[t]‖2, (103)

ŵ2(0, t) ≤ ŵ2(1, t) + ‖ŵ[t]‖2 + ‖ŵx[t]‖2. (104)

Therefore, we can show using (102) that

V̇ ≤ −
(
Hεq − λδ1

4
− δ2

2

)
w̃2(1, t)

−
(
Hε− λδ1

4
− δ2

2

)
‖w̃x[t]‖2

+
(λδ1

4
+
δ2
2

)
‖w̃[t]‖2 −

(
rε− λ

4δ1

)
ŵ2(1, t)

−
(
ε− λ

4δ1

)
‖ŵx[t]‖2 +

( λ

4δ1
+
‖g‖2

2δ2

)
‖ŵ[t]‖2.

(105)

From Poincaré Inequality, we have that

−‖w̃x[t]‖2 ≤ 1

2
w̃2(1, t)− 1

4
‖w̃[t]‖2, (106)

−‖ŵx[t]‖2 ≤ 1

2
ŵ2(1, t)− 1

4
‖ŵ[t]‖2. (107)

Furthermore, we have from (96) and (97) that

Hε− λδ1
4
− δ2

2
> 0 and ε− λ

4δ1
> 0. (108)
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Therefore, using (105)-(108), we can show that

V̇ ≤ −
(
Hε(q − 1

2
)− λδ1

8
− δ2

4

)
w̃2(1, t)

−
(Hε

4
− 5λδ1

16
− 5δ2

8

)
‖w̃[t]‖2

−
(
ε(r − 1

2
)− λ

8δ1

)
ŵ2(1, t)

−
(ε

4
− 5λ

16δ1
− ‖g‖

2

2δ2

)
‖ŵ[t]‖2.

(109)

From (96) and (97), we have that

Hε(q− 1

2
)− λδ1

8
− δ2

4
> 0 and ε(r− 1

2
)− λ

8δ1
> 0, (110)

Thus, it follows from (109) that

V̇ ≤ −
(Hε

4
− 5λδ1

16
− 5δ2

8

)
‖w̃[t]‖2

−
(ε

4
− 5λ

16δ1
− ‖g‖

2

2δ2

)
‖ŵ[t]‖2.

(111)

Again, we have from (96) and (97) that

ϑ1 =
Hε

4
− 5λδ1

16
− 5δ2

8
> 0, (112)

ϑ2 =
ε

4
− 5λ

16δ1
− ‖g‖

2

2δ2
> 0. (113)

Therefore, (111) can be written as

V̇ ≤ −min
{2ϑ1
H

, 2ϑ2

}
V. (114)

Hence, from standard arguments, we can state that the closed-
loop system which consists of the plant (1) and the observer
(2) with the continuous-time control law (13), is globally
exponentially stable in L2-sense.
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