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Abstract: How to compute (super) hedging costs in rather general fi-
nancial market models with transaction costs in discrete-time ? Despite
the huge literature on this topic, most of results are characterizations of
the super-hedging prices while it remains difficult to deduce numerical
procedure to estimate them. We establish here a dynamic programming
principle and we prove that it is possible to implement it under some
conditions on the conditional supports of the price and volume processes
for a large class of market models including convex costs such as order
books but also non convex costs, e.g. fixed cost models.
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1. Introduction

The problem of characterizing the set of all possible prices hedging a Eu-

ropean claim has been extensively studied in the literature under classical

no-arbitrage conditions. In discrete-time and without transaction costs, a

dual characterization is deduced through dual elements, the equivalent mar-

tingale measures, whose existence characterizes the well known no-arbitrage
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condition NA, see the FTAP theorem of [6]. In continuous time, similar
characterizations are obtained under the NFLVR condition of Delbaen and
Schachermayer [7], [8] for instance. The Black and Scholes model [3] is the
canonical example of complete market in mathematical finance such that the
equivalent probability measure is unique. The advantage of this simple model
is that hedging prices are explicitly given. Unfortunately, for incomplete mar-
ket models, it is difficult to establish numerical procedures to estimate the
super-hedging prices from the dual characterization. This is why it is usual
to specify a particular martingale measure, see [27], [10] and [12].

In presence of transaction costs, the financial market is a priori incomplete
and computing the infimum super-hedging prices remains a challenge. In the
Kabanov model with transaction costs [14], the main result is a dual char-
acterization [14][Theorem 3.3] through the so-called consistent price systems
(CPS) that characterize various kinds of no-arbitrage conditions for these
models, see [14][Section 3.2]. Unfortunately, it is difficult to characterize the
consistent price systems and deduce a numerical estimation of the prices.
A first attempt (and the only one) is proposed in [21] for finite probabil-
ity space. More generally, vector optimization methods are proposed for risk
measures as in [4] still for finite probability spaces. Also, various asymptotic
results are obtained for small transaction costs by Schachermayer [28], [11]
and others [15], [16], still for conic models.

For non conic models, in the presence of an order book for instance, more
generally with convex cost, or with fixed costs, few results are available in
the literature. Well known papers such as [13], [24], [22] , [19], [20] only
formulate characterizations of the super-hedging prices. The very question
we aim to address in this paper is how to numerically compute the infimum
super-hedging cost of a Furopean claim.

To do so, we first provide a dynamic programming principle in a very
general setting in discrete time, see Theorem 3.1. Notice that we do not
need any no-arbitrage condition to formulate it. Secondly, we propose some
conditions under which it is possible to implement the dynamic programming
principle. Actually, we shall see that we only need to have an insight on the
conditional supports of the increments of the process describing the financial
market, mainly the price and volume process.

Our main results are formulated under some weak non-arbitrage conditions
such that the minimal super-hedging costs are non negative for non negative
payoffs, as in [5], [2]. These conditions avoid the unrealistic case of infinitely
negative prices. The main problem is how to compute an essential supremum
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and an essential infimum. We show that they may coincide with pointwise
supremum and infimum respectively. This is sufficient to compute backwardly
the hedging costs as solutions to pointwise (random) optimization problem.

The paper is organized as follows. The financial market is defined by a cost
process, which is not necessarily convex, as described in Section 2. Then, the
dynamic programming principle is established in Section 3, see Theorem 3.1.
The last Section 4 is devoted to the implementation of the dynamic program-
ming principle. Precisely, we formulate results that ensure the propagation
of the lower semicontinuity to the minimal hedging cost at any time, e.g.
with respect to the spot price, see Theorem 4.5, Corollary 4.9, Theorem
4.14, Theorem 4.16 and Theorem 4.26. In Subsection 4.3, fixed costs mod-
els are considered. Theorem 4.20 also states the propagation of the lower
semicontinuity that allows to numerically compute the minimal hedging cost
backwardly. It is formulated under a no-arbitrage condition on the enlarged
market only composed of linear transaction costs in the spirit of [19] but also
[22] in the context of utility maximization.

2. Financial market model defined by a cost process

We consider a stochastic basis in discrete-time (€, (F;){_,, P) where the fil-
tration (F;)_, is complete, i.e. Fy contains the negligible sets for P. By
convention, we also define F_; := Fy. If A is a random subset of R?, d > 1,
we denote by L°(A,RY) the family of (equivalence classes of) all random
variables X (defined up to a negligible set) such that X (w) € A(w), P(w) a.s.
It is well known that, if A(w) # ) P(w) a.s. and if A is graph-measurable,
see [23], then L°(A, RY) # (). When using this property, we refer it by saying
by measurable selection arguments, as it is usual to do when claiming the
existence of X € L°(R, F) such that X € A a.s..

We also adopt the following notations. We denote by intA the interior of
any A C R? and clA is its closure. The positive dual of A is defined as
A*:={z € R%: ax >0, Va € A} where az designates the Euclidean scalar
product of R%. At last, if r > 0, we denote by B(0,7) C R? the closed ball
of all z € R? such that the norm satisfies |z| < r.

We consider a financial market where transaction costs are charged when
the agents buy or sell risky assets. The typical case is a model defined by a
bond whose discounted price is S! = 1 and d — 1 risky assets that may be
traded at some bid and ask discounted prices S® and S?, respectively, when

3



selling or buying. We refer the readers to the huge literature on models with
transactions costs, in particular see [14].

Our general model is defined by a set-valued process (G;)_, adapted to
the filtration (F;)L,. Precisely, we suppose that for all t < T, Gy is Fi-
measurable in the sense of the graph Graph(G;) = {(w,z) : = € G(w)} that
belongs to F; x B(R?), where B(R?) is the Borel o-algebra on R and d > 1
is the number of assets.

We suppose that G (w) is closed for every w € Q and G(w)+R% C Gy(w),
for all ¢ < T'. The cost value process C = (C;)L_, associated to G is defined
as:

Ci(z) =inf{fa € R: ae;—2€ G} =min{fa € R: ae;—2 € Gy}, z€ R

We suppose that the right hand side in the definition above is non empty a.s.
and —e; does not belong to G; a.s. where e; = (1,0, --- ,0) € R%. Moreover,
by assumption, C;(z)e; — 2 € Gy a.s. for all z € R Note that C;(z) is the
minimal amount of cash one needs to get the financial position z € R? at
time ¢. In particular, we suppose that C;(0) = 0.

Similarly, we may define the liquidation value process L. = (£;)L, associ-
ated to G as:

Li(2) =sup{a € R:z—ae, € G}, zcRL

We observe that L,(2) = —Cy(—2) and G; = {z € R?: L,(2) > 0} so that
our model is equivalently defined by L or C. Note that G; is closed if and only
if L;(2) is upper semicontinuous (u.s.c.) in z, see [19], or equivalently C,(z)
is lower semicontinuous (l.s.c.) in z. Naturally, C;(z) = Cy(St, 2z) depends
on the available quantities and prices for the risky assets, described by an
exogenous vector-valued F;-measurable random variable S; of R, m > d,
and on the quantities z € R? to be traded. Here, we suppose that m > d
as an asset may be described by several prices and quantities offered by the
market, e.g. bid and ask prices, or several pair of bid and ask prices of an
order book and the associated quantities offered by the market.

In the following, we suppose the following assumptions on the cost process
C. For any t < T, the cost function C; is a lower-semi continuous Borel



function defined on R™ x R% such that

Ci(s,0) =0, Vs € R,
Ci(s, 7+ Aey) = Cy(s,z) + A\, A€ R, z € R%, s € R (cashinvariance),

Cr(s,z3) > Cp(s,x1), Va1, T9 St 9 — 11 € Ri (Cris increasingw.r.t.Ri),
|Ct(57$>| < ht(S,l’),

where h; is a deterministic continuous function. Note that Cr is increasing
w.r.t. R% is equivalent to Gy + R% C Gyp. Moreover, if ¢ is an increasing
bijection from [0, +00] to [0, +o0] such that 6(0) = 0 and §(c0) = oo, we say
that C; is positively super d-homogeneous if the following property holds:

Ci(s,Az) > 3(N)Cy(s,2),VA > 1, s € R}, x € R%

A classical case is when d(x) = x and the positive homogeneous property
holds, e.g. for models with proportional transaction costs, as the solvency set
process G is a positive cone, see [14]. More generally, if C,(s,z) is convex
in z and Cy(s,0) = 0, it is clear that C; is positively super d-homogeneous
with 0(z) = x. Actually, in our definition, the domain of validity A > 1 may
be replaced by A > r where r > 0 is arbitrarily chosen. In that case, all the
results we formulate in this paper are still valid. We now present a typical
model that satisfies our assumptions:

Example 2.1 (Order book). Suppose that the financial market is defined
by an order book. In that case, we define S;, at any time ¢, as

St = ((Stbﬂ"ja S?7i7j)7 (le%i,j7 Nt(%i?j))i:1 cedg=1, ks

)

where k is the order book’s depth and, for each i = 1,--- ,d, Sf’i’j,St“’i’j
are the bid and ask prices for asset ¢ in the j-th line of the order book and
(NP N&™) e (0,00)? are the available quantities for these bid and ask
prices. We suppose that Ntb ok N “F — 150 so that the market is somehow
liquid. By definition of the order book, we have S > S > ... > ghtk
and S&0t < S0 <. < %% We then define the cost function as

d
Ci(z) =2+ Ci(a"), z=(a',--- 2% eR
=2
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With the convention 21:1 = 0if 5 = 0, we consider the cumulated quantities
QY =37 NM 5 =0, k, the same for Q" We have:

J
Gl = TNV (- QRS G <y < @
r=1

J
Cily) = =D NPSP 4 (y+ QU)SPIT i — QU <y < — Q.
r=1

Note that the first expression of Ci(z) above corresponds to the case where
we buy y > 0 units of asset 7. The second expression is Ci(y) = —Li(—y)
when y < 0 so that —Ci(y) is the liquidation value of the position —y, i.e.
by selling the quantity —y > 0 at the bid prices. We observe that Ci(y) is a
convex function in y satisfying the cash invariance, such that C(0) = 0 and,
at last, we show that C! is positively super homogeneous as defined above.

To do so, we first consider y > 0 and we show that Ci(\y) > ACi(y) for
A > 1 by induction on the interval |Q®*/, Q¢*/*'] that contains y. For j = 1,
Ci(y) = 57"y and Ci(Ay) = CHQI™™) + (hy — Q") S where j is
such that Ay €]QP™*, Q@11 As S is the smallest ask price, we get that
CHQI™) > QE S and (y — QF)SPTL > (hy — Q) S W
deduce that Cj(Ay) > AyS;™" hence Ci(Ay) > ACi(y). More generally, if y €
JQI, QT dy > AQP hence Co(hy) > CiAQP™) + (\y — AQF ™) S
where j is such that QU < NQP™ < QP! Indeed, the extra quantity
Ay —AQ;" is bought at a price larger than or equal to the maximal ask price
5o when buying the quantity AQ%"7. As Q%" > Q¥ we deduce that
J > j + 1. Using the induction hypothesis, we have C}(AQP™7) > ACH(QF")
and we deduce that

Ci(Ay) 2 ACHQI™) + (g = AQE)SPT = ACH(y).
By the same reasoning, Li(\y) < ALi(y) if y > 0 with Li(y) = —Ci(—y).
Therefore, we also get that Ci(A\y) > ACi(y) for A > 1 and y < 0.

We finally conclude that the cost process C satisfies the conditions we
impose above. In particular, notice that Cy(s, z) is continuous in (s, z). A

A portfolio process is by definition a stochastic process (V;)I__, where
V_1 € Rey is the initial endowment expressed in cash that we may convert
immediately into Vy € R? at time ¢t = 0. By definition, we suppose that

AV, =V, —V,_1€ -Gy, as., t=0,---,T.
6



This means that any position V;_; = V;+ (—AV;) may be changed into the
new position V;, letting aside the residual part (—AV;) that can be liquidated
without any debt, i.e. L;(—AV;) > 0.

3. Dynamic programming principle for pricing

Let £ € L°(R? Fr) be a contingent claim. Our goal is to characterize the
set of all portfolio processes (V;)I__, such that Vy = &, as defined in the last
section. We are mainly interested by the infimum cost one needs to hedge &,
i.e. the infimum value of the initial capitals V_1e; € R among the portfolios
(V,)L_| replicating &.

In the following, we use the notation z = (21, 22, ..., 2¢) € R? and we denote
22 = (22, ..., 2%). We shall heavily use the notion of F;-measurable condi-
tional essential supremum (resp. infimum) of a family of random variables,
i.e. the smallest (resp. largest) F;-measurable random variable that domi-
nates (resp. is dominated by) the family with respect to the natural order
between [—o00, co]-valued random variables, i.e. X <Y if P(X <Y) =1, see
[14, Section 5.3.1].

3.1. The one step hedging problem

Recall that Vp_y >qg, Vr by definition of a portfolio process. Then, the
hedging problem Vy = £ ! is equivalent at time 7' — 1 to:

Lr(Via) 2€ <= Vi, =€ = Lo((0,V72)),
= Vi Zesssupy, (€= Lr((0,V2) — €9))
= Vi, > esssupg, |, (€4 Cr((0,62 = V),
= Vi, 2 FJ§“71<V7£27)1)7

where

Fr_i(y) = esssupp, , (€' +Cr((0,6% —y))). (3.1)

!The problem V >gq.. € is equivalent to our one if G + G C Gr. In general, any Vr
such that Vr >q,. £ may be changed into £ through an additional cost. So, the formulation
Vr = £ is chosen as we are interested in minimal costs.
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By virtue of Proposition 5.7 in Appendix, we may suppose that Féfl(w, Y)
is jointly Fr_; x B(R%!)-measurable, l.s.c. as a function of y and convex
if Cr(s,y) is convex in y. As Fr_; is supposed to be complete, we conclude
that Fo_, is an Fp_; normal integrand, see Definition 5.1 and [26].

3.2. The multi-step hedging problem

We denote by P;(§) the set of all portfolio processes starting at time t < T
that replicates ¢ at the terminal date T"

Ri(€) = {(Va)suyy —AV, € LGy, F), Vs >t + 1, Vr = £} .
The set of replicating prices of £ at time ¢ is
Pue) = {Vi= (G V) : (V)L € Ru©)}
The infimum replicating cost is then defined as:

ci(&) == essinfx, {Cy(Vh), Vi € Py(€)}.

By the previous section, we know that Vy_; € Pr_1(€) if and only if
Vi, > esssupy, | (fl + Cp(0,6® — V;é2_)1)> a.s.

Similarly, Vr_o € Rr_2(€) if and only if there exists VT(?l € LORYL, Fry)
such that

Vi, > ess Supz,. <ess SUpr, | (51 + Cr(0, €@ — VJE2_)1)> + Cr_1(0, VT(2_)1 — VT(2_)2)> )

By the tower property satisfied by the conditional essential supremum, we
deduce that Vi_y € Ry_o(€) if and only if there is V2, € LO(R4, Fr_y)
such that

Vi, > ess supz,. (51 + Cr(0, @ — VT(QA) + Cr_1(0, VT@A — VT(Z)) )

Recursively, we get that V; € P,(€) if and only if, for some v e LR FY),
s=t+1,---,T—1,and Vf) = £ we have

T
V! > ess supg, (51 + Z C(0, V) — ‘/5(2)1)> -

s=t+1
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In the following, for u < T — 1, &,_1 € L°(R%, F, 1), and £ € LO(RY, Fr),
we introduce the sets

07 (601, €) o= {62} x IZILORATL ) % {€@))

of all families (Vi?)iHL ) such that V%, = 2 v e LYRE !, F,) for all
s=u,---,T —1 and V = £@. We set r¢) == 1L(0,¢) = ML (&_1,6)
Whenf 7, =0.Whenu =T, we set ITL(&p_ 1, €) == {gﬁl}x{g(”}. Therefore,

the infimum replicating cost at time 0 is given by

Co(f)_eSS lnffoess SUp r, (5 +ZC 0, Vz Vg >>

V2ellf (€) 5=0

For 0 <t <T and V,_; € L°(R%, F,), we define 45(V,_,) as

v (Vis1) := essinfr, ess Supz, (g +ZC 0,v® ‘/3(2)1)>

V(Q)GHT(Vt 1,6) s=t

Note that v (V;_;) is the infimum cost to replicate the payoff € when start-
ing from the initial risky position (0, Vt@) at time ¢. Observe that ~*(V,_1)
does not depend on the first component V' ;. Moreover,

Ve (Vrot) = €+ Cr(0,6@ — V).

As Gr + R% C Gy, we also observe that V5 (Vr_1) > A9(Vir_y). At last,
observe that cy(§) = 'yg(O). Therefore, the main goal of our paper is to study
the random functions (’yf )t=01... 7 and to propose conditions under which it
is possible to compute them backwardly so that we may estimate ¢o(€). The
main contribution of this section is the following:

Theorem 3.1 (Dynamic Programming Principle). For any 0 <t < T — 1
and Vi_y € L°(R?, F,_1), we have

Ye(Vii1) = essinfr, esssupy, (Ct((), v — v+ 7§+1(Vt)> . (3.2

Ve LO(R4, Fy)

Proof. We denote the right hand side of (3.2) by 55 (V;_1). We first verify (3.2)
for t = T — 1. Recall that ’y%(VT,l) =&+ Cp(0,6® — ( 2 1) if Vr_; belongs
9



to LO(R?, Fr_1). It is clear that (3.2) holds for t = T — 1 by definition of
~5._(Vr_1). By induction, let us show that (3.2) holds at time ¢ if this holds
at time t + 1. Let us define

fi(Vie1, Vi) := ess supg, <Ct<07 ‘/2(2) - Vt(fi) + 7§+1(%)) 1 <T -1
We observe that the collection of random variables
Iy ={fi(Vie, Vi)« V; € L°RY, 7))

is directed downward, i.e. if f/ = f(V,.1,V/) € Iy, j = 1,2, then there
exists f; € ['y such that f; < f!' A f2. Indeed, to see it, it suffices to consider
fi = f[i(Vier, Vi) where V, = Vi g2y + V21 15 g2y Therefore, there exists
a sequence (V;"),>1 € L°(R% F,) such that 55(V;_;) = inf, fe(Vie1, Vi), see
[14, Section 5.3.1]. We deduce for any € > 0, the existence of V; € L°(R%, F;)
such that 7°(Vi_1) 4 € > ft(Vt(,zi, ‘N/t@)). Similarly, by forward iteration, using
the induction hypothesis v§(V,_1) = 75(V,_1), r > t + 1, we obtain the
existence of V, € LO(R?, F,) such that 7¢(V,_y) + € > fr(f/,q(z)l, \N/T@)), for all

r=t+1,---,T—1. With V,_; = V,_; and Vy = £, we deduce that

T
(Vi) + €T > ess supy, (e £3C0 7 vs%) S £ (Vi)

s=t

As € goes to 0, we conclude that 55 (V;_;) > ~5(Vi_1) . The reverse inequal-
ity is easily obtained by induction and using the assumption that 4% and ’yf
coincide if r > t with the tower property. The conclusion follows. O

4. Computational feasibility of the dynamic programming
principle

The dynamic programming principle (3.2) allows to get 75 (V;_;) from the
cost function C; and from ~° 1~ In this section, our first main contribution is
to show that ’yf is L.s.c. for any t and convex if the cost functions. Then, we
formulate some results allowing to compute w-wise the essential supremum
and the essential infimum of (3.2).

As the term C,(0, v® - V;(_Z%) in (3.2) is Fi-measurable, it is sufficient to
consider the conditional supremum

10



0; (V) == ess supg, 751 (V2)

to compute the essential supremum of (3.2). In the following, we shall use
the following notations:

DE(Viy, Vi) = C((0, V) — V) + 65(V), (4.3)
DE(Sy, Vo1, Vi) = Ci(Ss, (0, V2 = Vi21)) 4 65(Si, V). (4.4)

The second notation is used when we stress the dependence on S;.

4.1. Computational feasibility for convex costs

The following first result ensures the propagation of the lower semicontinuity
and convexity of the random function vf 4 to %5 as we shall see in Theorem

4.5. This is a crucial property to compute pointwise the essential infimum in
(3.2).

Proposition 4.1. Suppose that there exists a random F;1-measurable lower
semi-continuous function ﬁfﬂ defined on R® such that fo(Vt) "yfﬂ(‘/})
for all V;, € LO(Rd Fi). Then, there exists a random Fy-measurable lower
semi-continuous function ¢ defined on RY such that 65(V;) = 65(V;) for all
Vi € LO(Rd Fi). Moreover, the random function y +— 85( ) is a.s. convex if
Y 7t+1(3/) is a.s. convet.

Proof. We consider the random function
F(2) = 2" +90((0.2%) = 2" + £((0,29)), 2R

We have 7%, (Vi) = £((0, Vt(Q))) so it suffices to apply Proposition 5.7. [

In order to numerically compute the minimal costs, we need to impose
the finiteness of 75 (Vi_y), i.e. 75(Vi_y) > —oo, at any time ¢, and for all
Vi1 € LO(Rd, Fi—1). This is why we introduce the following condition:

Definition 4.2. We say that the financial market satisfies the Absence of
Early Profit condition (AEP) if, at any timet < T, and for all V; € L°(R4, F),
W(V,) > —00 a.s..

Remark 4.3.

1.) Let us comment the condition AEP. Suppose that AEP does not hold, i.e.
there is V; € L°(R?, F;) such that A; = {12(V;) = —oo} satisfies P(A;) > 0.
11



Any arbitrarily chosen amount of cash —n < 0 allows to hedge the zero
payoff at time ¢ on A; when starting from the initial position (0,V,?) by
definition of 7?(V;) = —oo. Then, at time ¢, we may obtain an arbitrarily
large profit on A; as follows: We write 0 = ((0,V;*) — ne;) 14, + a? ; where
al’ ; = (ne; — (0,V?)) 14,. The position (0,V;?) — ne; allows to get the zero
claim at time 7. Moreover, L;(a? ;) = nls, + L;((0, V;2))1,, tends to 400 as
n — oo on Ay, i.e. it is possible to make an early profit at time ¢, as large as
possible.

2.) If ¢ € L°(RY, Fr), then Y (Vi_1) > 72(Vs_1) > —oo under AEP.

3.) Under Assumptions 4 and 5 below, condition AEP holds by Lemma 5.23.
A

Assumption 1. The payoff & is hedgeable, i.e. there exists a portfolio process
(VET_, such that & = V.

u=0

Lemma 4.4. Under Assumption 1, yf(Vt_l) < oo for all Vi_y € L°(R4, F).

Proof. We observe that the amount of capital oy = C,(V,* — (0, Vt(fi)) allows
one to get the position V¢ — (0, Vt(a) Therefore, starting from the initial
position (0, V;(_Z%), the capital Cy(VF — (0, V;(_Qi)) is enough to get V;* and then
¢ at time T' since VS = ¢. We then deduce that

VEViiy) < oy < hy(Sh, ViE = (0, V%)) < o0

]

The following theorem states that convexity and lower semicontinuity
propagates backwardly from yf 41 to ~E.

Theorem 4.5. Suppose that Assumption 1 and condition AEP hold. Sup-
pose that there exists a random Fiii-measurable lower semi-continuous con-
ver function 3;., defined on RY such that 75, (Vi) = 75,,(Vi) for all V; €
LY(RY, Fy). Suppose that the cost function Ci(s,z) is convexr in z. Then,
there exists a random JFi-measurable lower semi-continuous convex function
ﬂ_yf defined on R¢ such that Vf(Vt_l) = ?f(Vt_l) for all Vi_, € L°(R%, F,) and
we have:
o) = inf (0,52 — o) + ().
yeR4

where éf 1 given by Proposition 4.1.
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Proof. By Proposition 4.1, we deduce that 65(V;) = 65(V;) for all V, e
LY(RY, F;) where 0% is an ]-"t measurable lower semi-continuous convex func-
tion. Therefore, Dy(v;_1,vy) 1= Cy(0, v — v!*)) + 6 (v,) is an Fy-measurable
Ls.c. convex function in (v,_1, ;). By Proposition 5.20, v+ (Vi—1) = ¢:(Vi_1)
where ¢;(w,v;_1) is F; @ R%measurable. We claim that ¢;(w, ) > —o0 a.s..
Otherwise, by measurable selection argument, we may find an F;-measurable
selection V;_; such that —oco = ¢(V;—1) = yf(Vt_l) on a non null set.
This is in contradiction with the AEP condition. Similarly, by Lemma 4.4,
we deduce that ¢;(w, ) < oo a.s.. Therefore, the random function ¢;(w,-)
only takes finite values a.s.. By Proposition 5.20, we finally conclude that
"yf(vt,l) = ¢¢(v4—1) is a real-valued random convex function. In particular,
~; is continuous. [

Remark 4.6. Suppose that the cost functions Cy(s, z), t < T, are convex
in z. Under Assumption 1, as v5(Vp_1) = € + Cp(0,€® — V) is Ls.c.
and convex in Vy_i, we deduce that Theorem 4.5 applies backwardly step
by step. In particular, it is possible to compute vf (v4—1) at any time ¢ as a
w-wise infimum. A

In the following, we consider conditions under which it is possible to com-
pute w-wise the essential supremum Gf . The main ingredient is the knowl-
edge of the conditional support suppr,Si41 of Siy1 knowing F;. Recall that
suppz,Si+1 is the smallest F;-measurable random closed set that contains
Sir1(w) as., see [9].

Assumption 2. For eacht < T — 1, there exists a family of Borel functions
(") m>1 defined on R™ such that suppz, Si11 admits the Castaing represen-
tation (" (Sy))m>1, i-e. suppr,Spy1 = cl((S¢))m>1-

Proposition 4.7. Suppose that there exists a lower semi-continuous func-
tion 7t§+1 defined on R™ x R? such that yfﬂ(‘/}) = ﬁfﬂ(StH,Vt) for all
V, € LORY, F,). Then, 65(V;) = SUD. € supp, 5141 35.1(2,Vi). Moreover, under
Assumption 2, there exists a function 0(s,v) defined on (s,v) € R™ x R%,
which is Ls.c. in v, such that 65(V;) = 05(S,, V;) for all V; € LO(R%, F,) and
we have:

0; (s,v) == sup s, (m(s),v)  (s,v) € R™ x R%

At last, 6%(s,v) is Ls.c. in (s,v) if the functions (e )m>1 are continuous and,
if 35.1(s,v) is convex in v, then 03(s,v) is conver in v.
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Proof. The proof is immediate by Proposition 5.6 and Lemma 5.8. O]

Assumption 3. For eacht <T — 1, there exists a family of Borel functions
(@) m>1 such that Sipq € {a*(St) : m > 1} a.s. and P(Si1 = o (Sy)|Fe) >
0 a.s. for allm > 1.

Proposition 4.8. Suppose that there exists a Borel function ?fﬂ defined
on R™ x R such that v¢, (Vi) = As,1(Sis1, Vi) for all V; € LO(RLF).
Then, under Assumption 3 , there exists a Borel function éf(s,v) defined on
(s,v) € R™ x R? such that 65(V;) = 05(S,, V) for all V; € LO(R?, F,) and we
have:

0; (s,v) == supAs,1 (m(s),v)  (s,v) € R™ x R~

Proof. The proof is immediate by Lemma 5.19. Note that we do not suppose
that C; is convex to obtain this result. O

Corollary 4.9. Assume that the assumptions of Proposition 4.7 or Propo-
sition 4.8 hold and Condition AEP holds. Suppose that ﬁfﬂ(s,v) s convex
in v. Then, 45 (Vi_y) = 35 (S;, Vi_y) where 35(s,v) is Ls.c. and convex in v.
Moreover,

yeRd

5E(s,v) = inf (ct<s, (0,52 — v®)) & sup A, (m(s), y>) |

Proof. Under our assumptions, 05(V;) = 65(S,,V;) for all V; € LO(R?, F,)
where 65 (s,v) = sup,, 35, (am(s),v) by Proposition 4.7 or Proposition 4.8.
As a supremum, 0% (s, v) is convex in v if so 77, ,(s,v) is. As Cy(s,y) is also
convex in y, we deduce that D¢ (y, v) = Cy(s, (0, y@ —v@)) 465 (s, y) is convex
in (y,v). By Proposition 5.20 under AEP, 5% (s,v) = inf,cge DS (y,v) € R is
convex in v hence it is continuous. [

4.2. Computational feasibility under strong AIP no-arbitrage
condition

The results of Section 4.1 are not a priori sufficient to compute backwardly
05 | as we need 7 (s,v) be Ls.c. in s, see Proposition 4.7. This is why, we
introduce the following conditions.

Assumption 4. The payoff function & is of the form & = g(Sr), where
g € RY is continuous. Moreover, £ is hedgeable, i.e. there exists a portfolio
process (VE)T_, such that € = V5.

14



Assumption 5. The conditional support is such that suppg,Sii1 = ¢+(S)
where ¢; is a set-valued lower hemicontinuous function, see Definition 5.11,
with compact values such that ¢.(S;) C B(0, R¢(S;)) where Ry is a continuous
function on R™.

Note that under Assumption 2, ¢(S;) = cl{a,(S;) : m > 1} defines a
set-valued lower hemicontinuous function if the functions (ay,)m,>1 are con-
tinuous, see Lemma 5.15.

Definition 4.10. We say that the condition AIP holds at time t if the min-
imal cost c;(0) = v2(0) of the European zero claim & =0 is 0 at time t <T.
We say that AIP holds if AIP holds at any time.

The condition AIP has been introduced for the first time in the paper [2].
This is a weak no-arbitrage condition which is clearly satisfied in the real
financial markets i.e. the price of a non negative payoff is non negative.

Lemma 4.11. Suppose that the cost functions are either sub-additive or
super-additive. Then, AIP implies AEP.

Proof. We prove it in the case where the cost function is sub-additive, the
supper-additive case is similar. Suppose that AIP holds and Cy(s,v) is sub-
additive in v. For any V;,V; € L°(R%, F;), we have:

D(S;, Vi, Vi) = Ci(S, Vi — Vi) + 02(S;, V),
> Cy(S;, ‘7:5) + 9,?(5}, ‘7t) — Ci(Si, V2),
= DY(S,,0,V;) — Ci(Sy, Vi).

Under AIP, DY(S;,0,V;) > 0 hence DY(S;, Vi, V;) > —Cy(S;, V;). We deduce
that 77 (V;) = ess infy, DP(Sy, Vi, Vi) > —Cy(Sy, V;) > —o0. O
Definition 4.12. We say that the condition SAIP (Strong AIP condition)
holds at time t if AIP holds at time t and, for any Z; € L°(R%, F;), we have
DY(S;,0, Z;) = 0 if and only if Zt@) =0 a.s.. We say that SAIP holds if SAIP
holds at any time.

Recall that DY(S;,0,Z;) is given by (4.4) and it is the minimal cost ex-
pressed in cash that is needed at time ¢ to hedge the zero payoff when we
start from the initial strategy V; = (0%(Z,), Zt(Q)), initial value of a portfolio

process (V,)i<u<r such that Vp = 0. Therefore, the condition SAIP states
that the minimal cost of the zero payoff is 0 at time ¢ and this minimal cost
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is only attained by the zero strategy V; = 0. This is intuitively clear as soon
as any non null transaction implies positive costs.

The following proposition shows that the classical Robust No Arbitrage
NA™ ([14, Chapter 3 |) used to characterize the super hedging prices in the
Kabanov model with proportional transaction costs is stronger than the SAIP
condition.

Proposition 4.13. Suppose that int Gi # 0 for any t < T. Then, NA*
implies SAIP.

Proof. Recall that NA" is equivalent to the existence of a martingale (K;)s<r
such that K, € int G, [14, Theorem 3.2.1]. Consider Zr_; € LO(RY, Fr_;).
As Dy_1(0, Zy—1) = Dp_1(0, (0, ZF}Q_)I)), we may suppose that Zr_; = (0, Z:(FQ_)I).
By the definition of C,,, there exists g, € L°(G,, F.), u = T —1,T, such that:

Cra((0, 22 ))e! = gra = (0, 257)

Cr((0,=2Z))e' = gr = (0,- 2,
Adding these equalities, we get that Dy_1(0, Zp_)e! = gr_1 + gr for some
gr € LY(Gr, Fr), see (4.3). So, we get that KpDrp_1(0, Zr_1)e' > Krgr_y
and, taking the generalized conditional expectation w.r.t Fr_;, we deduce
that KT_lDT_1<O, ZT_1)61 Z KT—lgT—l Z 0. Since KT_161 = Kfllw_l > 0,
AIP holds at time T'— 1. Moreover, gr_; # 0 a.s. as soon as Z;zll = (. Since
Kp_y € int G}_,, we finally deduce that

Kr_1D%_(5:,0,Zr_1)e" > Kr_1gr—1 > 0

as soon as 2}221 # 0, which means that SAIP holds at time 7" — 1.

Suppose that we have already shown SAIP for s > ¢ 4+ 1. For a given
Z, € L°(RY, F,), we consider g, € L°(Gy, F;) such that

Ci((0, Z28))e! = g = (0, 27). (4.5)

Since AIP holds at time ¢ 4 1, by Lemma 4.11, we have ~;41(Z;) > —oo un-
der AEP. Since the family {D?, | (Z;, Zi11), Zi11 € LO(RY, Fipn)} is directed
downward, we deduce the existence of a sequence 77, € L°(R?, Fi41), n € N
such that

’}/?Jrl(Zt) = €SS iantJrlGLO(Rd,]:tJrl) D?Jrl(Zt, Zt+1) = Hnlf D?+1(Zt, Zthrl) > —00 a.s.
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We deduce that, for any e > 0, there exists Zf,, € LY(R% Fi41) such
that v, ,(Z:) + € > DY, (Z;, Zf,,). Proceeding forward with the induction
hypothesis, we construct a sequence g¢ € L°(Gy, Fs),s >t + 1, such that

T
(DY0,Z) +eT)e' =g+ Y gt
s=t+1

Therefore, multiplying by K7 € G} and then taking the (generalized) con-
ditional expectation knowing F7_q, we get that

s=t+1

T-1
Kr(D{(0,2,) + €T)e' > Ky (gt + Z g§> )

T-1
Kr_1(D)(0,2;) + €T)e' > Kp_y (gt + Z 9;) :

s=t+1

By successive iterations, we finally get that K;(D?(0, Z;) + €T')e' > K;g;.
Since g; does not depend on ¢, see its definition in (4.5), we deduce as € — 0,
that K;D?(0, Z;)et > Ki;g; > 0 and K;D?(0,Z;)e! > 0 if g # 0 when
Zt@ # 0. Therefore, SAIP holds at time ¢t and we may conclude. O

The following result is the last main contribution of this section: It states
that the minimal cost function 'yf is a l.s.c. function of S; and V;_q, i.e. Vf
inherits from the lower-semicontinuity of yf 1, under Assumption 4 and 5, if
SAIP holds as we shall see. We introduce the notation

S410,1) = {z € R*: 2! =0and|z| = 1}.

Theorem 4.14. Suppose that C, is positively super d-homogeneous. Suppose
that there exists a lower semi-continuous function ﬁfﬂ defined on R™ x R?
such that ve (Vi) = 35,1(Six1, Vi) for all V; € LR, F;). Assume that
Assumption 4 and Assumption 5 hold. Suppose that the cost function Cy(s, z)
is l.s.c. in (s,z) and Cy is either super-additive or sub-additive. Then, if
inf, ¢ ga-1(0,1y D (S1, 0, 2) > 0, VE(Vie1) = A5(Ss, Viey) where 35 (s, v,_1) is L.s.c.
in (s,v4-1).

Proof. Since 7, ,(s,v) is lower semi-continuous in s, we deduce that 65 (V;) =
05 (S;, V;) by Proposition 5.6, for all V; € L°(R?, F;), where

Blsw) = sup 3ale0)
Z€¢t(st)
17



As ¢y is lower hemicontinuous by assumption, we deduce by [1, Lemma 17.29]
that 6%(s,v) is Ls.c. in (s,v). Therefore, the function

Df(s,vt,l,vt) = Cy(s, (O,vt( ) _ U,f 1))+ 05(5 vy)

is Ls.c. in (s,v,_1,v;) by assumption on C;. By Lemma 5.5, we get that
Y (Vie1) = A5(Sy, Viey) where 35 (s,v;,_1) = inf,,cra DS (5,01, v;). The next
step is to show that ’yf(s,vt,l) = infy, e, (s,001) Df(s,vt,l,vt) where ¢; is a
set-valued upper hemicontinuous function, see Definition 5.10, with compact
values. We then conclude that 4% (s, v,_1) is Ls.c. in (s,v;_1) by Proposition
5.17.

To obtain ¢, first observe that 4% (V,_1) < D$(s,v,_1,0) hence we get that
%&g(vtfl) = :Ytg(sta Vifl) where :Ytg(sa Ut*1> = infUteKt(&’Utfl) Df(‘g? Ut—1, Ut) and

Ki(s,v;1) = {Ut cR¢: Df(s,vt_l,vt) < Df(s,vt_l,())}.

Since Cr is increasing w.r.t. R% | we deduce that Dt (s,v1,0,) = DY(s, v,-1, 1)
Moreover,

DY (s,vi-1,01) = Culs, (0,07 =0 1)) 467 (5, 01) = Cu(s, (0, —v;2))+D} (5,0, )
in the case where C; is super-additive and, if C; is sub-additive, we have
DY (s, v_1,v;) = Cy(s, (0,0 —vZ))+02(s,v0) = —Ci(s, (0,07))+DY(s,0, ;).

As C; is dominated by a continuous function by hypothesis, we get that
DY(s,vs_1,v;) > ht(s vi_1) + D(s,0,v;) where h; is a continuous function.
Moreover, by Lemma 5.21, if |vt| > 1,

DtO(SaO7Ut) Z 5(|Ut|)D?(SaOavt/|vt|) Z 6(|Ut|) Esziil}lf(o 1) D?(S,O, Z) (46)

~ By Lemma 5.22, | DS (s, v,-1,0)| < hé(s,v,_1) for some continuous function
K¢ > 0. Recall that inf,. sa-1(0,1) DY (S, 0, 2) > 0 a.s. by assumption. It follows
that K(s,v:_1) C ¢(s,vi_1) := By(0,7¢(s,v;_1) + 1) where

ri(s,vp_1) = 07! <%>

i(s) = inf  D%(s,0,2), M(s,v_1) = |hu(s,v—1)| + BE(s, v,-1).
2€54-1(0,1)
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Since )\ is continuous and 4, is L.s.c. by Proposition 5.17, we deduce that \; /i,
is u.s.c. on the open set O := {(s,v;_1) € R™"xR%: ir(s,v,_1) > 0}. Asd1is
continuous and increasing, we finally get that r; is also u.s.c. in (s,v;_1) € O;.
By Lemma 5.12, we deduce that the function ¢, is upper hemicontinuous in
(s,vi-1) € Oy. Therefore, ﬁf(s,vt_l) = infy, ey (5,00 1) Df(s, Vi1, ;) is L.s.c. on
O, by Proposition 5.17. Observe that (S;, z) € O, for all z € S(0, 1) a.s. under
our hypothesis. By Lemma 5.23, ’yf(St, Vie1) > hy(S;, V1) for some contin-
uous function h;. Therefore, replace &f(s, vi_1) by ﬁf(s, vi—1) V hy(s,v,-1) s0
that, w.l.o.g., we assume that ﬁ(s, vi_1) > hy(s,v_1). By Lemma 5.18, it is
then possible to extend &f as a l.s.c. function on the whole space R™ x R,
The conclusion follows. m

The following result asserts that the SAIP condition and the condition
inf,cga-1(0,1) D (Si, 0, 2) > 0, both with AIP, are actually equivalent.

Theorem 4.15. Assume that Assumption 4 holds. Suppose that either As-
sumption 5 holds or the cost functions Cy(s, z) are convex in z. Suppose that
the cost functions Cy(s,z) are Ls.c. in (s,z) and Cy(s,z) are either super-
additive or sub-additive, for any t < T. Then, the following statements are
equivalent:

1.) SAIP.
2.) AIP holds and inf ,cga-1(9 1y DP(S;,0,2) > 0 a.s..

Proof. Let us show that 1.) implies 2.). Suppose first that Assumption 5
holds. As v%(Z7) = Cr(0, —Zg)) is l.s.c. in Zp, we deduce by Proposition
4.1 that 6% (Z7_1) is Ls.c. in Zp_y. Therefore, DY (St_1, Zr_o, Z7_1) is
Ls.c. in (Zp_y, Zr_1). By lower-semicontinuity on the compact set S1(0, 1)
and by a measurable selection argument, there exists ZT,l € LO(Rd, Fr_1)
such that

Zesifllf(o ) D§_(Sr-1,0,2) = D31 (Sr-1,0, Zr1).

Moreover, D% _,(Sr_1,0, ZT_l) > 0, Le. inf,ega-1(01) Dp_1(Sr—1,0,2) > 0
under SAIP. By Theorem 4.14, we deduce that v ,(S7_1, Zr_2) is ls.c.
in Zr_5. By Proposition 4.1, we deduce that 6% ,(Z7_5) is l.s.c. in Zp_s.
Therefore, DY ,(S7_9, Zr_3, Zr_5) isls.c. in (Zr_3, Zp_3) and, as previously,
we deduce that inf,cga-1(91) D}_5(S7—2,0, 2) > 0 under SAIP. Then, we may
proceed by induction by virtue of Theorem 4.14 and Proposition 4.1.
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At last, if the cost functions are convex, recall that AEP holds by Lemma
4.11. Then, it suffices to apply Theorem 4.5 and Proposition 4.1 to deduce
that D?(S;,0,2) is L.s.c. in 2 so that we may conclude similarly.

Let us show that 2.) implies 1.) Suppose that DY(S;,0,Z;) = 0 for some
Zy € L°(R?\ {0}, ;). By Lemma 5.21,
D{(8:,0, Zy) > 6(|Z:|) D} (S, 0, Zi /1 Z4]) > 6(1Z4]) esg{llf(o ) D} (S4,0,2) > 0.
This yields a contradiction hence the conclusion follows under Assumption
D. [

We then conclude that, under SAIP, the dynamic programming principle
allows to compute ’yf backwardly so that it is possible to deduce the minimal
hedging price ¢o(&) = 75(0).

Theorem 4.16. Assume that Assumption J and Assumption 5 hold. Suppose
that the cost functions are l.s.c. and either super-additive of sub-additive.
Then, under the condition SAIP, there exists l.s.c. functions ’yf defined on
R™ x R™ such that, for all V,_y € LO(RY, Fi_y), v (Vie1) = 35(Sy, Vie1).

Moreover, the dynamic programming principle 3.2 is computable w-wise as:

¥ (S Vic) = inf [ Cu(S,, (0,4 = V) + sup 4f4(s.9) |,
YER 5€¢pt(St)
where ¢y(S;) = suppz, Si1. Also, the infimum hedging cost of & at any time
t is reached, i.e. 4 (V,_1) is a mimimal cost.

4.3. The case of fized transaction costs

In the case of fixed costs, the cost functions C;, t < T, are not convex in
general. Moreover, C; is a priori positively lower homogeneous, i.e. for any
A > 1, C(Az) < ACy(z). Then, C; does not satisfy the assumptions we
impose in this paper. Nevertheless, we shall see in this section that we may
also implement the dynamic programming principle under a robust SAIP
condition imposed on the enlarged market with only proportional transaction
costs.

To do so, recall that for a l.s.c. function g, the horizon function (see [26,
Section 3.C]) ¢* of g is defined as:

9°°(y) := lim inf g(ozy).

a—0o0 «
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Recall that ¢* is positively homogeneous and l.s.c. in y. We then define the
horizon cost function as

Ci(s,y) = C°(s,y) = liminf M. (4.7)

a—0o0 «

The liquidation value associated to the cost function C, is then given by

- L
Li(s,y) = limsup M.
a

a—0o0

Ct<87 Oéy>

Note that in the case where Ct(s, y) = limg 00 , then ﬁt = L".

Moreover, if C, is subadditive, we deduce that
Gy(w) == {z: Ly(Si(w),z) >0}

is an J;-measurable random positive closed cone. We then deduce that the
enlarged market defined by the solvency sets (Gt)te[O,T] corresponds to a
model with proportional transaction costs, as defined in [14][Section 3]. The
cash invariance property propagates from C; to Ct. In that case, we may
verify that L;(s,z) = max{a € R : z — ae; € G} and similarly, we have
Ci(s,z) =min{a € R : ae; — z € G;}. We then deduce the following;:

Lemma 4.17. Suppose that C, is cash invariant. Then, Gy C G, if and only
if Ci(Sy, z) < C(Sy, 2) for any z a.s..

Proof. First suppose that G; C G,. As Ci(Si, 2)er — z € Gy, then we get
that Cy(Sy, 2)er — z € Gy. Therefore, we deduce that

~

Ci(s,z) =min{a e R: ae; — z € G} < C(Sy, 2).

Reciprocally, if Ct < Gy, then IAJt >}, hence G, C Gt. O

Note that in [19], such an enlarged model (Gt)te[oj] is studied and L, is
the liquidation value of the closed conic hull K; of Gy, i.e. G, =K,.

Example 4.18. The market is composed of one bond whose price is B; = 1
and d — 1 risky assets, d > 2, whose prices are described by a family of bid
and ask prices and fixed costs S = ((S%, S®% ¢%)),=s.... 4. In the following, we
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denote by s = ((s%, 5% ¢"));=a... 4 any element of R3@~Y. We consider the
fixed costs model defined by the following liquidation process:

d
Li(s,y) = y'+ ) Li(s" s, ¢y, (s,9) € R**D x R,
=2

L5, ) = (s = ) Ly (0% — ) Lo

Note that the (c);—y.. 4 are interpreted as fixed costs while (5%, s%%),_5 .. 4
are bid and ask prices for the risky assets. We may of course generalize this
model to an order book with several bid and ask prices for each asset, as
in Example 2.1. Recall that by definition C,(s,y) = —L;(s, —y) and we may
verify that Cy(s, ) is Ls.c. in every (s,y) such that (¢*);—a... 4 € RT". To see
it, it suffices to observe that Li(s,y) is continuous at each point (s,y) such
that y # 0. At last, if y = 0, Ly(s,y) = 0 and liminf, ,; , .0 L(r, y) < 0 since
ci > 0. Therefore, L! is u.s.c. Moreover, C;(s,y) subadditive in y. A direct

computation yields that L;(s,y) =y + 37, L (s?, 5%, y') where

~q

Ly (s, ™ y') = (y) "™ — (y) "™
Note that L, = L and we have Cy(s,y) = y* + S0, Ci(s*, s, ') where
Ci(s™, s, y") = (y')Fs™ = (y') "™

Observe that IAJt and Ct are continuous in (s,y). Moreover, Ct < C; and Ct
is super d-homogeneous with d(z) = z. A

In the following, we adapt the notations of Section 3 to the enlarged model
(Gt)eepo,n as follows: We set

Ar(St, Vr_1) = gl(ST) + CT(STa (0, 9(2)(ST) - VT(’2—)1))7

and we define recursively

0; (Vi) = esssupg 451 (Vi),
DE(Si, Vi, Vi) = CulS, (0, V) — VD)) + 65(Sh, ).

Definition 4.19. We say that the robust no-arbitrage condition RSAIP holds
at time t if the SAIP condition holds at time t for the enlarged model (Gy¢):cjo.17-
We say that RSAIP holds if it holds at any time.
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Theorem 4.20. Suppose that the enlarged market satisfies G, < Cy, C
is super d-homogeneous and either sub-additive or super-additive. Suppose
that there exists a lower semi-continuous function ’yfﬂ defined on R™ x R?
such that v5, (Vi) = A1 (Ser1, Vi) for all Vi € LO(RY, F,). Assume that As-
sumption 4 and Assumption 5 hold. Suppose that the cost function Cy(s, z)
is l.s.c. in (s,z) and C; is either super-additive or sub-additive. Then, if
inf,cga-1(0,1) DO(S,,0,2) > 0, 45 (Viey) = 35(Sy, Vi1) where 35 (s, v,_1) is Ls.c.
in (s,v;-1).

Proof. As Cy(z) < Cy(z), we deduce by induction that D2(s, 0,v;) < D(s,0,v;).
We adapt the main arguments of the proof of Theorem 4.14. Recall that
D(s,v_1,v¢) > hy(s,v_1) + D%(s,0,v;) where h, is a continuous function.
By Lemma 5.21, we have for |v;| > 1,

Dy(s,0,0) 2 D(5,0,0,) = 8(|ve) D (5,0, 00/ |oe]) = 6(lwel) _ inf ~ D(s,0,2).

2€54-1(0,1)

Therefore, we also get thatjf(s,vt_l) = infy, ek, (o0 1) Dt (s,v_1,v;) where
Ki(s,vi-1) € ¢i(s,v11) == By(0,74(s,v:-1) + 1) and

ri(s, ) = 87 (%) |

() =it DI(s,0,2), Msvien) = (s vee)| £ B s, i)
Applying Theorem 4.14 by induction to the enlarged market, we deduce
that DY(s,0,z2) is Ls.c. in (s, z), see the proof of Theorem 4.14. We then

conclude as in the proof of Theorem 4.14.
m

Remark 4.21. Recall that the condition inf,cga-1¢ 1) ﬁ?(St,O,z) > 0 we
impose in the theorem above holds under the RSAIP condition by Theorem
4.15. For a fixed costs model, this means that SAIP holds for the enlarged
market, a priori without fixed cost. Moreover, the other conditions we impose
are also satisfied in the fixed costs model of Example 4.18. A

4.4. Computational feasibility under a weaker SAIP
no-arbitrage condition

In this section, we consider a no-arbitrage condition called LAIP, weaker
than SAIP, but still sufficient to deduce that the essential infimum in the
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dynamic programming principle (3.1) is a pointwise infimum so that it can
be numerically computed.

Lemma 4.22. Suppose that C; is sub-additive for any t < T. Then, for any
payoff € € LO(R?, Fr), the function Dt defined by (4.3) satisfies the following
mequality:

th(‘/;f—l + Vz—la ‘/;f + ‘Zﬁ) S Df(%—lv VZ) + D?(‘Zb—la ‘Zﬁ)
Proof. By definition with the sub-additivity of Cr, we have:

S (Vpoy+ Vrt) = € +Cp((0,6® — v — 7)),
= &+ Cr((0,—V22) + Cr((0, V32,
< A5 (Veoa) + 92 (Vroa).

We deduce that Hgfl(VT,l + V) < 9%71(VT,1) + 609, (Vr_1) and, since
D5 (Vg Vp_1) = Cr_1((0, Vp—y — Vip_a)) + 05(Vir_1), we get that:

D§_1(VT_2 + Va1, Vp_1 + VT—I) < Dg“_l(VT—% Vir_1) + D%,l(VT_z, VT—1)-
Taking the essential infimum with respect to Vp_; and Vp_q, we get that

Vo1 (Vr—a + Vi_o) < v, (Vroa) + %5y (Vir—a).

We may pursue by induction and conclude. O]

We now introduce the LAIP condition. By Proposition 5.7, we may sup-
pose that the function DJ(y, z) defined by (4.3) is ls.c. in (y,2) and it is
F2B(RY)®B(R?) measurable w.r.t. (w,y, z). Note that, under AIP, the fam-
ily of random variables N, := {Z, € L°(R*, F}), Z} =0, D{(0,Z;) =0} co-
incides with {Z, € L°(R%, F), Z} =0, DY(0,Z,) < 0}. Therefore, by lower
semicontinuity, N; is a closed subset of LO(R%, F;). Moreover, N; is Fi- de-
composable, see [14, Section 5.4]. Therefore, by [14, Proposition 5.4.3], there
exists an JF;-measurable random set N; such that A = LY(Ny, F).

Definition 4.23. We say that the condition LAIP (Linear AIP condition)
holds at time t if AIP holds at time t and N, is a linear vector space, or
equivalently Ny is a.s. a linear subspace of RY. We say that LAIP holds if
LAIP holds at any time.
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Note that if Ny = {0}, then SAIP, AIP and LAIP are equivalent. In general,
SAIP implies LAIP. The following result gives a financial interpretation of
LAIP. If LAIP holds, the cost to hedge the zero payoff from an initial risky
position Z; = Vt(z) € LO(R41 F,) is zero if and only if the cost is also zero for
the position —Z;. This symmetric property is related to the SRN condition
of [17].

Lemma 4.24. Suppose that C; is sub-additive and is positively super §-
homogeneous, for any t < T. The following statements are equivalent:

1.) LAIP holds.
2.) AIP holds and, if Z; € L°(R?, F;), then DY(0,Z;) = 0 if and only if
DY0,~Z,)=0,t<T.

Proof. The implication 1.) = 2.) is immediate. Reciprocally, suppose
that 2.) holds. Let us show that N, is stable under addition. We consider
Z}, Z? € N;. By Proposition 4.22, we get under AIP that

We deduce that Z} + Z} € N;. By induction, we then deduce that for any
integer n, nN; C N;. Moreover, by Lemma 5.21, if A\, € L°((0,1], F),

D}(0,V;) = D{(0, Ae(Ae) " Va) = 6((A) 1) D(0, AV3) > 0.

So V; € N; implies that \,V; € N; if A\, € L°((0,1], ;). Finally, as NA; C A,
MV € N, for every A\, > 0. Moreover, N, is symmetric by assumption. The
conclusion follows. O

In the following, let us consider N+ := {2 € R : 2z = 0, Vo € N;}, the
random J;-measurable linear subspace orthogonal to N;.

Lemma 4.25. Suppose that C; is sub-additive and LAIP holds. Then, for
all Vi_y € LY(RY, F,), there exists V2 € LO(N;-, F;) such that
D;(Vio1, Vi) = D (Viey, V) aes..

Proof. By a measurable selection argument, it is possible to decompose any
V, € L°(R4, F) into V; = Vi1 + V2, where V! € LO(N;, ), V2 € L°(Ni, F).
By Lemma 4.22, we have
Dtg(vtfla V;f) < Df(‘/;,l, ‘/;2) + D?(Ou V;l) = Df(vtfla Vt2>
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On the other hand, as V> = V; — V;! and —V;! € N; under LAIP, we also
have

D (Vi_y, V2) < DE(Viiy, Vi) + DY(0, V1) = DE(Viy, Va).

The conclusion follows. O
In the following, we assume the following condition.

Assumption 6. For anyt < T, |C;((0,2?))| < hy(x), where hy is a random
function hy : (w,x) € AXRY = hy(w, z) € R which is F; @ B(R?)-measurable
and continuous a.s. in x.

~ Note that the condition above holds under our initial hypothesis with
hi(z) = hi(St, ) but, here, we dont stress a dependance of C; on S;.

Theorem 4.26. Suppose that there exists a lower semi-continuous func-
tion ’ny defined on R%. Assume that Assumption 6 holds. Suppose that the
cost function Cy(z) is Ls.c. in z and Cy is sub-additive, positively super §-
homogeneous. If LAIP holds, then v*(Vi_1) = 35(Vi_1) where 3 (v,_1) is Ls.c.

m Ve_1.

Proof. By Lemma 4.25, we get that

essinfz, D5(V,_1,V;,) = essinfr, D(Vi_y,V)).
Vi€LO(R4, Fy) Vi€ LO(N-, Ft)

Since N} is an JF;-measurable random closed set, by Proposition 5.7 and
Lemma 5.5, we have

essinfr, Df(Vi_1,V,) = inf DS(Vi_y,y).
VieLO(NL,F) yeNy

On {w: N (w) ={0}} € F, we have £ (Vi_1) = D5(V;_1,0). On the com-
plementary set, {NtL -+ {0}} € Fi, under LAIP, we have inf ¢, D?(0, 2) > 0,
where M; = N;- N S971(0,1) # (). We now adapt the notations and the main
arguments in the proof of Theorem 4.14 with V; € N;-. In our case, we use
Assumption 6 in order to dominate the cost function by a continuous func-
tion. By Lemma 5.21, for all v; € N;-, we may suppose w.l.o.g. that v} =0
and we get that

DY(0,v) Z 6(Jui) D7 (0, v/ [vr]) = 6(Jr]) inf DP(0, 2).
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Moreover, by Assumption 6, we have:
Diy(vp-1,0) = Co((0,01) + 67(0) < hu(vi-1) + 65 (0).

Therefore, we deduce that '?f(vt_l_) = infy, (v 1) Dt (v,_1,v) where ¢ is
the set-valued mapping ¢y (vi_1) := B(0, 7 (v;—1) + 1) and

re(vemr) = 6 <M>,

2
i = inf DJ(0,2), M(vi-1) = he(vim) + ha(vi) +65(0).
By Corollary 5.3, i; > 0 is F;-measurable while \(w,v;_1) is F; @ B(R?)-
measurable and continuous in v;_;. Therefore, rt(_w,vt_l) is F; @ B(RY)-
measurable and continuous in v;_;. We deduce that B;(0, r,(v;_1)) is a contin-

uous set-valued mapping by Corollary 5.14. We then conclude by Proposition
5.17.

]

Note that the theorem above states that, under LAIP, ~*(V,_) is a lower-
semicontinuous function of V,_;. Therefore, by Lemma 5.5, 'yf (Vi-1) may

be computed pointwise as v*(V,_,) = inf, cga (Ct((O,y(2) — V) + Qf(y)> :

Moreover, the infimum is reached so that 7f(W_1) is a minimal cost.

5. Appendix
5.1. Normal integrands

Definition 5.1. Let F be a complete o-algebra. We say that the function
(w, ) € AxRF = f(w,x) € R is an F-normal integrand if f is F @ B(RF)-
measurable and lower semi-continuous in x. If Z € L°(R*, F), we use the
notation f(Z) : w— f(Z(w)) = f(w, Z(w)). If f is F @ B(R*)-measurable
then f(Z) € L°(R*, F).

By [26, Theorem 14.37], we have:

Proposition 5.2. If f is an F-normal integrand, inf, cga f(w,y) is F-measurable
and {(w,z) € Qx R%: f(w,z) = inf cga f(w,y)} € F @ B(R?) is a measur-
able closed set.
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Corollary 5.3. For any F normal integrand f : Q@ x R* — R and any
F-measurable random set A, let p(w) = infyca f(w,x). Then the function
p: Q2 — R s F-measurable.

Proof. Let us define d¢,)(z) = +oo if 2 ¢ A(w) and 04w, (z) = 0 oth-
erwise. Then, the function g(w,z) = f(w,®) + daw)(x) is an F-normal
integrand since A is closed and F-measurable. Moreover, we observe that
p(w) = inf e () 9(w, ). The conclusion follows from Proposition 5.2. O

Corollary 5.4. If f is an F-normal integrand, and if K is an F-measurable
set-valued compact set, then infyck (., f(w,y) is F-measurable. Moreover,
Mw) ={z € K(w) : f(w,z) = infyer) f(w,y)} € F @ BRY) is a non-
empty F-measurable closed set. In particular, inf cx ) f(w,y) = f(w,y) for
ally € L°(M,F) # 0.

Proof. It suffices to extend the function f to R? by setting f = +oco0 on
R?\ K (w) so that f is still L.s.c. on R%. Then, we may apply Proposition 5.2.
Notice that M(w) # () a.s. by compactness argument so that L°(M,F) #
by a measurable selection argument. O

In the following, we use the abuse of notation f(y) = f(w,y) for any
fiOxR'S R

Lemma 5.5. For any F normal integrand f : Q x R — R and any non-
empty F-measurable closed set A, we have:

essinfr { f(a), a € L°(A, F)} = inf f(a) a.s.

acA

Proof. We first prove that

ess infr { f(a),a € L°(A, F)} < inf f(a).

a€A

Recall that f is F-normal integrand and inf,c4 f(a) is F-measurable by
Corollary 5.3. Therefore, the set

{(w.a):a € Alw), inf f(z) < fla) < inf f(z) +1/n}

€A

is F-measurable and has non-empty w sections for each n € N. By measurable
selection argument, we deduce a™ € L°(A, F) such that

inf f(a) < f(a") < inf f(a) +1/n.
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This implies that lim,, f(a™) = inf,eca f(a). Therefore,

irelgf(a) =inf f(a") > essinfr {f(a),a € L°(A,F)}.

For the reversed inequality, for each a € L°(A, F), f(a) > inf,ca f(a) and,
since inf,ec 4 f(a) is F-measurable by Corollary 5.3, we deduce by definition
of conditional essential infimum that

ess infr { f(a),a € L°(A, F)} > inf f(a) ass..

acA
O

We recall a result from [2] which characterizes a conditional essential supre-
mum as a pointwise supremum on a random set. Let H and F be two com-
plete sub-o-algebras of Fp such that H C F. The conditional support of
X € L°(R4, F) with respect to H is the smallest H-graph measurable ran-
dom set suppy, X containing the singleton {X'} a.s., see [2].

Proposition 5.6. Let h: Q2 x R* — R be a H ® B(R¥)-measurable function
which is l.s.c. in x. Then, for all X € L°(RF, F),

ess supy h(X) = sup h(z) a.s.

rEsuppy X

Proposition 5.7. Fiz ' € L°(R, F) and d > 2. Let us consider a random
function f : Q x R* — R that satisfies f(z) = z' + £(0,22), for any
z = (21, 2) € R Suppose that z — f(z) is Ls.c. a.s.. Then, there exists
a Fi1 @ B(R*Y-measurable random function F;} |(w,y) such that, for any

Y, e PR Fiy),
1
Fy  (Yi—1) = esssupg, | ({1 + f(O,Yt_l)) =: Ff_’lf(}@_l), a.s.
Moreover, Fy (w,y) is l.s.c. in y and if, in addition, y € R £(0,y) is
a.s. convez, then y— F} | (w,y) is a.s. conved.

Proof. Consider the family of random variables:

ANy = {(fﬂt—hyt—l) € LORY, Fioq) : f(—xm1, 1) < —fl}
= {(@-1, 1) € LORE Fisa) t ey > FE ()}
Notice that A,_; is closed in LY since f is l.s.c.. Moreover, A,y is Fi_1-

decomposable, i.e. g/ 14, , + g7 11ac € Ny if g/ | and g7, belong to
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Ay—y and A, € F,_;. By [18][Corollary 2.5], there exists an JF;_;-measurable
random closed set I';_; such that A;_; = L%T;_;, F;_1). Moreover, there is

a Castaing representation, i.e. a countable family (2} ;),>1 € A;—1 such that
[ (w) =cl{z] ;(w) : n > 1}, w € Q. We define

F j(w,y)=inf{z e R: (z,y) € [''1(w)}.

We claim that Fy" | (w,y) = inf {z € Q: (z,y) € I'_1(w)}. Indeed, first we
have Fy' | (w,y) <inf {z € Q: (z,y) € [''_1(w)}. Moreover, in the case where
Fy (w,y) > —o0, for every € > 0, there exist « € R such that (z,y) € I';_;
and F}" ;(w,y)+ € > x. Choose T € QN [z, z + €]. Observe that (Z,y) € I';_4
as the y-sections of A;_; are upper sets. We then have:

Fy(wy) +2e>a+e>7,
Fiy(w,y) > & —2¢ > inf{z € Q: (z,y) € Tia(w)} — 2e.

Since € is arbitrary chosen, we conclude that

Ff y(wy)=inf{z € Q: (z,y) € [\ (w)}.

Notice that when F}* | (w,y) = —o0, then we may choose z — —oo so that we
also have ¥ — —oo and we conclude similary. We then deduce that F} | (w,y)
is F;_1 @ B(R%!)-measurable. Indeed, for every ¢ < +o00, we have:

{(wv y) : Fttl(wa Z/) > C} = ﬂ {(wu y) : xl(w,w,y)GGrapth,1 > Cl(w,x,y)GGrapth,1}~
zeQ

Since I';,_; is graph-measurable, {(w,y) : F};(w,y) > ¢} € Fry ® BR*?).
We then conclude that Fy ; is F;_; ® B(R%!)-measurable. Moreover, if f; is
convex, I';_; is convex a.s. and we deduce that F} |(w,y) is convex in y a.s.

Consider a sequence y" € RY! which converges to y and let us denote
g" = F} {(w,y™). We have (f",y") € I',_q if f" > —o0. If inf, " = —o0,
then, up to a subsequence, F} ;(w,y) — 1 > ™ for n large enough, hence
(FY j(w,y) — 1,y") € I't_1(w) since the y™-sections of I';_; are upper sets.
As n — oo, we deduce that (Fy (w,y) — 1,y) € I';_1(w), which contradicts
the definition of F}* ;. Moreover it is trivial that F} ;(w,y) < liminf, g™ if
liminf, " = co. Otherwise, °° := liminf, 8" < oo and (5°,y) € I';_; since
[';_1 is closed. It follows that F}* | (w,y) < 5°° = liminf, 5" by the definition
of F}" ;. We conclude that F} |(w,x) is Ls.c. in z.
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We show that Ff_l’lf(Yt_l) = F; (Y1) as. for all Y, ; € LY(RL, Fy).
We first restrict © to the F;_j-measurable set {w : I't_;(w) # 0}. We may
then consider a measurable selection (Z;_1,9-1) € T't—1 # 0 a.s.. By defi-
nition, we have Z; 1 > F;" {(g;—1). We deduce that F}" ;(g;-1) < oo a.s. We
define:

Yic1 = 011k (viin=co T Yio1lrr  (vii1)<co-

Then:

Ft*—1<thl) = F:—l(gtfl)lFt*,ﬂn—l):OO + Ftil(nfl)lF*,l(Mq)QO'

t

Observe that on the set {F; ;(Y;—1) < oo}, (Et*_l(ﬁ_l),ﬁ_l) € It as.
since I';_; is closed. Therefore, (Ft’il(?t,l),?lg,l) € Ny = LTy, Fiq)
and we deduce that }«?_1(2_1) > Ff_l’lf(ﬁ_l) a.s.. We conclude that on the
set {F (Y1) < oo}, Fy_(Yie1) > FE{ (Y;_1) while the inequality is trivial
on the complementary set. On the other hand, let us define

1 ~
X1 = th_if(ﬁ—ﬂl —|—Ff_’1f(yt_1)1

1 1
F (Yoi)<oo FE (YVie1)=o0’

+ Y1l

1 1 .
FE (vim1)<oo F& (Yie1)=o0

Observe that ()A(t_l,i//\;_l) € A4—1 hence Ft*_l(i?;_l) < X, 1 by definition
of Ff . Then, Fy\(Yi_1) < X1 = FEY (Y1) on {FE{ (Yi_1) < oo}. The
inequality is trivial on the complementary set so that we may conclude.

On the set {w : T'i1(w) = 0}, we have F; ,(Y;—1) = +o00. Moreover,
if Ffj’lf(Y},l) < 00, we deduce that (Ffj’lf(Y},l),K,l) € I'i_y = 0 since
&4+ 1(0,Y 1) < Fi’lf(ﬁ_l). This is a contradiction hence Ffj’lf(l@_l) = 400
and the conclusion follows. O

Lemma 5.8. Suppose that Assumption 2 holds and consider an F;_1-normal
integrand 7; : (w,s,y) : Q@ x R™ x R — ~(w,s,y). Then, for any V;_, €
L°(R%, F;_1), we have:

€SS SUpPg, .| (St Vier) = sup Y (s, Vic1) = sup ve(aq” 1 (Si-1), Vic1).

SESUPPE, s, m>1

Proof. As (w, s) = y(w, s, Vi—1(w)) is an F;_1-normal integrand under our
assumptions, the first equality holds by Theorem 5.6. It remains to observe
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that, if s € suppz, ,S¢, then s = lim,, aj” |(S¢—) for a subsequence and, by
lower semicontinuity, we deduce that

7e(5, Veer) < Timinf i (0] (Si-1)), Vier) < sup 2 (f (Sp-1)), Vie)-

m>1

It follows that SUDsesuppy, s, Ye(s, Vic1) < sup,,sq Ye(a® 1 (Si-1), Vio1) and,
finally, the equality holds. O

5.2. Continuous set-valued functions

For two topological vector spaces X,Y, consider a set-valued function ¢ :
X — Y. We recall the definition of hemicontinuous set-valued mappings as
formulated in [1].

Definition 5.9. We say that ¢ is lower hemicontinuous at x if for every
open set U C'Y such that ¢(x) NU # 0, there exits a neighborhood V of x
such that z € V implies ¢p(x) N U # ().

Definition 5.10. We say that ¢ is upper hemicontinuous at x if for
every open set U C Y such that ¢(x) C U, there is a neighborhood V' of x
such that z € V implies ¢(z) C U.

Definition 5.11. We say that ¢ is continuous at x if it is both upper and
lower hemicontinuous at x. It is continuous if it is continuous at any point.

Lemma 5.12. Let f : 1_1"3 — Ry be an upper semicontinuous function.
Then, the mapping x — B(0, f(z)) is upper hemicontinuous in the sense of
definition 5.10.

Proof. The upper hemicontinuity is simple to check. Indeed, consider an open
set in U C R, such that ¢(x) = B(0, f(x)) C U. We may suppose that U
is bounded w.l.o.g. and we deduce ¢ > 0 such that B(0, f(z) +¢) C U.
By upper semicontinuity, there exists an open set V' containing x such that
z € V implies f(z) < f(x) + € hence ¢(z) C U. ]

Lemma 5.13. Let f : RF — R, be a lower semicontinuous function. Then,
the mapping x — B(0, f(x)) is lower hemicontinuous in the sense of defini-
tion 5.9.

Proof. For any ball B(y,r) € R*, we have B(0, f(z)) N B(y,r) # 0 if and
only if f(x)+r > |y|. We also have f(z)—e+r > |y| for some small € > 0. As

f is Ls.c., we deduce that f(z) > f(x) — € for every z in some neighborhood
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V of z. This implies that f(z) +r > |y|, i.e. B(0, f(z)) N B(y,r) # 0 for
every z € V. The conclusion follows. m

Corollary 5.14. Let f : RF — R, be a continuous function. Then, the
mapping x — B(0, f(x)) is continuous in the sense of definition 5.11.

Lemma 5.15. Consider the set-valued mapping o : R™ — R™ defined by
a(s) = cl{a™(s), m € N} where (a™),>1 are continuous functions. Then, «
s lower hemicontinuous.

Proof. Consider w €  and some open set U € R%. We have ay(w, 2) NU # ()
if and only if there is m € N such that o}'(w,2) € U. Since of*(w,.) is
continuous, we deduce that there exists an open neighborhood V' of z such
that o (w,z) € U for any x € V. The conclusion follows. O

We recall a result from [1][Theorem 17.31].

Proposition 5.16. Let ¢ : R¥ — R™ be a continuous set-valued map-
ping with nonempty compact values and suppose that f : R¥ x R™ — R
is continuous. Then, the function m(x) = infyey) f(2,y) and the function
M(x) = supye4(s) f(,y) are continuous.

Proposition 5.17. Let ¢ : R¥ — R™ be an upper hemicontinous set-valued
mapping with nonempty compact values and suppose that f : RF x R™ =+ R
is lower semicontinuous. Then, the function m(x) = inf ey f(x,y) is Ls.c.

Proof. We have m(r) = —sup,cy,) 9(7,y) where g = —f is upper semi-
continuous. By [1][Lemma 17.30], the mapping = + sup,c 4, 9(z, y) is upper
semicontinuous hence m is l.s.c. O

Lemma 5.18. Let O be an open subset of R¥, if v : O — R is l.s.c. and
v > g on O for some l.s.c. function g : R¥ — R. Then, there exists a l.s.c.
function 7 : R¥ — R such that v =~ on O.

Proof. It suffices to consider ¥ = vy1p + gla\o. O
5.3. Auxiliary results

Lemma 5.19. Suppose that there is a family of F;_1-measurable random
variables ()" |)m>1 such that S; € {aj*y : m > 1} a.s. and suppose that
P(S; = o || Fi—1) > 0 a.s. for all m > 1. Then, for any F;_1-measurable
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random function f:Q x R* - R,

ess supz, | f(Sy) = sup f(o”,).

m>1

Proof. It is clear that ess supz, | f(S;) < sup,,>; f(af" ;) a.s. since S; belongs
to {af”; : m > 1} and sup,,>; f(af",) is F;_1-measurable by assumption.
On the other hand, consider I'}* := {S; € a}*,} € F;. We have:

ess supy, | [(Se)lrp = f(Si)lrp = f(a)”y)1rp ass.
Taking the conditional expectation, we get that

E(ess supg, | f(Si)lrp|Fio1) = E(f(of" ) 1rp|Fioa) ass.,
ess supg,_, f(S))P(I"|Fio1)) = f(eq”y) P(IY"[Fio1)) as.

As P(I'"|Fi—1)) > 0 by assumption, we get that ess supz, | f(S¢) > f(aj”;)
a.s. for any m > 1 so that the reverse inequality holds. O]

Proposition 5.20. Let D, be a measurable function on 2 x R™ x R? x R¢
which is F; ® B(R™) @ B(RY) ® B(RY)-measurable. Suppose that the mapping
y > Dy(w, s,v,9y) is a.s. Ls.c. for all s,v € R™ x R Let us define

Ye(s,v) = ess infy,cpoma 7y Di(s,v, V) = igf Dy(s,v,V), (s,v) € R™ R

Then, there is a F;@B(R™)@B(R?)-measurable function ¢i(w, s,v) defined
on (w, s,v) € AxR™xR? such that for all S, € L°(R™, F,), V; € L°(R%, F),

Ye(St, Vi) = ¢4(Si, Vi) a.s.

Moreover, if v:(s,v) € R, for all (s,v) € R™"xRY, and if (v,y) — Di(w, s, v,y)
is convez a.s., then the mapping v — ¢, (w, s,v) is convex for all s € R™ a.s..

Proof. Note that by Lemma 5.5, v4(s,v) = infy D;(s,v, V). The measur-
ability property is a direct consequence of [26, Theorem 14.37]. For con-
vexity, it suffices to observe that, if f(x,y) is a jointly convex function of
z = (z,y) € R* x RY, then g(z) = inf,cga f(z,y) is a convex function in z
as soon as g(z) € R for all x € R%. O

Lemma 5.21. Let D° given by (4.3) with & = 0. Suppose that C is positively
super §-homogeneous. For any t < T, and any Ny € L°([1,00), F;), we have
DY(MVier, MVe) > 0(A)DL(Vier, Vi) and ) (MVier) > 3(A) (Vier) for all
(Vi1 Vi) € LORY, F) x LO(RY, ).
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Proof. For t =T, we have by assumption:

Ve (ArVr_1) =

We deduce that

07_1(Ar—1Vr_1)

Cr((0, =ArVa?)) = 8(Ar)Cr((0, V32, =

As we also have

Cr1((0, Ap_1 V2, = A V) = (A1) Crr ((0, V2, —

we deduce that

DT—I()\T—IVT—27 >\T—1VT—1)

Therefore, as A\p_1 > 1,

V91 (Ar—1Vr_2)

>
>

= esssupg,. Ye(Ar—1Vr_1),
S(Ar—1)ess supzr, | vp(Vro1),
S(Ar-1)07 1 (Vr-1).

2
>

S(Ar)yr(Vi-1).

VCZE2—)2))>

= Cr_1((0, /\T—1VT(2_)1 — )\T—1VT(2_)2)) + 0% (A1 V),
5(Ar-1)Cr1((0, V2, — V{2
S(Ar—1)Dr—1(Vr—2, Vr_1).

>
>

5)) + 0(Ar_1)09_ (Vir—1),

ess infy, | croma,rp ) Dr-1(Ar—1Vr—2, Ar—1Vr_1),

d(Ar—1)essinfy,  cromaze ) Dro1(Vr—a, Vr_1),

S(Ar—1)vp1(Vr—2).

We then conclude by induction.

]

Lemma 5.22. Suppose that Assumption 4 and Assumption 5 hold. For every
t < T, there exists a continuous functzon he > 0 such that the function DE
given by (4.4) satisfies | D; (s, v,1,0)| < hi(s,v,1).

Proof. Recall that v5.(Vr) = ¢'(Sr) 4+ Cr(Sr, (0, g%(Sr) —
sumption on Cr and g, we deduce that 'yf'p(VT) < fr(St,Vr) where fr is

continuous. Therefore, by Proposition 5.6,

egfl(VTA)

V )). By as-

= esssupg, Ve (V1) < ess supz,. , fr(Sr,Vr-1),

VAN

sup

Jr(z, Vo) <

ZESUPPF, ST
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As Rp_ is continuous, we deduce by Corollary 5.14 and Proposition 5.16
that 65_,(Sr_1, V1) = SUDc B(0.Ry_, (Sr_1)) J7(2; Vr_1) is a continuous func-
tion in (ST—h VT—1)~ Recall that CT—I(ST—L (O, —V7(~2_)1) S hT—l(ST—h VT—I)
where hr_; is continuous. As

Dgul(ST—la Vr—1,0) = Cpr_1(S7-1, (0, —VT(Q,)l) + 9§,1(VT71),

we deduce that DgT_l(ST_l, Vr_1,0) < izg,_l(ST_l, Vr_1) where ﬁg_l is given
by iLfT_l(ST_l,VT_l) = é%_l(ST_l,VT_l) + hp_1(Sr_1,Vr_1), ie. fLET_l is
continuous. Since yg_l(ST_l,VT_l) < D%_I(ST_l,VT_l,O), we deduce that
7§L1(ST717VT71) < ilgT,l(STfl,VTfl) = fr-1(Sr—1,Vr_1) and we may pro-
ceed by induction to conclude. O

Following the same arguments, we also deduce the following:

Lemma 5.23. Suppose that Assumption 4 and Assumption 5 hold. For every
t < T, there exists a continuous function hy such that 4% (V;) > hy(S,, V;).

On behalf of the organizing committee, Emmanuel Lépinette thanks the ” Fon-
dation Natixis pour la recherche et I'innovation” for their financial contribution to
the Bachelier Colloquium (ETH Zurich and Franche-Comté university), Metabief,
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