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In this paper, we present a simple proof of a recent result of the second author which establishes that functional inverse Santaló inequalities follow from Entropy-Transport inequalities. Then, using transport arguments together with elementary correlation inequalities, we prove these sharp Entropy-Transport inequalities in dimension 1, which therefore gives an alternative transport proof of the sharp functional Mahler conjecture in dimension 1, for both the symmetric and the general case. We also revisit the proof of the functional inverse Santaló inequalities in the n dimensional unconditional case using these transport ideas.

Introduction

The classical Blaschke-Santaló inequality [START_REF] Santaló | An affine invariant for convex bodies of n-dimensional space[END_REF] gives the following sharp relation between the volume of a convex body K in R n and the volume of its polar K ˚" {y P R n ; x ¨y ď 1, @ x P K}: there exists z P R n such that |K||pK ´zq ˚| ď |B n 2 | 2 , where B n 2 denotes the Euclidean ball of radius one. Mahler [START_REF] Mahler | Ein Übertragungsprinzip für konvexe Körper[END_REF] conjectured that the following optimal lower bound holds:

|K||K ˚| ě 4 n n! ,
for any centrally symmetric convex body K, with equality for example if K is a cube. Among general convex bodies K, the conjecture is that the lower bound should be reached for simplices. Both conjectures were proved by Mahler in dimension 2 [START_REF] Mahler | Ein Minimalproblem für konvexe Polygone[END_REF], while the conjecture for symmetric bodies was established by Iriyeh and Shibata in dimension 3 [START_REF] Iriyeh | Symmetric Mahler's conjecture for the volume product in the 3-dimensional case[END_REF] (see also [FHM `21]).

The conjectures were proved for particular families of convex bodies like unconditional convex bodies [START_REF] Saint-Raymond | Sur le volume des corps convexes symétriques[END_REF][START_REF] Meyer | Une caractérisation volumique de certains espaces normés de dimension finie[END_REF], zonoids [START_REF] Reisner | Zonoids with minimal volume-product[END_REF][START_REF] Gordon | Zonoids with minimal volume-product-a new proof[END_REF], bodies having symmetries [START_REF] Barthe | The volume product of convex bodies with many hyperplane symmetries[END_REF][START_REF] Iriyeh | Minimal volume product of three dimensional convex bodies with various discrete symmetries[END_REF]. Bourgain and Milman [START_REF] Bourgain | New volume ratio properties for convex symmetric bodies in R n[END_REF] (see also [START_REF] Kuperberg | From the Mahler conjecture to Gauss linking integrals[END_REF][START_REF] Nazarov | The Hörmander proof of the Bourgain-Milman theorem[END_REF][START_REF] Blocki | A lower bound for the Bergman kernel and the Bourgain-Milman inequality[END_REF][START_REF] Giannopoulos | The isotropic position and the reverse Santaló inequality[END_REF][START_REF] Berndtsson | Bergman kernels for Paley-Wiener spaces and Nazarov's proof of the Bourgain-Milman theorem[END_REF][START_REF] Berndtsson | Complex integrals and Kuperberg's proof of the Bourgain-Milman theorem[END_REF]) established an asymptotic form of the conjectures by proving that there exists a constant c such that |K||K ˚| ě c n {n!. Functional forms of the Mahler conjectures were proposed, where the convex bodies are replaced by log-concave functions and polar convex bodies by the Fenchel-Legendre transform. More precisely, it is conjectured that, for any convex function V : R n Ñ R Y {`8} such that 0 ă e ´V dx ă `8, it holds e ´V dx e

´V ˚dx ě e n , where the Fenchel-Legendre transform of V is defined by

V ˚pyq " sup xPR n
{x ¨y ´V pxq} , y P R n .

If, in addition, V is even, it is conjectured that e ´V dx e ´V ˚dx ě 4 n .

These functional forms were proved in dimension 1 in [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF][START_REF] Fradelizi | Increasing functions and inverse Santaló inequality for unconditional functions[END_REF][START_REF] Fradelizi | Functional inequalities related to Mahler's conjecture[END_REF] and the even case was proved in dimension 2 in [START_REF] Fradelizi | The functional form of Mahler conjecture for even log-concave functions in dimension 2[END_REF]. The inequality was proved for unconditional functions in [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF][START_REF] Fradelizi | Increasing functions and inverse Santaló inequality for unconditional functions[END_REF]. These conjectures are slightly stronger than Mahler's conjectures for sets, because the latter are implied by the former, whereas the inequality for sets must be true in any dimension for the functional inequality to hold, as proved in [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF].

To present the class of Entropy-Transport inequalities considered in this work, we need to introduce some definitions and notations.

The set of all Borel probability measures on R n will be denoted by PpR n q. For k ě 1, we will denote by P k pR n q the subset of PpR n q of probability measures admitting a finite moment of order k. Recall that η P PpR n q is said log-concave, if it admits a density with respect to the Lebesgue measure of the form e ´V , where V : R n Ñ R Y {`8} is a lower semicontinuous convex function. The function V will be referred to as the potential of η. Note that we will not consider log-concave measures supported by a strict affine subspace of R n . The moment measure associated to a log-concave probability measure η with potential V is the measure ν " ∇V #η defined as the pushforward of η under the map ∇V : in other words, for any bounded measurable test functions, it holds f pxq νpdxq " f p∇V pxqq ηpdxq.

We recall that convex functions are differentiable Lebesgue almost everywhere, so that this definition makes sense. When η does not have full support, i.e. when supppηq ‰ R n , some extra regularity will be required at the boundary. We will say that a log-concave probability measure η, with potential V , has an essentially continuous density, if e ´V pxq " 0 for H n´1 almost all x P B Supppηq, where Supppηq denotes the support of η. Note that this terminology slightly differs from the one of [START_REF] Cordero-Erausquin | Moment measures[END_REF] where it was the potential V that was called essentially continuous.

Definition 1.1 (Entropy-Transport inequality). We will say that the inequality ET n pcq is satisfied for some constant c ą 0 if, for all log-concave probability measures η 1 , η 2 on R n having essentially continuous densities, it holds (1)

Hpη 1 q `Hpη 2 q ď ´n logpce 2 q `T pν 1 , ν 2 q, where ν 1 , ν 2 are the moment measures of η 1 , η 2 . Similarly, we say that ET n,s pcq is satisfied, if equation (1) holds for all log-concave measures η 1 , η 2 that are also symmetric (i.e. such that ν i pAq " ν i p´Aq for all measurable sets A).

In the definition above, Hpηq denotes the relative entropy of η with respect to the Lebesgue measure (which is also equal to minus the Shannon entropy of η) and is defined by

Hpηq " log dη dx dη.
The quantity T appearing in (1) is the so-called maximal correlation optimal transport cost, defined, for any µ 1 , µ 2 P P 1 pR n q, by

T pµ 1 , µ 2 q " inf f PF pR n q f dµ 1 ` f ˚dµ 2 ,
where F pR n q is the set of convex and lower semicontinuous functions f : R n Ñ R Y {`8} which are proper (i.e. take at least one finite value). Since elements of F pR n q always admit affine lower bounds, note that g dµ i makes sense in R Y {`8} for all g P F pR n q, so that T pµ 1 , µ 2 q is well defined whenever µ 1 , µ 2 P P 1 pR n q. In the case where µ 1 , µ 2 P P 2 pR n q, it follows from the Kantorovich duality theorem [START_REF] Villani | Optimal transport. Old and new[END_REF] that

T pµ 1 , µ 2 q " sup X1"µ1,X2"µ2 ErX 1 ¨X2 s " sup πPΠpµ1,µ2q
x ¨y πpdxdyq,

where Πpµ 1 , µ 2 q denotes the set of probability measures on R n ˆRn with marginals µ 1 and µ 2 . Definition 1.1 is motivated by a recent result of the second author [START_REF] Gozlan | The deficit in the Gaussian Log-Sobolev inequality and inverse Santaló inequalities[END_REF], which states that inequality (1) is equivalent to the functional version of Mahler's conjecture (also called inverse Santaló inequality), as formulated by Klartag and Milman [START_REF] Klartag | Geometry of log-concave functions and measures[END_REF] and Fradelizi and Meyer [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF] that we now recall.

Definition 1.2 (Inverse Santaló inequality). We will say that the inequality IS n pcq is satisfied for some c, if for all functions f P F pR n q such that both e ´f pxq dx and e ´f ˚pxq dx are positive, it holds

(2) e ´f pxq dx e ´f ˚pxq dx ě c n .

Similarly, we say that IS n,s pcq is satisfied if equation (2) holds for all even functions F pR n q.

With this definition, the functional forms of Mahler's conjectures are IS n peq and IS n,s p4q.

Theorem 1.3 ([Goz21]
). The inequality ET n pcq (resp. ET n,s pcq) is equivalent to IS n pcq (resp. IS n,s pcq).

As shown in Theorem 1.2 of [START_REF] Gozlan | The deficit in the Gaussian Log-Sobolev inequality and inverse Santaló inequalities[END_REF], inequalities ET n pcq or ET n,s pcq can be restated as improved versions of the Gaussian log-Sobolev inequality. In particular, the results of [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF][START_REF] Fradelizi | Increasing functions and inverse Santaló inequality for unconditional functions[END_REF] lead to sharp lower bounds on the deficit in the Gaussian log-Sobolev inequality for unconditional probability measures (see Theorem 1.4 of [START_REF] Gozlan | The deficit in the Gaussian Log-Sobolev inequality and inverse Santaló inequalities[END_REF]).

The main contributions of the paper are the following. In Section 2 we give a new proof of the implication ET n pcq ñ IS n pcq, and we show, in particular in Corollary 2.4, that only a restricted form of the inequality ET n pcq is enough to get IS n pcq. This new proof significantly simplifies the proof given in [START_REF] Gozlan | The deficit in the Gaussian Log-Sobolev inequality and inverse Santaló inequalities[END_REF]. Then, we prove in Section 3, using transport arguments together with correlation inequalities, that ET 1 peq and ET 1,s p4q are satisfied. In particular, this gives new and short proofs of the sharp functional Mahler conjecture in dimension 1. Finally, in Section 4, we propose a short proof of IS n,s p4q when we restrict ourselves to unconditional functions, i.e. functions that are symmetric with respect to all coordinate hyperplanes, blending tools from this paper and the proof given in [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF].

Entropy-Transport and inverse Santaló inequalities

2.1. From Entropy-Transport to inverse Santaló inequalities. The following result provides the key identity connecting the quantities appearing in the inverse functional inequalities to their dual transport-entropy counterparts.

Lemma 2.1. Let V : R n Ñ R Y {`8} be a convex function such that Z :" e ´V dx P p0, 8q and let ν be the moment measure of ηpdxq " 1 Z e ´V dx. Then, it holds

(3) ´log e ´V dx " ´V ˚dν `T pν, ηq `Hpηq.

Proof. According to Proposition 7 of [START_REF] Cordero-Erausquin | Moment measures[END_REF] and its proof, V ˚P L 1 pνq and V P L 1 pηq. We claim that (4) T pν, ηq " V ˚dν ` V dη " x ¨∇V pxq ηpdxq.

Indeed, by definition of T , it is clear that the left hand side of (4) is less than or equal to its right hand side. On the other hand, if f P F pR n q, then

f ˚dν ` f dη " f ˚p∇V pxqq `f pxq ηpdxq ě ∇V pxq ¨x ηpdxq " V ˚p∇V pxqq `V pxq ηpdxq " V ˚dν ` V dη.
Therefore, optimizing over f P F pR n q, yields the converse inequality in (4). To conclude the proof of (3), just observe that

Hpηq " ´log Z ´ V dη.

It will be convenient to introduce the following class of potentials. We will denote by VpR n q the class of all convex functions V : R n Ñ R such that V ˚: R n Ñ R (thus V, V ˚are continuous and with full domain).

Remark 2.2. Note that we proved Lemma 2.1 for convex V without assuming essential continuity. In the case where the measure is assumed to be essentially continuous, then Lemma 4.2 applies, and equation (3) reduces to ´log e ´V dx " ´V ˚dν `n `Hpηq.

This is true in particular whenever V is assumed to have full domain, i.e. to never take the value `8. This case was already treated in the proof of Corollary 3 in [START_REF] Gozlan | The deficit in the Gaussian Log-Sobolev inequality and inverse Santaló inequalities[END_REF], for example.

Thanks to Lemma 2.1, we can show the following.

Proposition 2.3. Let V P VpR n q; denote by ηpdxq " 1 Z e ´V dx, η ˚pdxq " 1 Z ˚e´V ˚dx, where Z, Z ˚are the normalizing constants, and let ν, ν ˚be the moment measures associated to η, η ˚.

If

(5) Hpηq `Hpη ˚q ď ´n logpce 2 q `T pν, ν ˚q, then e ´V dx e ´V ˚dx ě c n .

Note that, according to e.g Lemma 4 in [START_REF] Gozlan | The deficit in the Gaussian Log-Sobolev inequality and inverse Santaló inequalities[END_REF], if V P VpR n q then Z :" e ´V dx and Z ˚:" e ´V ˚dx are both finite, and so the log concave probability measures η and η ˚are well defined.

Proof. Applying Lemma 2.1 and Lemma 4.2 to V and V ˚yields ´log e ´V dx " ´V ˚dν `T pν, ηq `Hpηq " ´V ˚dν `n `Hpηq ´log e ´V ˚dx " ´V dν ˚`n `Hpη ˚q.

Adding these two identities yields ´log e ´V dx e ´V ˚dx " ´ V ˚dν ` V dν ˚ `Hpηq `Hpη ˚q `2n ď ´T pν, ν ˚q `Hpηq `Hpη ˚q `2n ď ´n logpce 2 q `2n " ´logpc n q,

where the first inequality comes from the definition of T pν, ν ˚q and the second inequality from (5).

Corollary 2.4. Inequality IS n pcq (resp. IS n,s pcq) holds true as soon as for all V P VpR n q (resp. for all symmetric V P VpR n q)

Hpηq `Hpη ˚q ď ´n logpce 2 q `T pν, ν ˚q,

where ηpdxq " 1 Z e ´V dx, η ˚pdxq " 1 Z ˚e´V ˚dx with Z, Z ˚the normalizing constants and where ν, ν ˚are the moment measures associated to η, η

˚.
Proof. According to Proposition 2.3, it holds e ´V dx e ´V ˚dx ě c n , for all V P VpR n q. Let V P F pR n q be such that 0 ă e ´V dx e ´V ˚dx ă 8. For all k ě 1, consider

V k pxq " V k | ¨|2 2 pxq `|x| 2 2k , x P R n ,
where | ¨| denotes the standard Euclidean norm on R n and is the infimum convolution operator, defined by f gpxq " inf{f pyq `gpx ´yq : y P R n }, x P R n . Since the infimum convolution leaves the class of convex functions stable, it is clear that V k is still convex for all k ě 1. It is also clear that V k takes finite values on R n . Since pf `gq ˚" f ˚ g ånd (equivalently) pf gq ˚" f ˚`g ˚for all f, g P F pR n q, it is not difficult to check that

V k pyq " V ˚`| ¨|2 2k k | ¨|2 2 pyq, y P R n
and so V k takes finite values on R n . In other words, V k P VpR n q for all k ě 1. Since

V k ě V k | ¨|2 2 and V k ě V ˚ k | ¨|2 2 , one gets that e ´V k | ¨|2 2 dx e ´V ˚ k | ¨|2 2 dx ě e ´Vk dx e ´V k dx ě c n . Note that V k | ¨|2
2 is the Moreau-Yosida approximation of V . In particular, it is well known 5) is only assumed to hold for V P V 1 pR n q, where V 1 pR n q denotes the set of V P VpR n q such that V and V ˚are continuously differentiable.

that if V P F pR n q then V k | ¨|2 2 pxq Ñ V pxq, for all x P R n , as k Ñ 8 (see e.g [FN21, Lemma 3.6]). Since V k | ¨|2 2 ě V | ¨|2 2 , it

Different equivalent formulations of inverse Santaló inequalities.

The following result gathers different equivalent formulations of IS n pcq.

Theorem 2.6. Let c ą 0; the following statements are equivalent:

piq the inequality IS n pcq holds, piiq the inequality ET n pcq holds, piiiq for all V P VpR n q, Hpηq `Hpη ˚q ď ´n logpce 2 q `T pν, ν ˚q, where η, η ˚are the log-concave probability measures with respective potentials V, V ˚and associated moment measures ν, ν

˚,
pivq for all V P VpR n q, Hpηq `Hpη ˚q ď ´n logpce 2 q ` V ˚dν ` V dν

˚,
with the same notation as above.

The same equivalence is true for IS n,s pcq and ES n,c pcq assuming in piiiq and pivq that V P VpR n q is symmetric.

Proof. piq ñ piiq follows from Theorem 1.3 proved in [START_REF] Gozlan | The deficit in the Gaussian Log-Sobolev inequality and inverse Santaló inequalities[END_REF]. piiq ñ piiiq is straightforward. piiiq ñ pivq follows from the inequality T pν,

ν ˚q ď V ˚dν ` V dν ˚.
pivq ñ piq follows from the proof of Proposition 2.3 and Corollary 2.4.

Remark 2.7. Let us make some comments on Theorem 2.6.

(a) The proof of piq ñ piiq given in [START_REF] Gozlan | The deficit in the Gaussian Log-Sobolev inequality and inverse Santaló inequalities[END_REF] makes use of the following variational characterization of moment measures due to Cordero-Klartag [START_REF] Cordero-Erausquin | Moment measures[END_REF] and Santambrogio [START_REF] Santambrogio | Dealing with moment measures via entropy and optimal transport[END_REF]: a measure ν is the moment measure of a log-concave probability measure η with an essentially continuous density if and only if it is centered and not supported by an hyperplane; moreover, the measure η is the unique (up to translation) minimizer of the functional

P 1 pR n q Ñ R Y {`8} : η Þ Ñ T pν, ηq `Hpηq.
(b) In [START_REF] Gozlan | The deficit in the Gaussian Log-Sobolev inequality and inverse Santaló inequalities[END_REF], the implication piiq ñ piq has been established using the following duality formula: for all V P VpR n q such that e ´V ˚dx ą 0, it holds LpV q :" ´log e ´V ˚dx " sup νPP1pRnq

´V dν ´Kpνq , with Kpνq " inf ηPP1pRnq {T pν, ηq `Hpηq}, ν P P 1 pR n q. This equality, established in [START_REF] Gozlan | The deficit in the Gaussian Log-Sobolev inequality and inverse Santaló inequalities[END_REF], shows that the functionals L and K are in convex duality. The route followed in the present paper, based on the key Lemma 2.1, turns out to be simpler and more direct. (c) Let us finally highlight the fact that the equivalence of piiiq and pivq is a bit surprising.

Namely, for a fixed V P F pR n q, the formulation piiiq is in general strictly stronger than pivq, because the inequality T pν, ν ˚q ď V ˚dν ` V dν ˚is strict in general. Indeed, equality here means that pV ˚, V q is a couple of Kantorovich potentials between ν and ν ˚. If ν has a density with respect to Lebesgue, this means that ∇V ˚transports ν onto ν ˚which is not true in general.

Proofs of Entropy-Transport inequalities in dimension 1

In this section, we show that inequalities ET 1,s p4q and ET 1 peq hold true. The reason why the case of dimension 1 is simple is that optimal transport maps for the cost T are given in an explicit form. Recall that the cumulative distribution function of µ P PpRq is the function

F µ pxq " µpp´8, xsq, x P R.
Its generalized inverse is the function denoted F ´1 µ defined by F ´1 µ ptq " inf{x : F µ pxq ě t}, t P p0, 1q.

Lemma 3.1. Let η 1 , η 2 P P 1 pRq be such that T pη 1 , η 2 q is finite. It holds

T pη 1 , η 2 q ě 1 0 F ´1 η1 pxqF ´1 η2 pxq dx,
with equality if η 1 , η 2 P P 2 pRq. More generally, if ν 1 " S 1 #η 1 and ν 2 " S 2 #η 2 with S 1 , S 2 : R Ñ R two measurable maps, and if ν 1 , ν 2 P P 1 pRq are such that T pν 1 , ν 2 q is finite, then

T pν 1 , ν 2 q ě 1 0 S 1 pF ´1 η1 qpxqS 2 pF ´1 η2 qpxq dx.
Proof. It is well known that, if X is uniformly distributed on p0, 1q, then pF ´1 η1 pXq, F ´1 η2 pXqq is a coupling between η 1 and η 2 called the monotone coupling. Therefore, pS 1 pF ´1 η1 pXqq, S 2 pF ´1 η2 pXqqq is a coupling between ν 1 , ν 2 . Suppose that T pν 1 , ν 2 q is finite, then, if f P F pRq is such that f P L 1 pν 1 q and f ˚P L 1 pν 2 q, Young's inequality yields

f pS 1 pF ´1 η1 pXqqq `f ˚pS 2 pF ´1 η2 pXqqq ě S 1 pF ´1 η1 pXqqS 2 pF ´1 η2 pXqq. Therefore, rS 1 pF ´1
η1 pXqqS 2 pF ´1 η2 pXqqs `is integrable, and taking expectation, we get

1 0 S 1 pF ´1 η1 pxqqS 2 pF ´1 η2 pxqq dx " ErS 1 pF ´1 η1 pXqqS 2 pF ´1 η2 pXqqs ď f dν 1 ` f ˚dν 2 .
Optimizing over f gives the desired inequality. In the case where S 1 " S 2 " Id and η 1 , η 2 have finite moments of order 2, then it is well known that the monotone coupling is optimal for W 2 2 and so also for T .

Lemma 3.2. The inequality ET 1 pcq is satisfied as soon as for all concave functions f 1 , f 2 : r0, 1s Ñ R `such that f 1 p0q " f 2 p0q " f 1 p1q " f 2 p1q " 0, (6)

1 0 logpf 1 f 2 q dx ď ´logpe 2 cq ` 1 0 f 1 1 f 1 2 dx.
Similarly, the inequality ET 1,s pcq is satisfied as soon as inequality (6) holds for all functions f 1 , f 2 that are also symmetric with respect to 1{2, i.e. f i pxq " f i p1 ´xq for all x P r0, 1s.

Proof. Let η i pdxq " e ´Vi dx, i " 1, 2 be two log-concave probability measures on R with essentially continuous densities. This latter condition means that, for some ´8 ď a i ă b i ď `8, the convex function V i takes finite values on pa i , b i q, is `8 on Rzpa i , b i q and is such that V i pxq Ñ `8 when x Ñ a i and x Ñ b i . As shown in the proof of Lemma 2.1,

T pη i , ν i q " xV 1 i pxq η i pdxq " bi ai xV 1 i pxqe ´Vipxq dx " 1,
where the second equality comes from an integration by parts, thanks to the boundary conditions (see Lemma 4.2 in the Appendix for the case of dimension n). To prove ET 1 pcq, one can assume that T pν 1 , ν 2 q is finite, otherwise there is nothing to prove. Using Lemma 3.1 with S i " V 1 i , we see that the inequality (7)

Hpη 1 q `Hpη 2 q ď ´logpce 2 q `

1 0 V 1 1 pF ´1 η1 pxqqV 1 2 pF ´1 η2 pxqq dx implies ET 1 pcq. For i " 1, 2, define f i pxq " F 1 ηi ˝F ´1 ηi pxq " expp´V i ˝F ´1 ηi pxqq, x P p0, 1q.
Note that, since F ηi is strictly increasing and differentiable on pa i , b i q, the function F ´1 ηi is the regular inverse of the restriction of F ηi to pa i , b i q and is also differentiable on p0, 1q. Since F ´1 ηi pxq Ñ b i as x Ñ 1 and expp´V i pyqq Ñ 0 as y Ñ b i , one sees that f i pxq Ñ 0 as x Ñ 1. Similarly, f i pxq Ñ 0 as x Ñ 0. Setting f i p0q " f i p1q " 0 thus provides a continuous extension of f i to r0, 1s. The function f i is moreover concave on r0, 1s. Indeed, denoting by f 1 i and V 1 i the left derivatives of f i , V i which are well defined everywhere on p0, 1q, we see that for all x P p0, 1q,

f 1 i pxq " pF 1 ηi ˝F ´1 ηi q 1 pxq " F 2 ηi ˝F ´1 ηi pxq F 1 ηi ˝F ´1 ηi pxq " ´V 1 i pF ´1 ηi pxqq.
So, f 1 i is decreasing on p0, 1q, and thus f i is concave. Finaly, note that

Hpη 1 q `Hpη 2 q " 1 0 logpf 1 f 2 q dx and 1 0 V 1 1 pF ´1 η1 qV 1 2 pF ´1 η2 q dx " 1 0 f 1 1 f 1 2 dx,
so that inequality (7) becomes

1 0 logpf 1 f 2 q dx ď ´logpe 2 cq ` 1 0 f 1 1 f 1 2 dx.
It is furthermore clear that whenever η 1 , η 2 are symmetric, then f 1 , f 2 are also symmetric with respect to 1{2, which concludes the proof.

Remark 3.3. The functions f i are related to the isoperimetric profiles of the measures η i in dimension 1. Moreover, there is a one to one correspondence between log-concave measures η and concave f on p0, 1q, see for example [Bob96, Proposition A.1].

3.1. The one-dimensional symmetric case.

Theorem 3.4. The inequality ET 1,s p4q is satisfied and the constant 4 is optimal.

Proof. Let f 1 , f 2 be two concave functions on [0, 1], equal to zero at 0 and 1, and symmetric with respect to 1{2. Let us show that inequality (6) holds true with c " 4. It is enough to prove that

1{2 0 logpf 1 f 2 q dx ď ´1 ´logp2q ` 1{2 0 f 1 1 f 1 2 dx.
We use the following classical correlation inequality: if h, k : R Ñ R are two non-increasing functions (or non-decreasing), and if µ is a finite measure on R, then As a result, since f 1 1 and f 1 2 are non-increasing, we get, for all x P r0, 1s, that

f 1 pxqf 2 pxq " x 0 f 1 1 ptq dt x 0 f 1 2 ptq dt ď x x 0 f 1 1 ptqf 1 2 ptq dt. (9)
For a later use, note that this inequality holds also even if f 1 , f 2 are not symmetric. By symmetry, f 1 1 ptqf 1 2 ptq ě 0 for all t P [0, 1{2], so we get

f 1 pxqf 2 pxq ď x 1{2 0 f 1 1 ptqf 1 2 ptq dt, @x P r0, 1{2s.
Thus, after integrating,

1{2 0 logpf 1 pxqf 2 pxqq dx ď 1{2 0 logpxq dx `1 2 log 1{2 0 f 1 1 ptqf 1 2 ptq dt ď 1 2 log 1 2 ´1 2 ` 1{2 0 f 1 1 ptqf 1 2 ptq dt `1 2 log 1 2 ´1 2 " ´1 ´logp2q ` 1{2 0 f 1 1 ptqf 1 2 ptq dt,
where we used the inequality logpxq ´logp1{2q ď 2x ´1.

To see that this inequality is sharp, we can use the functions f 1 pxq " minpx, 1 ´xq and f 2 an approximation of the constant function equal to 1{2. The optimal constant is reached at the limit.

Remark 3.5. The choice f 1 pxq " minpx, 1´xq corresponds to the log-concave probability measure ηpdxq " e ´|x| dx{2, the polar transform of which is the uniform probability measure on r´1, 1s. These densities are the equality case in the functional Mahler inequality [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF]. However, the uniform probability measure on r´1, 1s is not an admissible measure in our case, since it is not essentially continuous, thus the optimality is only reached at the limit.

Remark 3.6. Inequality (6) is also satisfied if we assume only one of the functions to be symmetric. Indeed, if f 2 is symmetric with respect to 1{2, define f1 pxq " 1 2 pf pxq `f p1 ´xqq. On the one hand, using the concavity of the logarithm,

1 0 logp f1 pxqf 2 pxqq dx " 1 0 log f1 pxq dx ` 1 0 log f 2 pxq dx ě 1 2 1 0 logpf 1 pxqq `logpf 1 p1 ´xqq dx ` 1 0 log f 2 pxq dx " 1 0 log f 1 pxq dx `log f 2 pxq dx " 1 0 logpf 1 pxqf 2 pxqq dx,
and on the other hand,

f 1 1 f 1 2 dx " 1 2 1 0 f 1 1 pxqf 1 2 pxq dx ´1 2 1 0 f 1 1 pxqf 1 2 p1 ´xq dx,
hence the claim, since f 1 2 pxq " ´f 1 2 p1 ´xq for all x P [0, 1]. 3.2. The one-dimensional general case.

Theorem 3.7. The inequality ET 1 peq is satisfied and the constant e is sharp.

Proof. Let us show that, if f 1 , f 2 : r0, 1s Ñ R `are concave functions vanishing at 0 and 1, then

1 0 logpf 1 f 2 q dx ď ´3 ` 1 0 f 1 1 f 1 2 dx.
Just like before, it is enough to show that

1{2 0 logpf 1 f 2 q dx ď ´3 2 ` 1{2 0 f 1 1 f 1 2 dx.
Applying the inequality logpbq ď logpaq `pb´aq a to b " f 1 f 2 and a " xp1 ´xq, x P p0, 1q, and using again the correlation inequality (9), we get

1{2 0 logpf 1 f 2 q dx ď 1{2 0 f 1 pxqf 2 pxq xp1 ´xq `logpxp1 ´xqq ´1 dx ď ´3 2 ` 1{2 0 1 1 ´x x 0 f 1 1 ptqf 1 2 ptqdt dx " ´3 2 
` 1{2 0 f 1 1 ptqf 1 2 ptq logp2 ´2tq dt,
and Lemma 3.9 below concludes the proof of the inequality.

To see that the inequality is optimal, we choose for f 1 and f 2 approximations of the functions x Þ Ñ x and x Þ Ñ 1´x, which of course are not admissible, since they are not zero on the boundary. It is a straightforward calculation to see that equality is reached at the limit.

Remark 3.8. The function f 1 pxq " x is the isoperimetric profile of the log-concave probability measure νpdxq " e ´p1`xq ½ r´1,`8r dx, which density is an equality case in the functional Mahler inequality [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF]. Lemma 3.9. Let f, g : [0, 1] Ñ R `be two concave functions vanishing at 0 and 1. The following inequality holds:

(10) 1{2 0 f 1 ptqg 1 ptq logp2 ´2tq dt ď 1{2 0 f 1 ptqg 1 ptq dt.
Proof. For 0 ď t ď 1{2, we define ϕptq " 1 ´logp2q ´logp1 ´tq and Φptq " t 0 ϕpxq dx. Notice that ϕ is increasing on r0, 1{2s and ϕp0q " 1 ´logp2q ą 0, hence ϕ ą 0 on r0, 1{2s. Let u " f 1 and v " g 1 . The functions u and v are non-increasing and satisfy 1 0 u dx " 1 0 v dx " 0. Applying the correlation inequality (8) again, and integrating with respect to the measure with density ϕ on r0, 1{2s, we get Integrating by parts, one has

1{2 0 uϕ dx " uΦ 1{2 0 ` 1{2 0 p´u 1 qΦ dx " u 1 2 Φ 1 2 ` 1{2 0 p´u 1 qΦ dx.
A quick calculation shows that Φp1{2q " 1 ´logp2q " ϕp0q. Since ϕ is increasing, it follows that Φpxq ě ϕp0qx " Φp1{2qx. Using this inequality, the fact that u is non-increasing and integrating again by parts, we get

1{2 0 p´u 1 pxqqΦpxq dx ě Φ 1 2 1{2 0 p´u 1 pxqqx dx " Φ 1 2 ´ upxqx 1{2 0 ` 1{2 0 upxq dx .
Thus, using that u is non-increasing again, we get

1{2 0 uϕ dx ě Φ 1 2 1 2 u 1 2 ` 1{2 0 upxq dx ě Φ 1 2 1 0 upxq dx " 0.
One also has 1{2 0

vϕ dx ě 0, so we conclude that 1{2 0 uvϕ dx ě 0, which establishes (10).

Revisiting the unconditional case

Recall that a function V : R n Ñ R is said unconditional if

V px 1 , . . . , x n q " V p|x 1 |, . . . , |x n |q, @x P R n .

The following result is due to Fradelizi and Meyer [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF][START_REF] Fradelizi | Increasing functions and inverse Santaló inequality for unconditional functions[END_REF]. Below, we show how Lemma 2.1 can be used to shorten the proof of [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF]. More precisely, from Lemma 2.1 we quickly derive the inequality (13) below, which is the key step of the argument, and then the rest of the proof follows the same path as in [START_REF] Fradelizi | Some functional inverse Santaló inequalities[END_REF].

Proof. Reasoning as in the proof of Corollary 2.4, it is enough to prove (11) when V, V ˚have full domain and are continuously differentiable on R n . Since V and V ˚are unconditional, it is clear that (11) is equivalent to

(12) R n `e´V dx R n `e´V ˚dx ě 1.
Let us prove (12) by induction on n.

-For n " 1, (12) follows from Theorem 3.4.

-Let V : R n Ñ R, with n ě 2, satisfying the assumption of the theorem. For all t ą 0, let aptq " R n `e´tV dx and η t pdxq " 1 aptq e ´tV pxq ½ R n `pxq dx. Applying Lemma 2.1 to η t and Jensen's inequality yields Hpη t q `n `log aptq " t V ˚p∇V q dη t ě tV ˚ R n `∇V dη t , t ą 0.

Here, we have used that T pν, ηq " R n `x ¨∇V pxqe ´V pxq dx " n because the boundary terms in the integration by parts are 0. A simple integration by parts shows that, for all t ą 0,

R n `∇V dη t " Gptq taptq ,
where Gptq " pa 1 ptq, . . . , a n ptqq and a i ptq " R n´1 `e´tVi pxq dx, with V i pxq " V px 1 , . . . , x i´1 0, x i`1 , . . . , x n q,

x P R n´1 `.

Since Hpη t q `log aptq " t a 1 ptq aptq , we get (13) a 1 ptq aptq `n t ě V ˚ Gptq taptq , @t ą 0. Note that for all 1 ď i ď n, pV i q ˚" pV ˚qi because V is non-decreasing with respect to each coordinate. By induction, for all 1 ď i ď n and t ą 0,

t n´1 a i ptqα i ptq " R n´1 `e´tVi dx R n´1 `e´ptViq ˚dx ě 1.
Therefore, for all t ą 0, a 1 ptq aptq `α1 ptq αptq `2n t ě n t n`1 aptqαptq , which amounts to F 1 ptq ě nt n´1 , with F ptq " t 2n aptqαptq. Since F p0q " 0, one gets F p1q ě 1, which is exactly (12).

Appendix

For completeness' sake, we provide here the proof of the following technical result, which mostly follows the arguments given in [START_REF] Cordero-Erausquin | Moment measures[END_REF].

Lemma 4.2. For all essentially continuous log-concave probability measure η P PpR n q, its moment measure ν satisfies T pη, νq " n.

Proof. Let ηpdxq " e ´V pxq dx be an essentially continuous probability measure, and ν " ∇V #η its moment measure. As established in Lemma 2.1, the maximal correlation is given by T pµ, νq " x ¨∇V pxqe ´V pxq dx.

Assuming everything is smooth, an integration by parts immediately proves that T pµ, νq " divpxqe ´V pxq dx ´ B dom V

x ¨ndom V pxqe ´V pxq dH n´1 pxq " n, since e ´V pxq " 0 for H n´1 -almost all x P dom V . In the general case, however, V is only Lipschitz on the interior of its domain. Thus, let us choose x 0 in the interior of the domain of V . According to [CEK15, Lemma 4],

∇V pxqe ´V pxq dx " 0 by essential continuity, and thus T pµ, νq " x ¨∇V pxqe ´V pxq dx " px ´x0 q ¨∇V pxqe ´V pxq dx.

Convexity of V implies that the function x Þ Ñ px ´x0 q ¨∇V pxq is bounded from below by some constant (which is, of course, integrable against η), and so, if pK N q N PN is an increasing sequence of compact sets such that N K N " dom V , px ´x0 q ¨∇V pxqe ´V pxq dx " lim N Ñ8 KN px ´x0 q ¨∇V pxqe ´V pxq dx.

For N P N, with N ą min V , the sets {V ď N } are convex, closed because of lower semicontinuity, with non empty interior since e ´V ą 0, bounded since lim |x|Ñ`8 V pxq " `8 and strictly increasing by the essential continuity of e ´V . Since convex bodies may be approximated by smooth convex bodies (see [H 07, Lemma 2.3.2]), we can find a sequence pK N q of smooth convex bodies such that {V ď N } Ă K N Ă {V ď 2N } for all N ą min V . It is clear that then N K N " dom V . Since K N is smooth, and V is Lipschitz on K N , the divergence theorem applies: KN px ´x0 q ¨∇V pxqe ´V pxq dx " KN divpxqe ´V pxq dx ´ BKN n KN pxq ¨px ´x0 qe ´V pxq dH n´1 pxq, where n KN pxq is the outer normal vector to K N at x. Clearly, lim N Ñ8 KN divpxqe ´V pxq dx " n lim N Ñ`8 ηpK N q " n, and we will show that the second term converges towards zero. To that end, note that since e ´V pxq is integrable, there exist constants a ą 0 and b such that V pxq ě a|x|`b. As an immediate consequence, for all N ą b, the sublevel set {V ď N } is included in the ball of center 0 and of radius R N " pN ´bq{a. Hence, whenever N is large enough so that x 0 P K N , Finally, if K, L are two convex bodies such that K Ă L, then H n´1 pBKq ď H n´1 pBLq (see [START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF](5.25)]), and so H n´1 pBK N q ď R n´1 2N H n´1 pS n´1 q, which is enough to conclude that BKN n KN pxq ¨px ´x0 qe ´V pxq dH n´1 pxq ď ppN qe ´N , where p is some polynomial, which proves our claim.

  the integration of the inequality phpxq ´hpyqqpkpxq ´kpyqq ě 0.

Theorem 4. 1 .

 1 Let V : R n Ñ R Y {`8} be a convex unconditional function such that 0 ă R n e ´V dx ă 8 then (11) R n e ´V dx R n e ´V ˚dx ě 4 n .

BKNn

  KN pxq ¨px ´x0 qe ´V pxq dH n´1 pxq ď BKN |x ´x0 |e ´V pxq dH n´1 pxq ď 2R 2N e ´N H n´1 pBK N q.

  Remark 2.5. Note that the functions V k and V k are both continuously differentiable on R n . This follows from a well known regularizing property of the Moreau-Yosida approximation (see e.g [Roc97, Theorem 26.3]). Therefore, the conclusion of Corollary 2.4 is still true if the Entropy-Transport inequality (

					easily follows, from the dominated convergence
	theorem, that			
	e	´V	k | ¨|2 2	dx Ñ e ´V dx,
	as k Ñ 8. Reasoning similarly for the other integral, one concludes that
		e ´V dx e	´V ˚dx ě c n ,
	which completes the proof.			
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