
HAL Id: hal-03284626
https://hal.science/hal-03284626v1

Submitted on 12 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending the Identification of Object-Oriented
Variability Implementations using Usage Relationships

Johann Mortara, Xhevahire Tërnava, Philippe Collet, Anne-Marie Dery-Pinna

To cite this version:
Johann Mortara, Xhevahire Tërnava, Philippe Collet, Anne-Marie Dery-Pinna. Extending the Iden-
tification of Object-Oriented Variability Implementations using Usage Relationships. SPLC 2021 -
25th ACM International Systems and Software Product Line Conference, Sep 2021, Leicester, United
Kingdom. pp.1-8, �10.1145/3461002.3473943�. �hal-03284626�

https://hal.science/hal-03284626v1
https://hal.archives-ouvertes.fr

Extending the Identification of Object-Oriented Variability
Implementations using Usage Relationships
Johann Mortara

johann.mortara@univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S

France

Xhevahire Tërnava
xhevahire.ternava@irisa.fr

Université de Rennes 1, INRIA/IRISA
France

Philippe Collet
philippe.collet@univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S

France

Anne-Marie Pinna-Dery
anne-marie.pinna@univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S

France

ABSTRACT
Many variability-rich object-oriented systems rely on multiple tra-
ditional techniques (inheritance, patterns) to implement their vari-
ability in a single codebase. These variability implementation places
are neither explicit nor documented, hampering their detection and
variability comprehension. Based on the identification of symmetry
property in seven implementation techniques, a first approach was
proposed with symfinder to automatically identify and display the
variability of a system in a graph-based visualization structured
by inheritance. However, composition, or more generally the us-
age relationship, is extensively used to implement the variability
in object-oriented systems, and without this information, compre-
hending the large amount of variability identified by symfinder is
not trivial. In this paper, we present symfinder-2, an extension of
the former approach that incorporates the usage relationships to
better identify potential variability implementations. We provide
two ways to mark classes as entry points, user-defined and auto-
matic, so that the visualization is filtered and enables users to have
a better focus when they identify variability. We also report on the
evaluation of this extension to ten open-source Java-based systems.

CCS CONCEPTS
• Software and its engineering→ Software product lines; Soft-
ware reverse engineering; Object oriented architectures.

KEYWORDS
variability identification, variability visualization, variability-rich
object-oriented software systems, symfinder

1 INTRODUCTION
Whatever is their size, most modern object-oriented software sys-
tems are variability-rich [11]. The variability among the software
variants of these systems is often implemented in a single code-
base using traditional techniques, such as inheritance, parameters,
overloading, or software design patterns [10, 38]. As they do not
follow a fully-fledged software product line approach [4], their
domain variability (i.e., features) is hardly documented or made
explicit to code assets. This directly hampers the comprehension
and maintainability of the implemented variability [29].

Several manual and automatic approaches can be found in the
literature for locating, identifying, and visualizing domain features

in code [20, 25, 32]. But, in these approaches, features are either
required to be known in advance or to be identified through re-
engineering a set of clone-and-own or legacy software systems into
a product line. Actually, considering the single codebase systems,
there was a lack of approaches to identify variation points (vp-s)
with variants 1 implemented by object-oriented techniques [21],
but also a lack of solutions to visualize them [20]. Complimentary
to existing reverse engineering approaches, a new variability identi-
fication support was proposed with symfinder [37], which handles
variability-rich object-oriented systems developed in a single code-
base. More recently, Michelon et al. [24] also proposed a hybrid
technique using runtime trace generation on variants from the same
codebase to locate features, showing the interest of the research
community in the context of single codebase systems.

On its side, symfinder provides automatic identification and vi-
sualization of potential vp-s with variants in object-oriented code
assets, with support for the Java and C++ languages [26, 27]. Its
identification approach of potential vp-s with variants is using the
property of symmetry in their implementation techniques, for ex-
ample, inheritance defines a substitution symmetry between the
immutable part of the superclass (the vp) and the possible changes
in its subclasses (the variants). symfinder also provides a visual
graph-based representation of the identified variabilities, in which
vp-s and variants are nodes related by their inheritance links while
visual parameters, such as size and colour intensity, vary accord-
ing to the number of symmetries in the method level. The aim
is to make zones with many symmetries easily distinguishable.
symfinder has been successfully applied to several real Java and
C++ variability-rich systems [26, 28, 37], showing that a large part
of the identified potential vp-s and variants actually implemented
domain features [26], that is, they are actual vp-s with variants.

However, as more experiments and applications were conducted
with symfinder , some drawbacks also appeared, especially on large
systems. First, the visualization provided by symfinder exhibits
vp-s and variants with heavy usage of inheritance, while some
of the variability relies also on other mechanisms and are thus
less visible. When some vp-s or variants are using others (e.g.,
through attributes or parameters), this usage relationship is not
exploited while it should create denser zones of variability and help
in better structuring the variability visualization of large systems.
Second, the user feedback shows that one tends to start an analysis
1Their definition is given in Section 2.1.

Johann Mortara, Xhevahire Tërnava, Philippe Collet, and Anne-Marie Pinna-Dery

through some well-known entry point classes, being either exposed
facade classes or a well-defined application programming interface
(API) [30] that publish the customizable functionalities. However,
symfinder did not provide any means to browse the identified vari-
ability from these entry points.

In the following, we first provide some background on the con-
cept of symmetry used and the symfinder principles (Section 2). We
then analyse the issues to be tackled (Section 3) and describe the
different extensions made on the identification and visualization
parts to build a new version of symfinder named symfinder-2 (Sec-
tion 4). During the identification of potential variation points with
variants, we take into account their usage relationships so to display
them in the visualization. We also refine the visualization so that
entry point classes of a targeted system, such as API classes, can
be used to find more easily the important zones of variability. A
parameterized density metric can also help in filtering the visual-
ization when no entry points are given. We applied symfinder-2 to
ten Java-based variability-rich systems and observed the impact
of our changes and done improvements (Section 5). We notably
evaluate the visualized graph, the remaining vp-s and variants, and
the scalability of our extension. We finally discuss related work
(Section 6), and conclude while evoking future work (Section 7).

2 BACKGROUND
In this section, we introduce the concept of symmetry in implemen-
tation techniques, vp-s with variants, their density, and symfinder .

2.1 Symmetry in object-oriented techniques
From the natural sciences, the symmetry of an object is defined as
the immunity to a possible change [31]. Several studies have shown
that most of the object-oriented techniques, such as inheritance,
overloading, including software design patterns, can also be inter-
preted in terms of symmetry [5, 39]. Considering a whole codebase,
these techniques can be seen as local symmetries [37], which allow
a part of code to change while another part remains unchanged.

To illustrate these symmetries, let us consider an illustrative
example from JFreeChart2, a variability-rich object-oriented library
that provides a family of charts, such as pie and meter charts, given
in Figure 1. In this library, the abstract class Plot is the common
part between the related variations of PiePlot and MeterPlot.
These are some of the variations that make it possible to differ-
entiate the variants of JFreeChart objects at the implementation
level. The common and variation parts are commonly abstracted
in terms of variation points (vp-s) and variants, respectively [6, 15].
In our example, the class Plot is a vp with two variants, PiePlot
and MeterPlot. They can be abstracted as vp_Plot, v_PiePlot,
and v_MeterPlot, respectively. Following the symmetry definition,
inheritance defines a substitution symmetry for its subtypes. Here,
the possibility of a change in the superclass Plot materializes in
its potential different subtypes, such as PiePlot and MeterPlot,
which vary regarding the way how they draw a chart. Still, they also
preserve and conform to the common behaviour of their superclass.

Considering this way of reasoning, which is also illustrated
in Figure 1, most of the object-oriented variability implementa-
tion techniques, including design patterns, can be described in
2http://www.jfree.org/jfreechart/

Figure 1: Inheritance as a local symmetry in JFreeChart

terms of symmetry [5, 39]. At an abstract level, a vp represents the
unchanged part while its variants are the changed parts in code
assets of a system [37].

2.2 The symfinder approach
In object-oriented systems, the domain variability is hardly doc-
umented and traced to code assets (e.g., in terms of features in
a feature model [16]), as they are mainly not organized as fully-
fledged product lines [2]. Consequently, their existing vp-s with
variants in code assets, as in Figure 1, are neither explicit nor docu-
mented. In the literature, there are several manual and automatic
approaches for locating, identifying, and visualizing domain fea-
tures in code [7, 20, 24, 25]. In these approaches, features are either
required to be known in advance or to be identified through re-
engineering a set of clone-and-own or legacy software systems
into a product line. Unlike them, our recent tooled approach named
symfinder [26, 27, 37] focuses on identifying the variability imple-
mentations in single codebase object-oriented systems. It provides
automatic identification and visualization of potential vp-s with
variants in code assets of a Java or C++-based variability-rich sys-
tem 3. The identification approach of potential vp-s with variants
is based on the identification of local symmetries in seven object-
oriented variability implementation techniques, namely class as
type, class subtyping, method and constructor overloading, strategy,
template, decorator, and factory patterns.

symfinder provides a visual representation of the potential vp-s
and variants. Figure 2 shows the visualization of identified poten-
tial vp-s with variants for the illustrative example of JFreeChart
given in Figure 1. Each class level vp or variant is visualized as
a circle node that points out the used implementation technique,
edges show their inheritance relationship, then the size and shades
of the red colour of nodes indicate the number of method level
vp-s with variants 4. We follow here the visual principles of preat-
tentive perception [12], using some of the seven parameters that
can vary in visualization in order to represent data. The visualized
variability then forms a disconnected graph based on inheritance
links, while the visual representation of the metrics associated with
each node (e.g., size, colour intensity) creates zones that can be
easily distinguished by their different density of symmetries 5. For

3In this paper, we extend only the support for Java-based systems.
4PiePlot is a variant of Plot, however it is also a vp as it has two variants, thus is
described as vp_PiePlot on the figure.
5It should be noted that the identification is based on symmetry in implementation
techniques while the visualization on their density. Hence, one should not confuse the
two and expect any kind of symmetry in the visualization.

http://www.jfree.org/jfreechart/

Extending the Identification of Object-Oriented Variability Implementations using Usage Relationships

- Class as type (vp or variant), - Class variant with inner vp-s
- Abstract class (vp), - Interface (vp), - Constructor overloads (vp)

- Method overloads (vp), −→ Inheritance relationship
Node with ’F’, ’S’, ’T’, ’D’ symbol - Factory, Strategy, Template, or Decorator pattern

Figure 2: Identified vp-s and variants using symfinder for
the excerpt of JFreeChart given in Figure 1.

example, the left part of Figure 2 is denser than the right part 6.
The reader can note that we use vp-s and variants at the conceptual
level while using sometimes classes when we discuss the technical
identification parts, as well as nodes as the representation of classes
in the visualization. In addition, symfinder provides several other
options for facilitating the comprehension of the variability of a
system: filtering out the solitary nodes, showing or hiding class
variants, metrics on identified vp-s and variants at different levels,
coloring vp-s with variants that belong to the same package, and
information on vp or variant code assets when hovering 7.

3 PROBLEM STATEMENT
symfinder has been applied to several Java and C++ variability-rich
systems [26, 37], showing that it can successfully identify the po-
tential variability in their code assets. It also helped to comprehend
this variability by using the generated visualization. Moreover, an
application on the ArgoUML-SPL [22] has demonstrated that a large
part of the identified vp-s and variants by symfinder actually im-
plement the ArgoUML’s reverse-engineered domain features [26].
However, as more experiments and applications were conducted
with symfinder , two issues also appeared.

Issue 1. Identifying inheritance relationships is not enough. By
construction, the identified vp-s with variants with heavy usage of
inheritance are the most visible in the symfinder visualization, that
is, those implemented by classes that are represented as nodes. They
are simply grouped with this relationship and the other visualized
indicators, such as the size and colour intensity of the nodes. While
the experiments show that real vp-s and variants were successfully
identified with symfinder , it also appeared that their visualized
density based only on the inheritance relationship is not enough to
comprehend the variability of a system. In all studied systems, we
identified many cases in which subclasses being variants were using
other vp-s and variants. For example, in JFreeChart, CompassPlot,

6The whole visualization for the JFreeChart 1.5.0 system is available online: https:
//deathstar3.github.io/symfinder2-demo/visualizations/jfreechart-v1.5.0.html
7Blue names and arrows in Figure 2 have been manually added for illustration.

a variant of the vp Plot, uses every variant of the vp MeterNeedle,
but they are displayed as disconnected in the visualization.

Besides, as studied by Zhao and Coplien [39], reusability in
object-oriented systems is about the instantiation of templates, com-
position of the instances, and substitution of the instances. symfinder
clearly identifies substitution of the instances, as for instance in-
heritance has a substitution symmetry [37], but the composition
of other instances is not taken into account while it is used for
reuse of code assets and implementation of design patterns. In the
following, we will consider this relationship in the broad sense of
the term, as a usage relationship, encompassing cases where a class
uses another class in attributes and parameters of its methods.

Issue 2. Entry points are missing. With its zooming, filtering, and
hovering capabilities, symfinder’s visualization naturally relies on
the Shneiderman visual information seeking mantra [36]: overview
first, zoom and filter, then details on demand. Nevertheless, in many
systems and especially in large ones, users gave us feedback that
they were missing some clear entry points to start browsing the
visualization. The vast majority of studied systems indeed exposed
facade classes, which were natural entry points expected by the
users, or even a well-defined application programming interface
(API) [30] where their reusable and customizable functionalities
are textually exposed. The second issue we thus identify in this
paper is the need for entry points to be specified and exploited in
the visualization to facilitate variability comprehension.

4 symfinder-2
To address the identified issues, we extended the variability iden-
tification and visualization of symfinder , creating symfinder-2. Its
sources and conducted experiments are publicly available 8 9.

4.1 Handling the usage relationships
To address Issue 1, we extended the identification step by also identi-
fying the usage relationships among the identified vp-s with variants
in a codebase. At parsing time, each usage relationship is identi-
fied and added to the symfinder-2 graph database. Specifically, we
consider that class A uses another class B if class B is used as a
field type or method parameter type in class A [9]. For instance,
in the example of JFreeChart in Figure 1, class Plot is used by
class JFreeChart as it is referenced by a field inside the Plot class.
Therefore, each of these classes will be identified by symfinder-2 as
either vp or variant and will be visualized with their inheritance
and usage relationships.

Visually, we show in symfinder-2 both inheritance and usage
relationships, where inheritance relationships are grey arrows and
usage relationships are represented as dashed (light) blue arrows.
For example, the new visualization for the JFreeChart example,
given in Figure 1, is shown in Figure 3. In comparison with its prior
visualization in symfinder , given in Figure 2, now both relationships
are represented. In particular, the usage relationship between Plot
and JFreeChart is now explicit in Figure 3.

8symfinder-2’s website: https://deathstar3.github.io/symfinder2-demo/
9https://doi.org/10.5281/zenodo.4946729

https://deathstar3.github.io/symfinder2-demo/visualizations/jfreechart-v1.5.0.html
https://deathstar3.github.io/symfinder2-demo/visualizations/jfreechart-v1.5.0.html
https://deathstar3.github.io/symfinder2-demo/
https://doi.org/10.5281/zenodo.4946729

Johann Mortara, Xhevahire Tërnava, Philippe Collet, and Anne-Marie Pinna-Dery

v_JFreeChart

vp_PiePlot

vp_Plotv_DefaultDrawingSupplier

vp_XYPlot
vp_CategoryPlot

Figure 3: The identified vp-s and variants using symfinder-2 for the excerpt of JFreeChart given in Figure 1

4.2 Handling the entry points
To address Issue 2, we extended the visualization to provide some
entry points from which users can begin the exploration of the
identified variability in a targeted system. In the following, we
present two kinds of entry points that are available in symfinder-2.

User-defined entry points. We first added the possibility to filter
and visualize only those potential vp-s with variants of a system
that are under analysis by a user. As shown in Figure 3, one can
choose a specific classpath and use it to refine the identified variabil-
ity in its visualization. symfinder-2 will show only those potential
vp-s with variants and their interconnected vp-s or variants that
are under the inheritance and usage relationships. For example,
from the shown data in Figure 3, 926 potential vp-s at class and
method levels are identified in JFreeChart.

Secondly, we added the possibility to filter in the potential vp-s
with variants based on the direction or level of their usage relation-
ships (cf. ’usage-type’ and ’usage-level’ boxes as in Figure 3).
For example, the usage type OUT filters in only those class level vp-s
and variants that use other vp-s or variants. Then, a usage level of
4 will display all vp-s and variants that have a usage relationship
to one of the vp-s or variants through at most 4 identified usages
transitively.

Lastly, we added the possibility to filter out the less dense zones
with variability in the visualization. To achieve this filtering, a
user needs to set a density threshold of potential vp-s with vari-
ants, which density is based on their usage and inheritance rela-
tionships 10. For instance, the visualization from JFreeChart given
in Figure 2 shows two places with different densities of potential
vp-s and variants. The left one seems denser than the right one
with the inheritance-only symfinder , whereas when usage relation-
ships are considered using symfinder-2, both of these places are
10Due to page limitations, a detailed definition and implementation of the density
threshold is given here: https://deathstar3.github.io/symfinder2-demo/density.html

interrelated and create a new denser zone of potential vp-s and vari-
ants given in Figure 3. The density threshold is configured through
setting two parameters in symfinder-2’s configuration file: (1) the
minimum number of variants that a potential vp has, and (2) the
maximum number of usage relationships between potential vp-s.
These two values are used in queries over the graph database to
identify the local symmetries that are under or above the given
threshold. Finally, symfinder-2 generates a new visualization where
the potential vp-s and variants that are under the threshold are
coloured in light grey and can be further excluded (’Show only
dense zones’ in Figure 3). As an example, in JFreeChart we set a
threshold with the number of variants in a potential vp ≥ 5 and
the usage relationships between the potential vp-s or variants ≤ 3.
Hence, the v_DefaultDrawingSupplier variant is highlighted in
grey as its vp_DrawingSupplier vp has less than 5 variants.

Automatically defined entry points. Another kind of entry points
that we implemented in symfinder-2 is the automatic filtering of
potential vp-s and variants that are advertised as being part of an
API. Actually, symfinder-2 identifies classes annotated by the API
Guardian library 11 as specific API entry points. The visualization
then automatically adds all identified vp-s and variants as entry
points so that they can be used to refine it as described in the
previous paragraph. These added capabilities are made available
to help users to chose interesting entry points in the visualization
and to comprehend progressively the whole identified variability
of a given system.

5 EVALUATION
In this section, we first introduce the subject systems and then
define the research questions to evaluate the extended approach

11https://github.com/apiguardian-team/apiguardian

https://deathstar3.github.io/symfinder2-demo/density.html
https://github.com/apiguardian-team/apiguardian

Extending the Identification of Object-Oriented Variability Implementations using Usage Relationships

Table 1: The ten variability-rich subject systems. API: D -
documented or A - annotated. Type: L - library, F - frame-
work, and A - application

Subject
system Commit LoC # vp-s # variants API /

Type

Java AWT 3319fcb 69,974 795 1,706 D / L
Apache CXF 4da7b71 48,655 3,403 7,625 D / F
JUnit 60aaf96 7,717 109 245 D / F
Maven 97c98ec 105,342 612 1,147 D / A
JFreeChart 1f6a91f 94,384 926 1,923 D / L
ArgoUML d135342 134,367 776 1,959 D / A
Cucumber 323f724 42,662 238 282 A / F
Logbook f0f36e7 16,210 96 162 A / L
Riptide 48b03a7 12,626 102 218 A / L
NetBeans cade258 5,058,448 3,621 6,736 D / A

of symfinder-2. The symfinder-2 and the used data to obtain the
presented results are available online in a reproduction package 12.

5.1 Subject systems
To evaluate symfinder-2, we chose ten popular variability-rich sub-
ject systems, being Java applications, frameworks, or libraries (cf.Ta-
ble 1). For the time frame of up to twelve last years, they have re-
ceived between 150 and 8, 000 stars in GitHub, but we particularly
considered them because of the following criteria. The first six ones
were already used to evaluate the first version of symfinder [37],
namely Java AWT, Apache CXF, JUnit, Apache Maven, JFreeChart,
and ArgoUML. Then, we chose the other three as they use in their
codebase a form of API annotations, namely the API Guardian li-
brary, to annotate each code unit that constitutes their API. These
new chosen systems are Cucumber – a framework for BDD test-
ing, Logbook – a library to enable logging for different client- and
server-side technologies, and Riptide – a library based on Spring
to implement client-side response routing. Finally, we selected the
NetBeans IDE because of its size with about 5𝑀 lines of code (LoC),
which helps in evaluating the scalability issues of both the approach
and the prototyped toolchain.

5.2 𝑅𝑄1: Improved visualization
The visualization generated by symfinder shows the class level vp-s
with variants as nodes, which are linked together through inher-
itance relationships. Whereas with symfinder-2, they are linked
together through inheritance and usage relationships. In both cases,
we observed that they form disconnected graph structures, which
looks slightly different. Therefore, we defined𝑅𝑄1 :does the identi-
fication of usage relationships have changed the variability
visualization of a given system by symfinder-2? To this end,
we applied symfinder and symfinder-2 to all ten subject systems
and compared their respective visualizations. Results are given
in Table 2.

On all studied systems, we notice a smaller number of discon-
nected graphs and isolated nodes by symfinder-2 for the same num-
ber of nodes displayed, meaning that zones in the visualization

12https://zenodo.org/record/4946730

Table 2: Comparison of the number of disconnected graphs
and isolated nodes with symfinder and symfinder-2

Subject Nodes symfinder symfinder-2
Graphs Isolated Graphs Isolated

Java AWT 431 55 142 2 20
Apache CXF 3085 473 1149 105 500
JUnit 118 23 36 6 18
Maven 616 177 172 21 79
JFreeChart 578 54 167 5 51
ArgoUML 1270 123 460 38 183
Cucumber 331 45 122 14 50
Logbook 117 19 40 4 16
Riptide 89 20 37 8 19
NetBeans 3498 504 1666 195 836

that seemed previously uncorrelated are now linked through us-
age relationships and appear as such on the new visualization. We
observe that the difference between the number of disconnected
graphs is not proportional to the size of the studied system. For in-
stance, the number of NetBeans’ graphs are reduced by 61%whereas
JFreeChart’s graphs are reduced by 90%. However, their number
could be related to the architecture of the project. A project of
an important size may have an architecture in layers, limiting the
number of interactions between classes, and therefore exhibit fewer
usage relationships. Besides, we notice that some isolated nodes
still appear on symfinder-2’s visualization. This may suggest that
other usage mechanisms are present in the studied systems [17].
Taking into account these specific types of usage relationships is
part of our future work. Further, it is important to emphasize that
although the visualizations by symfinder and symfinder-2 have dif-
ferent numbers of disconnected graphs, their overall number and
kinds of identified vp-s with variants remain unchanged. This indi-
cates that symfinder-2 is an extension of symfinder with an intact
variability identification. To conclude, the reduced number of dis-
connected graphs by symfinder-2 shows an improved and denser
visualization of the identified vp-s and variants for a given system.

5.3 𝑅𝑄2: Starting density threshold
In addition to the two basic user-defined variability filtering ca-
pabilities that are added in the visualization and can be activated
interactively, the third filtering capability is based on the density
of potential vp-s and variants. As explained in Section 4.2, our
filtering by density has for objective to reduce the number of po-
tential vp-s and variants (a.k.a., nodes) visible on the visualization
through identifying those vp-s that have a minimum number of
variants or those that are linked to another vp through a maximum
number of usage relationships. This threshold is set before their
identification, and setting it is not trivial as the user needs to know
which is the right threshold to start with. Therefore, we defined
𝑅𝑄2 :what is the starting density threshold to begin with the
comprehension of the visualized variability by symfinder-2?
To this end, we run symfinder-2 on each subject system with three
different density thresholds, which is set by two parameters: the
minimum number of variants of a potential vp and the maximum
number of usage relationships between potential vp-s and variants
(i.e., usage hops). Namely, the thresholds with (A) ≥ 5 variants

https://github.com/JetBrains/jdk8u_jdk/tree/jb8u202-b1532/src/share/classes/java/awt
https://github.com/apache/cxf/tree/cxf-3.2.7/core/src/main/java/
https://github.com/junit-team/junit4/tree/r4.12/src/main/java/org/junit
https://github.com/apache/maven/tree/maven-3.6.0
https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree
https://github.com/marcusvnac/argouml-spl/tree/bcae37308b13b7ee62da0867a77d21a0141a0f18/src
https://github.com/cucumber/cucumber-jvm/tree/v6.8.0
https://github.com/zalando/logbook/tree/2.2.1
https://github.com/zalando/riptide/tree/2.11.0
https://github.com/apache/netbeans/tree/12.1
https://zenodo.org/record/4946730

Johann Mortara, Xhevahire Tërnava, Philippe Collet, and Anne-Marie Pinna-Dery

Table 3: #nodes identified as being part of dense zones com-
pared to the total number of nodes in all subject systems

Project symfinder
symfinder-2

≥ 5 v-s ≥ 10 v-s ≥ 30 v-s
nodes ≤ 3 hops ≤ 3 hops ≤ 2 hops

Java AWT 431 28 22 3
Apache CXF 3086 98 32 4
JUnit 118 5 0 0
Maven 616 8 1 0
JFreeChart 578 34 15 3
ArgoUML 1258 40 15 3
Cucumber 331 4 0 0
Logbook 117 0 0 0
Riptide 89 0 0 0
NetBeans 3494 58 22 2

and ≤ 3 usage hops, (B) ≥ 10 variants and ≤ 3 usage hops, and
(C) ≥ 30 variants and ≤ 2 usage hops. We have carefully chosen
these parameters values, based on a previous empirical evaluation
with the ArgoUML, JFreeChart, and Java AWT, and for which we
have the best knowledge to manually evaluate the impact of the
density threshold. By increasing the threshold on the number of
variants, we aim to consider only highly-dense vp-s , whereas by
decreasing the threshold on the usage hops between such vp-s, we
aim to consider only highly-dense vp-s which are close in terms of
usage relationships. The obtained results are given in Table 3.

It can be observed that, in all subject systems, fewer nodes are
displayed when using any of the three threshold values. For in-
stance, JFreeChart has in total 578 identified vp-s with variants at
class level. After applying the three threshold values, 34, 15, and
3 vp-s and variants (i.e., entry points) remain, respectively. More-
over, the number of remaining vp-s decreases as we increase the
minimum number of variants for a vp, and decreases the number of
usage relationships between both of them. However, these values
are not adapted to such projects like Logbook or Riptide, for which
no vp-s remain with these three default thresholds.

These results suggest that determining a set of appropriate values
for the parameters when setting the density threshold is highly
dependent on the studied project’s characteristics. That is, even
some large projects in terms of lines of code, such as Maven, can
have a considerable number of potential vp-s but with few variants.
For such reason, setting a high density threshold may filter out
most or all potential vp-s with variants (i.e., there will be no entry
points). Based on our experiments with ten subjects, we conclude
that the first threshold value (i.e., ≥ 5 variants and ≤ 3 usage hops)
can be used as a good starting point to begin the exploration and
comprehension of the identified variability by symfinder-2.

5.4 𝑅𝑄3: Usefulness of API-based filtering
As is shown in Table 3, the number of identified potential vp-s with
variants is extensive (cf. nodes). For example, the Cucumber frame-
work has 238 potential vp-s with 282 variants at class and method
levels. Analysing and comprehending the Cucumber’s variability
from the provided visualization 13, which exhibits 331 nodes, can

13Cucumber’s visualization: https://deathstar3.github.io/symfinder2-demo/
visualizations/cucumber-v6.8.0-usage.html

Cucumber Logbook Riptide

0

200

400
331

117
89

246

108
62

#
di
sp
la
ye
d
no

de
s

without API with API

Figure 4: Number of vp-s and variants (nodes) displayed on
the visualization before and after refinement by API

be really difficult. But, as a testing framework, Cucumber has an
API that exposes classes for defining the dependency steps and an
object factory for customizing the dependency injections. There-
fore, we defined 𝑅𝑄3 : is the API information of a given system
useful to simplify its identified variability by symfinder-2?
To answer it, we ran symfinder-2 on three subject systems, namely
Cucumber, Logbook, and Riptide, while taking into account the
code units annotated by developers using the API Guardian library.
We then compared the number of nodes that are displayed in their
visualizations before and after using their respective API to filter
in the related classes. Results are given in Figure 4.

It can be observed that in all three subjects the visualization
with the applied API has notably fewer nodes than the original
visualization by symfinder-2. We manually checked that, while
reducing the number of potential vp-s with variants, it always
shows those that are considered as the most API relevant. They
can help to comprehend each system’s variability, that is, to give
us an insight on the implemented domain variability. In the three
cases, these vp-s with variants can be used as entry points for
users in order to begin with the variability comprehension of the
systems. We interpret this filtering by an API as facilitation in
the overview and zooming parts of the Shneiderman mantra [36]:
overview first, zoom and filter, then details on demand. In the longer
term, we believe that this should be extended by the integration of
the symfinder-2 toolchain with other sources that contain variability
information for a given system, or simply to show how different
variability information sources could be blended together.

5.5 𝑅𝑄4: Scalability
Lastly, we defined 𝑅𝑄4 : does the identification of usage re-
lationships impact the scalability of symfinder-2? This ques-
tion aims at determining whether the additional functionalities in
symfinder-2 harm its scalability. The impact could be located in the
identification phase, as the usage relationship is identified in the
source code representation, as well as in the visualization phase,
where new elements are computed to filter all displayed elements.
To this end, we measured the time taken to identify and visualize
the variability in all ten subject systems. We conducted our experi-
ments on a Linux environment running Arch Linux 5.11.12-arch1-1
x64 with Intel i7-9850H (12 cores) @ 4.6GHz and 32Go memory.
The visualizations are tested using Mozilla Firefox 87.0 and Google
Chrome 89.0.4389.114.

https://deathstar3.github.io/symfinder2-demo/visualizations/cucumber-v6.8.0-usage.html
https://deathstar3.github.io/symfinder2-demo/visualizations/cucumber-v6.8.0-usage.html

Extending the Identification of Object-Oriented Variability Implementations using Usage Relationships

Figure 5: Execution time in symfinder and symfinder-2

We noticed that the computation needed to render and dis-
play the visualization is not very time consuming, with 700 ms
on Chrome and 850 ms on Firefox for the NetBeans system. The
identification step is clearly the most time-consuming activity. We
hence measured and compared this time on the ten subject systems
with symfinder and symfinder-2. Figure 5 summarizes the obtained
execution times for both versions (with density calculation based on
thresholds of 5 variants and 3 hops). Although the execution time
with symfinder-2 is higher than with symfinder for every system,
we observe that the difference increases with the size of a system
and number of identified vp-s and variants, for instance, 20% of
difference for Riptide (23 sec → 28 sec) and 85% of difference for
NetBeans (01:02:10→ 01:55:04). This can be explained by the fact
that a higher number of relationships between classes needs to
be parsed and treated by symfinder-2 in its database. While there
seems to have an exponential evolution w.r.t. LoC with systems
of the size of NetBeans (5 M LoC), we believe the analysis step is
still adapted to large systems, as symfinder was also successfully
applied to Firefox and its 25 M LoC [27]. Then, waiting for around 1
or 2 hours to run symfinder-2 only on the new releases of a project,
for example, every 6 months, is affordable.

5.6 Discussion and threats to validity
Summary of 𝑅𝑄1 − 𝑅𝑄4. symfinder-2 provides a more focused

identification and visualization of relationships among the poten-
tial vp-s with variants than symfinder . Depending on the system’s
size, symfinder-2 can take between 30 seconds to 2 hours to iden-
tify between 250 and 11 K potential vp-s with variants. Besides, it
supports users with up to four ways to begin the variability compre-
hension of a given system from its visualization. In particular, our
experiments suggest using the density threshold with ≥ 5 variants
and ≤ 3 usage hops or, if available, the API-based filtering.

Internal threats to validity. A first internal threat concerns the
distinction of real vp-s and variants from the potential ones pro-
posed by the different versions of symfinder . For the considered
subject systems (except NetBeans that was too large), we manually
determined whether the remained vp-s and variants after applying
the thresholds represent some variability implementations. We thus
did a sample verification by examining identified classes, checking
for their documentation on the project website, and devising the

kind of variability that was implemented. We could be partially
wrong in our interpretation, but we believe it has a limited impact.
Then, determining whether an identified vp or variant actually
implements some domain variability was hard to conclude as non
of the subject systems, except ArgoUML, had a ground truth.

External threats to validity. To address the research questions,
we used up to 10 subject systems, which vary across domains, size,
type, and developers. While the dataset is still small, we have good
confidence that the obtained results also apply to other Java-based
variability-rich systems of mid-size. Besides, our experiments over
NetBeans show that while the toolchain is likely to scale on very
large systems, the proposed improvements in symfinder-2 are not
sufficient to comprehend all the implemented variabilities. Entry
points and the usage links enable to provide a better overview and
better filtering over the system, but it is still difficult to browse
effectively towards a comprehension of the system variability. We
expect future work on exploiting additional information (e.g., the
architecture of the system, component definitions) and on providing
a further improved visualization to facilitate this activity.

6 RELATEDWORK
Multiple approaches for feature location [20, 25, 32] and feature
identification have been proposed [3], but they mainly rely on
multiple systems [23, 42] or use a form of feature annotations in
their codebase [13, 18, 19]. Unlike them, we use the property of
symmetry in object-oriented constructs and design patterns, to
identify the implemented variability in a single codebase. Outside
the software variability domain, some other works rely on the
identification of inheritance and composition to define hotspots,
being zones of an object-oriented design that are exposed to client
software and hence have to be comprehended to ensure reuse [8, 35].
While this identification relies on design patterns detection used
to implement reusable interfaces, it was not related to variability
implementations.

Previous studies on software API comprehension focus on the
extraction of usage patterns relying on unit tests analysis [41], client
code analysis [40], or approaches combining client and library code
analysis [34], as well as their evolution in time [14, 33] to help
developers in library reuse. In the variability domain, APIs have
been studied for the variability of their evolution [1], but not to
facilitate the comprehension of variability implementations through
a visualization approach as in our work.

7 CONCLUSION
As object-oriented variability-rich software systems are often not
organized as software product lines, identifying their variability
implementations is difficult. While proposing a first solution, the
identification method provided by symfinder is incomplete as it
does not take into account usage relationships between classes
and cannot provide appropriate means to help users start the com-
prehension activity. In symfinder-2 we extended this method with
usage relationships and provided filtering capabilities based on
both automatically detected API-related entry points, and a user-
defined density threshold. Application to ten systems has shown
that symfinder-2 provides a more focused identification and visual-
ization of object-oriented variability implementations.

Johann Mortara, Xhevahire Tërnava, Philippe Collet, and Anne-Marie Pinna-Dery

In the future, we plan to include in our tooled approach addi-
tional object-oriented metrics and usage mechanisms [17] and to
exploit architectural information of the systems to improve the
comprehension of variability implementations and their evolution
over time. We also intend to study other types of visualization
that would provide a more intuitive comprehension of the system’s
implemented variability.

ACKNOWLEDGMENTS
We thank Florian Ainadou, Paul-Marie Djekinnou, and Djotiham
Nabagou for their contribution in the development of symfinder-2.

REFERENCES
[1] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Anthony Peruma. 2019. Vari-

ability in Library Evolution: An Exploratory Study on Open-Source Java Libraries.
In Software Engineering for Variability Intensive Systems - Foundations and Appli-
cations. Taylor & Francis Group.

[2] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[3] Wesley KG Assunção, Roberto E Lopez-Herrejon, Lukas Linsbauer, Silvia R
Vergilio, and Alexander Egyed. 2017. Reengineering legacy applications into
software product lines: a systematic mapping. Empirical Software Engineering 22,
6 (2017), 2972–3016.

[4] Rafael Capilla, Jan Bosch, Kyo-Chul Kang, et al. 2013. Systems and software
variability management. Concepts Tools and Experiences (2013).

[5] James O. Coplien and Liping Zhao. 2020. Toward a General Formal Foundation
of Design. Symmetry and Broken Symmetry. (Forthcoming publication) (2020).

[6] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wąsowski. 2012. Cool features and tough decisions: a comparison of variabil-
ity modeling approaches. In Proceedings of the sixth international workshop on
variability modeling of software-intensive systems (VaMoS’12). 173–182.

[7] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature Location in Source Code: A Taxonomy and Survey. Journal of Software:
Evolution and Process 25, 1 (2013), 53–95.

[8] Nuno Flores, Diana Soares, Helder Ferreira, and Marco Rodrigues. 2005. HotSpot-
ter: a JavaML-based approach to discover Framework’s HotSpots. Proc. XATA
(2005).

[9] Eric Freeman, Elisabeth Robson, Bert Bates, and Kathy Sierra. 2008. Head First
Design Patterns. O’Reilly Media, Inc.

[10] Critina Gacek and Michalis Anastasopoules. 2001. Implementing Product Line
Variabilities. In Proceedings of the 2001 Symposium on Software Reusability: Putting
Software Reuse in Context (SSR ’01). ACM, 109–117.

[11] Matthias Galster, DannyWeyns, Dan Tofan, Bartosz Michalik, and Paris Avgeriou.
2013. Variability in Software Systems — A Systematic Literature Review. IEEE
Transactions on Software Engineering 40, 3 (2013), 282–306.

[12] Christopher G Healey, Kellogg S Booth, and James T Enns. 1996. High-speed
visual estimation using preattentive processing. ACM Transactions on Computer-
Human Interaction (TOCHI) 3, 2 (1996), 107–135.

[13] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner, Olaf Leßenich,
Martin Becker, and Sven Apel. 2016. Preprocessor-based variability in open-
source and industrial software systems: An empirical study. Empirical Software
Engineering 21, 2 (2016), 449–482.

[14] Samuel Huppe, Mohamed Aymen Saied, and Houari Sahraoui. 2017. Mining com-
plex temporal API usage patterns: an evolutionary approach. In 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-C). IEEE,
274–276.

[15] Ivar Jacobson, Martin Griss, and Patrik Jonsson. 1997. Software reuse: architecture
process and organization for business success. Vol. 285. acm Press New York.

[16] Kyo C Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang
Huh. 1998. FORM: A feature-; oriented reuse method with domain-; specific
reference architectures. Annals of Software Engineering 5, 1 (1998), 143.

[17] Kung-Kiu Lau and Tauseef Rana. 2010. A taxonomy of software composition
mechanisms. In 2010 36th EUROMICRO Conference on Software Engineering and
Advanced Applications. IEEE, 102–110.

[18] Duc Minh Le, Hyesun Lee, Kyo Chul Kang, and Lee Keun. 2013. Validating
consistency between a feature model and its implementation. In International
Conference on Software Reuse. Springer, 1–16.

[19] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. 2010. An analysis of the variability in forty preprocessor-based software
product lines. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1. ACM, 105–114.

[20] Roberto Erick Lopez-Herrejon, Sheny Illescas, and Alexander Egyed. 2018. A
Systematic Mapping Study of Information Visualization for Software Product

Line Engineering. Journal of Software: Evolution and Process 30, 2 (2018), e1912.
[21] Angela Lozano. 2011. An Overview of Techniques for Detecting Software Variabil-

ity Concepts in Source Code. In International Conference on Conceptual Modeling
(ER ’11). Springer, 141–150.

[22] Jabier Martinez, Nicolas Ordoñez, Xhevahire Tërnava, Tewfik Ziadi, Jairo Aponte,
Eduardo Figueiredo, and Marco Tulio Valente. 2018. Feature location benchmark
with argoUML SPL. In Proceeedings of the 22nd International Conference on Systems
and Software Product Line-Volume 1. ACM, 257–263.

[23] Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques Klein, and Yves Le
Traon. 2017. Bottom-up technologies for reuse: automated extractive adoption
of software product lines. In Proceedings of the 39th International Conference on
Software Engineering Companion. IEEE Press, 67–70.

[24] Gabriela K Michelon, Lukas Linsbauer, Wesley KG Assunção, Stefan Fischer, and
Alexander Egyed. 2021. A Hybrid Feature Location Technique for Re-engineering
Single Systems into Software Product Lines. In 15th International Working Con-
ference on Variability Modelling of Software-Intensive Systems. 1–9.

[25] Ivan Mistrík, Matthias Galster, and Bruce R Maxim. 2019. Software Engineer-
ing for Variability Intensive Systems: Foundations and Applications. Auerbach
Publications.

[26] Johann Mortara, Philippe Collet, and Xhevahire Tërnava. 2020. Identifying and
Mapping Implemented Variabilities in Java and C++ Systems using symfinder.
In Proceedings of the 24th ACM International Systems and Software Product Line
Conference-Volume B. 9–12.

[27] Johann Mortara, Xhevahire Tërnava, and Philippe Collet. 2019. symfinder: a
toolchain for the identification and visualization of object-oriented variability
implementations. In Proceedings of the 23rd International Systems and Software
Product Line Conference-Volume B. ACM, 56.

[28] Johann Mortara, Xhevahire Tërnava, and Philippe Collet. 2020. Mapping Features
to Automatically Identified Object-Oriented Variability Implementations: The
Case of ArgoUML-SPL. In Proceedings of the 14th InternationalWorking Conference
on Variability Modelling of Software-Intensive Systems.

[29] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer Science &
Business Media.

[30] Martin P Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan
Ratchford. 2012. Automated API property inference techniques. IEEE Transactions
on Software Engineering 39, 5 (2012), 613–637.

[31] Joseph Rosen. 2008. Symmetry Rules: How Science and Nature are Founded on
Symmetry. Springer Science & Business Media.

[32] Julia Rubin and Marsha Chechik. 2013. A survey of feature location techniques.
In Domain Engineering. Springer, 29–58.

[33] Mohamed Aymen Saied, Erick Raelijohn, Edouard Batot, Michalis Famelis, and
Houari Sahraoui. 2020. Towards assisting developers in API usage by automated
recovery of complex temporal patterns. Information and Software Technology 119
(2020).

[34] M. A. Saied and H. Sahraoui. 2016. A cooperative approach for combining client-
based and library-based API usage pattern mining. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). 1–10.

[35] Reinhard Schauer, Sébastien Robitaille, Francois Martel, and Rudolf K Keller. 1999.
Hot spot recovery in object-oriented software with inheritance and composi-
tion template methods. In Proceedings IEEE International Conference on Software
Maintenance-1999 (ICSM’99).’Software Maintenance for Business Change’(Cat. No.
99CB36360). IEEE, 220–229.

[36] Ben Shneiderman. 2003. The eyes have it: A task by data type taxonomy for
information visualizations. In The craft of information visualization. Elsevier,
364–371.

[37] Xhevahire Tërnava, Johann Mortara, and Philippe Collet. 2019. Identifying and
visualizing variability in object-oriented variability-rich systems. In Proceedings
of the 23rd International Systems and Software Product Line Conference-Volume A.
ACM, 32.

[38] Xhevahire Tërnava and Philippe Collet. 2017. On the Diversity of Capturing
Variability at the Implementation Level. In Proceedings of the 21st International
Systems and Software Product Line Conference - Volume B (SPLC ’17). ACM, 81–88.

[39] Liping Zhao and James Coplien. 2003. Understanding symmetry in object-
oriented languages. Journal of Object Technology 2, 5 (2003), 123–134.

[40] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining and
recommending API usage patterns. In European Conference on Object-Oriented
Programming. Springer, 318–343.

[41] Zixiao Zhu, Yanzhen Zou, Bing Xie, Yong Jin, Zeqi Lin, and Lu Zhang. 2014.
Mining api usage examples from test code. In 2014 IEEE International Conference
on Software Maintenance and Evolution. IEEE, 301–310.

[42] Tewfik Ziadi, Luz Frias, Marcos Aurélio Almeida da Silva, and Mikal Ziane. 2012.
Feature identification from the source code of product variants. In 2012 16th
European Conference on Software Maintenance and Reengineering. IEEE, 417–422.

	Abstract
	1 Introduction
	2 Background
	2.1 Symmetry in object-oriented techniques
	2.2 The symfinder approach

	3 Problem statement
	4 symfinder-2
	4.1 Handling the usage relationships
	4.2 Handling the entry points

	5 Evaluation
	5.1 Subject systems
	5.2 RQ1: Improved visualization
	5.3 RQ2: Starting density threshold
	5.4 RQ3: Usefulness of API-based filtering
	5.5 RQ4: Scalability
	5.6 Discussion and threats to validity

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

