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Abstract

We show that the Euclidean and Lorentzian EPRL vertex amplitudes of covariant Loop Quantum Gravity
are related through a “Wick rotation” of the real Immirzi parameter to purely imaginary values. Our
result follows from the simultaneous analytic continuation of the algebras, group elements and unitary
irreducible representations of the gauge groups Spin(4) and SL(2,C), applied to the decomposition of
the two models in terms of SU(2) invariants and booster functions.

1 Introduction

Spin foam theory attempts to define the Loop Quantum Gravity dynamics with a regularized, background-
independent, and Lorentz covariant quantum gravity path integral on a fixed triangulation. The most popular
spin foam model is the EPRL-FK model defined in [1, 2] (see [3] or [4] for more pedagogical reviews). Both
models naturally have as boundary states the spin network states from canonical Loop Quantum Gravity,
which is why spin foam theory is considered “covariant Loop Quantum Gravity” [5]. The theory assigns
transition amplitudes to spin network states living on the boundary of four-dimensional triangulations. A
version of the model exists for spacetimes with both Euclidean and Lorentzian signatures.

The two models differ by their gauge group structures: Spin(4) (the double covering of SO(4)) for the
Euclidean signature and SL(2,C) (the double covering of SO+(3, 1)) for the Lorentzian one. The models are
built upon unitary irreducible representations of the groups (the principal series ones in the Lorentzian case).
The linear simplicity constraints, responsible for reducing the BF topological theory to General Relativity,
are implemented weakly as a restriction on the representation labels.

Performing calculations with the Euclidean model is much simpler. The gauge group is compact, and
it has finite-dimensional unitary irreducible representations. Moreover, Spin(4) ' SU(2) × SU(2), so its
irreducible representations can be written as the tensor product of SU(2) ones. Those are very well studied,
and the amplitude is the contraction of SU(2) invariants. The computations within the Lorentzian EPRL
model are notably more complicated than in the Euclidean one. The group is non-compact, therefore its
unitary representations are infinite-dimensional and much less studied. It is not surprising that the Euclidean
model is the preferred first choice to perform complex calculations. Given the similarities between the two
models, it has been so far assumed, as a strong hypothesis, that the results obtained in the simpler Euclidean
model also hold for the Lorentzian one. The alternative is to repeat the specific calculation from scratch in
the Lorentzian setting.

This work provides a map between the constrained irreducible representations and the spin foam vertex
amplitudes of the two models. The map is realized through the “rotation”, or analytic continuation, of
the real Immirzi parameter γ to purely imaginary values. We show that the Euclidean vertex amplitude
can be analytically continued to the Lorentzian amplitude, up to a multiplicative factor, sending γ → iγ.
Conversely, the Lorentzian amplitude continues to the Euclidean one with the inverse map iγ → γ. We
refer to this map as “Wick rotation” in analogy to the signature changing transformation in Quantum
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Field Theory. We remark that our transformation is a map between the internal gauge groups Spin(4) and
SL(2,C) or equivalently a rotation between Euclidean and Lorentzian Ashtekar-Barbero variables [6, 7, 8],
not on the spacetime manifold. This one has to be appropriately reconstructed in the semiclassical limit.

The paper is organized as follows. In Section 2, we review the SL(2,C) and Spin(4) algebras, group
representations, useful decompositions, and the matrix elements of unitary irreducible representations. This
is a well-known subject in the LQG community. However, the presentation for the two groups is traditionally
very different. We take this occasion to fix our notations while treating the two groups along similar lines.
In particular, we introduce the canonical basis for Spin(4). In Section 3, we review the definition and
implementation of the Yγ map, the main ingredient in the construction of the EPRL model. We also review
the decomposition of the vertex amplitude in terms of booster functions. The EPRL models with different
signatures differ only by the definition of their booster functions. The original contribution of this work
is in Section 4. From a map between the algebras of SL(2,C) and Spin(4) we derive a map between
unitary irreducible representations and group elements. We show that the matrix elements of the (ρ, k)
representation of SL(2,C), with ρ ∈ R and k ∈ Z/2, can be obtained by analytic continuation from the
matrix elements of the (p, k) representation of Spin(4), with p ∈ Z/2 and k ∈ Z/2. The analytic continuation
is performed simultaneously on the representation labels (p, k) ↔ (iρ, k) and on the group elements. We
define the analytic continuation of the group elements using the Cartan decomposition of both groups. Using
these maps between group elements and representations, we show that the Euclidean and Lorentzian booster
functions are related through analytic continuation when they are defined as line integrals along a particular
complex contour. We conclude by applying this analytic continuation to the constrained representations of
the vertex amplitudes with both signatures.

2 Mathematical preliminaries

2.1 Representations of SL(2,C)

The algebra of SL(2,C) is generated by Li, the generators of the spatial rotation subgroup, and Ki, the
generators of the corresponding boosts. They satisfy the commutation relations

[Li, Lj ] = iεijkLk , [Li,Kj ] = iεijkKk , [Ki,Kj ] = −iεijkLk . (1)

The two Casimir operators are K2 − L2 and ~K · ~L. The unitary irreducible representations in the principal
series are labeled by the couple (ρ, k) where ρ is a real number and k is a half-integer. The Casimirs in this
representations take the values(

K2 − L2
)
|ρ, k〉 = (ρ2 − k2 + 1) |ρ, k〉 , ~K · ~L |ρ, k〉 = ρk |ρ, k〉 . (2)

The representation (−ρ,−k) is unitarily equivalent to the representation (ρ, k) [9]. This property is manifest
in the expression for the matrix elements we derive in Section 4.2. Following the literature on the topic [9]
we restrict ourselves to only positive values of ρ and k.

The group SL(2,C) is non-compact so the generic unitary representation (ρ, k) is infinite dimensional.
The Hilbert space H(ρ,k) of the representation (ρ, k) decomposes in an infinite number of SU(2) representa-
tions with different values j of L2

H(ρ,k) =

∞⊕
j=k

Hj . (3)

The canonical basis of (ρ, k), given by |ρ, k; jm〉 with j ≥ k and m = −j, . . . , j, diagonalizes L2 and L3

L2 |ρ, k; j,m〉 = j(j + 1) |ρ, k; j,m〉 , L3 |ρ, k; j,m〉 = m |ρ, k; j,m〉 . (4)

The canonical basis plays a central role in the construction of the EPRL model.

A useful decomposition of the group SL(2,C)is given by the map

SU(2)×A+ × SU(2) −→ SL(2,C)

(u, e
r
2σ3 , v) −→ ue

r
2σ3v† .

(5)

2



where A+ is the diagonal subgroup

A+ : e
r
2σ3 =

(
er/2 0

0 e−r/2

)
, r ≥ 0 . (6)

This is usually called Cartan decomposition in the physics literature [9, 10] 1. The Haar measure with respect
to this decomposition is [9, 10]

dµSL(2,C) =
1

π
sinh2 r dr du dv = dµ(r) du dv . (7)

The normalization factor 1
π we use in this paper differs from the one used in the literature by a factor 4.

This choice allows us to write our formulas more cleanly. The matrix elements in the canonical basis of a
group element g in this decomposition also decompose accordingly

D
(ρ,k)
jmln(g) ≡ 〈ρ, k; j,m| g |ρ, k; l, n〉 = D

(ρ,k)
jmln(ue

r
2σ3v†) =

∑
a,a′

Dj
ma(u)D

(ρ,k)
jala′(e

r
2σ3)Dl

a′n(v†) . (8)

In the expression above we used that the SU(2) subgroup is generated by ~L and its matrix elements are
given by SU(2) Wigner matrices (see Appendix A)

〈ρ, k; j,m|u |ρ, k; l, n〉 = δjlD
j
mn(u) . (9)

Moreover, e
r
2σ3 is diagonal, therefore D

(ρ,k)
jmln(erσ3) = δaa′D

(ρ,k)
jala (erσ3) ≡ δaa′d

(ρ,k)
jla (r) where d

(ρ,k)
jla are the

reduced matrix elements of SL(2,C). Summarizing

D
(ρ,k)
jmln(g) =

∑
a

Dj
ma(u) d

(ρ,k)
jla (r) Dj

an(v†) . (10)

The expression for d
(ρ,k)
jlm (r) was given in [9, 10, 11, 12, 13]

d
(ρ,k)
jlm (r) = (−1)j−l

√
(iρ− j − 1)! (j + iρ)!

(iρ− l − 1)! (l + iρ)!

√
(2j + 1)(2l + 1)

(j + l + 1)!
e(iρ−k−m−1)r√

(j + k)!(j − k)!(j +m)!(j −m)!(l + k)!(l − k)!(l +m)!(l −m)!∑
s,t

(−1)s+te−2tr
(k + s+m+ t)!(j + l − k −m− s− t)!

t!s!(j − k − s)!(j −m− s)!(k +m+ s)!(l − k − t)!(l −m− t)!(k +m+ t)!

2F1

[
{l − iρ+ 1, k +m+ s+ t+ 1}, {j + l + 2}; 1− e−2r

]
(11)

where 2F1 is the Gauss hypergeometric function, and the factorials of complex numbers in this formula and
the rest of this paper have to be intended as Gamma functions using x! = Γ(x+ 1).

2.2 Representations of Spin(4)

The algebra of Spin(4) = SU(2)× SU(2) is generated by two commuting SU(2) algebras[
J iL, J

j
L

]
= iεijkJ

k
L ,

[
J iR, J

j
R

]
= iεijkJ

k
R ,

[
J iL, J

j
R

]
= 0 . (12)

The two Casimir operators are J2
L and J2

R and the unitary irreducible representations are labeled by the
couples (jL, jR) of half-integers such that

J2
L |jL, jR〉 = jL(jL + 1) |jL, jR〉 , J2

R |jL, jR〉 = jR(jR + 1) |jL, jR〉 . (13)

The group Spin(4) is compact and the unitary representation (jL, jR) has dimension (2jL + 1)(2jR + 1).
The algebra of Spin(4) is isomorphic to the algebra of SO(4). It is convenient to parametrize the algebra

1While in the mathematical literature this is referred to either as the KAK decomposition or as the polar decomposition.
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in terms of Li, the generators of the spatial rotation subgroup, and Ai, the generators of time rotations or
(Euclidean) boosts, as we will call them with a slight abuse of language. Defining the rotations and boost
generators as

~L = ~JL + ~JR , and ~A = ~JL − ~JR , (14)

they satisfy the algebra

[Li, Lj ] = iεijkLk , [Li, Aj ] = iεijkAk , [Ai, Aj ] = iεijkLk . (15)

We can sum and subtract the Casimirs (13) to obtain an equivalent set of two Spin(4) invariant operators

A2 + L2 = 2
(
J2
L + J2

R

)
, ~L · ~A = J2

L − J2
R . (16)

We parametrize the representation (jL, jR) in terms of two other half integer quantum numbers p ≡ jL+jR+1
and k ≡ jL − jR [14]2. In this work, without any loss of generality we will assume that jL ≥ jR such that
p > k ≥ 0. In this representation, the Casimirs assume the values(

A2 + L2
)
|p, k〉 = (p2 + k2 − 1) |p, k〉 , ~L · ~A |p, k〉 = pk |p, k〉 . (17)

The representation spaceH(p,k) decomposes in SU(2) representations with different values of L2 = ( ~JL+ ~JR)2

given by the usual sum of L(eft) and R(ight) angular momentum

H(p,k) =

p−1⊕
j=k

Hj . (18)

The canonical basis of (p, k), given by |p, k; jm〉 with p− 1 ≥ j ≥ k and m = −j, . . . , j, diagonalizes L2 and
L3

L2 |ρ, k; j,m〉 = j(j + 1) |ρ, k; j,m〉 , L3 |ρ, k; j,m〉 = m |ρ, k; j,m〉 . (19)

Note that, in the spin foam literature, the Euclidean EPRL model is often formulated using the standard
basis that diagonalizes JL3, JR3 while J2

L and J2
R are taken as Casimirs. To highlight the similarities between

the models with the two signatures, we formulate the Euclidean EPRL model in the canonical basis instead.
We stress that our construction uses a different language from the traditional formulation, but it is entirely
equivalent to it.

We want to find a decomposition analogue to the Cartan decomposition (5) for the group Spin(4).
Inspired by the Euler parametrization of the rotation group, we look at the action

(gL, gR) · h = gLhg
†
R (20)

of Spin(4) ' SU(2) × SU(2) on the group H of quaternions. This action realizes the double-covering
Spin(4)→ SO(4) and in particular it is transitive on SU(2) ' S3 in H. The diagonal subgroup (a, a) = D '
SU(2) ⊂ Spin(4) is the stabilizer of the identity. We parametrize an arbitrary element (gL, gR) ∈ Spin(4)
using two copies of this subgroup. We define the map

SU(2)× T × SU(2) −→ Spin(4)

(u, e−i
t
2σ3 , v) −→ (ue−i

t
2σ3v†, uei

t
2σ3v†)

(21)

where T = {exp
(
−i t2σ3

)
| t ∈ [0 4π)} is the torus subgroup of SU(2). We show that the map is surjective.

Let (gL, gR) be a generic element of Spin(4). The equations

gL = ue−i
t
2σ3v†

gR = uei
t
2σ3v†

2We use a slightly different definition from [14], in which p ≡ jL + jR.
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imply

gLg
†
R = ue−itσ3u†

g†RgL = ve−itσ3v†.

The elements gLg
†
R and g†RgL are conjugate, and every element of SU(2) is conjugate to a diagonal matrix

of the form exp(itσ3). Hence we can solve the last equations for u, v. Notice, importantly, that it is enough
to require t ∈ [0 2π) to get a unique solution. Therefore the proper Cartan decomposition for Spin(4) is

SU(2)× T+ × SU(2) −→ Spin(4)

(u, e−i
t
2σ3 , v) −→ (ue−i

t
2σ3v†, uei

t
2σ3v†)

(22)

where T+ = {exp
(
−i t2σ3

)
| t ∈ [0 2π)}. In the following we will also use the notation E+ = {(g, g†) | g ∈ T+}.

The Haar measure with respect to the decomposition described in (22) is left and right (D ' SU(2))-
invariant. It is easy to show that the measure must be of the form

dµSpin(4) = Nf(t) dt du dv , (23)

with du,dv the usual Haar measure of SU(2) and N a normalization constant that we fix to obtain total
unit volume. A Jacobian computation similar to the SL(2,C) case shows that f(t) = sin2 t, and normalizing
we get the Haar measure

dµSpin(4) =
1

π
sin2 t dt du dv = dµ(t) du dv . (24)

The matrix elements of g = (gL, gR) in the standard basis are given by the tensor product of two SU(2)
Wigner matrices

D(jL,jR)
mLmRnLnR(g) ≡〈jL,mL; jR,mR| g |jL, nL; jR, nR〉 =

= 〈jL,mL| gL |jL, nL〉 〈jR,mR| gR |jR, nR〉 = DjL
mLnL(gL)DjR

mRnR(gR) . (25)

This is the main reason why the |jL, jR〉 basis is traditionally preferred for the construction of the EPRL
model. The Cartan decomposition for Spin(4) (22) allows us to decompose the matrix elements in the
canonical basis similarly to SL(2,C)

D
(p,k)
jmln(g) =

∑
o

Dj
mo(u)d

(p,k)
jlo (t)Dl

on(v†) . (26)

In the expression above we used that the D ' SU(2) is generated by ~L, the matrix elements of u ∈ SU(2)
are given by

〈p, k; j,m|u |p, k; l, n〉 = 〈p, k; j,m|jLmLjRmR〉DjL
mLnL(u)DjR

mRnR(u) 〈jLnLjRnR|p, k; l, n〉 = δjlD
j
mn(u) .

(27)

The reduced matrix elements d
(p,k)
jlo (t) are defined in terms of SU(2) Clebsch-Gordan coefficients intertwining

between the (jL, jR) and j or l SU(2) representation [14, 15]

d
(p,k)
jlm (t) = D

(p,k)
jmlm(ei

t
2σ3 , e−i

t
2σ3) =

∑
mL,mR

〈jL,mL, jR,mR|jm〉 eit(mL−mR) 〈jL,mL, jR,mR|lm〉 (28)

=

2p−2q−1∑
n=0

eit(p−q−1+m−2n)
〈
p+ q − 1

2
,
p− q − 1

2
+m− n, p− q − 1

2
, n− p− q − 1

2

∣∣∣∣jm〉〈
p+ q − 1

2
,
p− q − 1

2
+m− n, p− q − 1

2
, n− p− q − 1

2

∣∣∣∣lm〉 .
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3 The Lorentzian and the Euclidean EPRL model

The starting point for constructing the EPRL model is the spin foam quantization of a topological BF theory
leading to a well-defined state sum model. The classical simplicity constraints reduces the topological BF
theory to gravity. The path integral for quantum gravity is obtained implementing the quantum simplicity
constraints on the BF partition function. The simplicity constraints are expressed by an equation involving
non-commuting operators and cannot be imposed strongly. The solution is to implement them weakly
using master constraints techniques involving Casimir operators. The result is a restriction on the unitary
representations that contribute to the state sum model.

We will very briefly review the implementation of the linear simplicity constraints via the Yγ map in both
the Lorentzian and Euclidean EPRL model. For an exhaustive discussion, we refer to the original paper
[1] or the reviews [3, 4]. The goal of the following sections is to fix the notation used in this work and to
show the similarities in the implementation of the Yγ if we use the canonical basis for the groups with both
signatures.

3.1 The Lorentzian Yγ map

The linear simplicity constraints in the Lorentzian model impose a linear dependence between the rotation
and boost generators of the SL(2,C) algebra (1)

~K = γ~L . (29)

However, as rotation and boost generators do not commute, such equation cannot be imposed strongly at
the quantum level. We apply it weakly using two master constraints by imposing strongly two commuting
quadratic operators derived from (29). We square (29) and project it onto ~L to obtain two constraints
written in terms of the Casimirs of SL(2,C) (2)

K2 − L2 = (γ2 − 1)L2 , ~L · ~K = γL2 . (30)

On the canonical basis of the unitary irreducible representation of SL(2,C) in the principal series the
constraints (30) translate to an equation for the representation labels

ρ2 − k2 + 1 = (γ2 − 1)j(j + 1) , ρk = γj(j + 1) . (31)

For large quantum numbers this equation is solved by

ρ = γj and k = j . (32)

The constraints (30) select special representations of SL(2,C) (with representation labels proportional by
a factor γ) and project to the lowest SU(2) subgroup of (3). Equations (32) define a map from the SU(2)
representation of spin j to a subspace of the SL(2,C) representation (γj, j)

Yγ : |j,m〉 → |γj, j; j,m〉 . (33)

Therefore, Yγ is a map from SU(2) spin networks, the kinematical states of LQG, to SL(2,C) spin networks,
the states at the boundary of a spin foam vertex amplitude.

3.2 The Euclidean Yγ

The linear simplicity constraints in the Euclidean model are very similar to the Lorentzian case. The
generators of the Euclidean boosts ~A take the place of their Lorentzian counterpart ~K

~A = γ~L . (34)

The master constraints are

L2 +A2 = (γ2 + 1)L2 , ~L · ~A = γL2 , (35)
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that on the canonical basis reduce to an equation between representation labels

p2 + k2 − 1 = (γ2 + 1)j(j + 1) , pk = γj(j + 1) , (36)

that for large quantum numbers is solved by p = γj 3 and k = j. To be consistent with the convention of
taking p > k we restrict to the case of γ > 1. Notice that this is not a limitation. The case with γ ≤ 1
can be studied by considering the case p < k and have as solution of (36) p = j and k = γj. We refrain to
consider this case just for convenience, all the formulas in that case can be obtained by exchanging p with k.

The Euclidean Yγ map is defined as

Yγ : |j,m〉 → |γj, j; j,m〉 , (37)

and also in this case it provides a map between the LQG kinematical states to the states at the boundary
of the spin foam vertex amplitude. If we insist that the map is valid for any SU(2) irrep j we also have an
accidental quantization condition over the Immirzi parameter γ as the labels p, k and j are half-integers [1,
2].

At this point, the reader experienced with the presentation of the Euclidean EPRL model found in the
literature could feel disoriented. Usually, the Yγ map in the Euclidean model is not defined on the canonical

basis but on the standard one. In the standard basis the representation labels (13) are jL = p+k−1
2 and

jR = p−k−1
2 . If we consider representations with p = γj and k = j we find the familiar restriction on the

representations of Spin(4) with γ > 14

jL = (γ + 1)
j

2
− 1

2
and jR = (γ − 1)

j

2
− 1

2
. (38)

On the standard basis, we have the advantage of a simpler form of the matrix elements (25). The price to
pay is to hide the parallelism with the Lorentzian version of the model, which becomes evident if we use the
same (canonical) basis for both.

3.3 Decomposition of the vertex amplitude in terms of booster functions

The Cartan decomposition of the SL(2,C) group elements (5) allows us to recast the EPRL Lorentzian vertex
amplitude as a superposition of SU(2) {15j} symbols weighted by the product of four booster functions

ALv (jf , ie) =
∑
lf ,ke

(∏
e

dkeB
L
4 (jf , lf , ie, ke)

)
{15j}(lf , ke, i′) (39)

This decomposition was first introduced in [10] and is one of the fundamental ingredients of the numerical
calculations performed within the model [16, 17, 18, 19]. The Lorentzian booster functions BL4 are the integral
over A+ of the product of four SL(2,C) reduced matrix elements in the (γjf , jf ) representation contracted
with 4jm-symbols (99) and have been extensively studied numerically [10, 20, 21, 22] and analytically [23]:

BL4 (ja, la, i, k) ≡
∑
ma

(
ja
ma

)(i) ∫ ∞
0

dµ(r)
∏
a

d
(γja,ja)
jalama

(r)

(
la
ma

)(k)

, (40)

where d(γja,ja) are the reduced matrix elements (11) and dµ(r) is the part over A+ of the SL(2,C) Haar
measure (7).

It is possible to write a similar decomposition also for the Euclidean EPRL vertex amplitude. The
derivation is the same as in the Lorentzian case, and it is based on the Cartan decomposition of Spin(4)

3As a side comment, since we are interested in solving (36) for large quantum numbers, we could equivalently take p = γj+1

and k = j as solution of (36). The advantage is that the matrix element D
(γj+1,j)
jnjm (g) = 1 for j = 0 for all group elements. This

allows to define a cylindrically consistent Euclidean EPRL model. Unfortunately, there are no obvious analog choices for the
Lorentzian model. A possibility is to define the Lorentzian Yγ map as an analytic continuation of the representations ρ = γj+ i
and k = j. We leave this as a speculative comment.

4If we take the solution of (36) for large quantum number to be p = γ(j + 1) and k = j instead as in [3], we have to add an
extra γ

2
to both jL and jR.
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(26). The EPRL Euclidean vertex amplitude can be expressed as a superposition of SU(2) {15j} symbols
weighted by the product of four Euclidean booster functions

AEv (jf , ie) =
∑
lf ,ke

(∏
e

dkeB
E
4 (jf , lf , ie, ke)

)
{15j}(lf , ke, i′) . (41)

The Euclidean booster functions BE4 are defined in terms of the product of four Spin(4) reduced matrix
elements in the (γjf , jf ) representation contracted with 4jm-symbols:

BE4 (ja, la, i, k) ≡
∑
ma

(
ja
ma

)(i) ∫ 2π

0

dµ(t)
∏
a

d
(γja,ja)
jalama

(t)

(
la
ma

)(k)

, (42)

where d(γja,ja) are the reduced matrix elements (28) and dµ(t) is the part over E+ part of the Spin(4) Haar
measure (24).

4 The map between the spin foam models

4.1 Mapping algebras and groups

The Lie algebra su(2) is a compact real form of SL(2,C) [24]. Therefore, we get the (complex) algebra
sl(2,C) of SL(2,C) by complexification

sl(2,C) = su(2)⊕ isu(2) . (43)

If we consider the (real) algebra of Spin(4), spin(4) ' su(2)⊕ su(2), we get the (realification of the) algebra
of SL(2,C) by “rotating” half of the algebra to purely imaginary generators:

spin(4) ' su(2)⊕ su(2) → su(2)⊕ isu(2) ' sl(2,C) . (44)

Equivalently, rotating the generator of boosts in SL(2,C) (considering its Lie algebra as a real algebra) we
obtain the algebra of Spin(4). Using the canonical bases for Spin(4) and SL(2,C) introduced in the previous
sections, the rotation maps the generators of Euclidean boosts to the generators of Lorentzian boosts and
vice versa:

(~L, i ~K) ' spin(4) and (~L,−i ~A) ' sl(2,C) . (45)

We write these isomorphisms of (real) Lie algebras as ~A ↔ i ~K and ~K ↔ −i ~A. The map (45) induces a
map between group elements as follows. The Cartan decomposition Spin(4) = D · E+ ·D we introduced in
Section 2.2, is analogous to the Cartan decomposition SL(2,C) = SU(2) · A+ · SU(2) where by · we mean
the group product. Therefore, the map (45) induces a map between the compact subgroup E+ in (22) and
the non-compact subgroup A+ in (5) seen as subgroups of the complexified groups Spin(4)C ' SL(2,C)C.
For example, the map from E+ to A+ can be achieved by sending

t −→ ir (46)

where t ∈ [0 2π) parametrizes E+ and r ∈ R+ parametrizes A+.
This relation between the compact subgroup E+ and the non-compact subgroup A+ can be given an

interesting geometrical interpretation. Since the action of Spin(4) is transitive on SU(2) ' S3 ⊂ H and D
stabilizes the identity, the 3-sphere S3 is a homogeneous space for Spin(4), and we can identify the quotient
subgroup Spin(4)/D with the 3-sphere. There is a similar result for SL(2,C) (a well known construction of
geometric analysis [25]): the quotient group SL(2,C)/SU(2) can be identified with hyperbolic 3-space H3.

In light of the Cartan decompositions, write an element of the quotient Spin(4)/D as de(t)D, e(t) ∈
E+, d ∈ D, and an element of SL(2,C)/SU(2) as ka(r)K, a(r) ∈ A+, k ∈ K = SU(2). The parameters r, t
act as radial coordinates in the corresponding 3-manifolds. Hence the inverse map r → −it from A+ to E+

can be interpreted geometrically as mapping hyperbolic 3-space to spherical 3-space, similarly to the usual
rotation t → iτ from physical time to Euclidean time that transforms Lorentzian metrics into Euclidean
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ones (and in particular flat Minkowski space to flat Euclidean space). This becomes manifest if we consider
the metric of hyperbolic 3-space in radial coordinates

dH2 = dr2 + sinh2 r dΩ2
2 (47)

where dΩ2 is the metric on the 2-sphere. The map r → −it maps this metric to

dS2 = dt2 + sin2 t dΩ2
2 (48)

which is exactly the metric of the 3-sphere (up to an innocuous global minus sign).
From the metrics (47) and (48) we can also read the Jacobians that enter the Haar measures of Spin(4)

and SL(2,C) given in Sections 2.1 and 2.2. The measure on E+ gets mapped to − the measure on A+

dµ(t) =
1

π
sin2 t −→ − 1

π
sinh2 r dr = −dµ(r) . (49)

and the Haar measure of Spin(4)(24) gets mapped to the Haar measure of SL(2,C) (7)

dµSpin(4) =
1

π
sin2 t dt du dv −→ 1

π
sin2 ir dr du dv = −dµSL(2,C) . (50)

.

4.2 Mapping representations and matrix elements

The isomorphisms of real Lie algebras (45) can be used to find a correspondence between the unitary
irreducible representations of Spin(4) and SL(2,C). We need the following facts:

(i) the complexification of spin(4) is isomorphic to the complexification of sl(2,C) (as a real algebra)

spin(4)C ' su(2)C ⊕ su(2)C ' sl(2,C)⊕ sl(2,C) ' sl(2,C)C , (51)

(ii) for any Lie algebra g, (real linear) representations of g on a complex vector space extend uniquely to
holomorphic (i.e. complex linear) representations of gC on the same vector space.

These two results imply that we can map the (p, k) and (ρ, k) representations working with the complexified
algebras. Concretely, we can compute the action of the Casimirs in the complexified algebras and find the
map between representations looking at their eigenvalues on the respective canonical bases. From ~A ↔ i ~K
we get

~A2 + ~L2 ↔ −( ~K2 − ~L2) p2 + k2 − 1↔ −ρ2 + k2 − 1 , (52)

~A · ~L↔ i ~K · ~L pk ↔ iρk . (53)

Looking at the second Casimir we read the map from SL(2,C) to Spin(4) representations:

(ρ→ −ip, k) ' (p, k) . (54)

The converse isomorphism ~K ↔ −i ~A provides the map from Spin(4) to SL(2,C):

(p→ iρ, k) ' (ρ, k) . (55)

In the following we also write (p, k) ↔ (iρ, k) to denote both (54) and (55). These correspondences are
defined up to a global minus sign, which is irrelevant since the irreps (ρ, k) and (−ρ,−k) are unitarily
equivalent. These maps between representations can be realized explicitly in terms of matrix elements, as
follows. Using analytic continuation of the representation labels, the SL(2,C) matrix elements in the (ρ, k)
representation can be obtained from the Spin(4) matrix elements in the (p, k) representation using (55) and
(46). The converse from Spin(4) to SL(2,C) is also possible. This result can be found in the group theory
literature [26, 13, 12, 27]. Each paper in this list use a different technique and a set of different conventions,
making challenging to compare them. The proof we present in Appendix B is original and it is based only
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on elementary properties of the hypergeometric functions. Deriving a new proof helps us to be immune to
the numerous different conventions that plague the literature on the subject.

We summarize the result here and refer to Appendix B and [28] for more details for the interested reader.
Because of the Cartan decompositions (10) and (26) it is sufficient to show that the reduced matrix elements
of SL(2,C) given by (11) can be analytically continued in the Spin(4) ones (28). We find that

d
(ρ,k)
jlm (r) =

∑
n

e−(iρ−k−1+m−2n)r〈
iρ+ k − 1

2
,
iρ− k − 1

2
+m− n ;

iρ− k − 1

2
, n− iρ− k − 1

2

∣∣∣∣j,m〉〈
iρ+ k − 1

2
,
iρ− k − 1

2
+m− n ;

iρ− k − 1

2
, n− iρ− k − 1

2

∣∣∣∣l,m〉
+
∑
n

e−(−iρ+k−1+m−2n)r〈
−iρ− k − 1

2
,
−iρ+ k − 1

2
+m− n ;

−iρ+ k − 1

2
, n− −iρ+ k − 1

2

∣∣∣∣j,m〉〈
−iρ− k − 1

2
,
−iρ+ k − 1

2
+m− n ;

−iρ+ k − 1

2
, n− −iρ+ k − 1

2

∣∣∣∣l,m〉

(56)

where 〈j1,m1, j2,m2|j,m〉 are the analytic continuation to complex spins of SU(2) Clebsch-Gordan coef-
ficients (111). Notice that, under the change of sign of the representation labels (ρ, k) → (−ρ,−k) the
first term becomes the second and vice-versa. This is an explicit sign of the unitary equivalence of the
representations (ρ, k) and (−ρ,−k).

If we perform the analytic continuation in both the representation label ρ → −ip, equivalently iρ → p,
and the group element r → −it, equivalently ir → t, we obtain

d
(−ip,k)
jlm (it) =

∑
n

e(p−k−1+m−2n)it〈(
p+ k − 1

2
,
p− k − 1

2
+m− n

)
,

(
p− k − 1

2
, n− p− k − 1

2

)∣∣∣∣ j,m〉〈(
p+ k − 1

2
,
p− k − 1

2
+m− n

)
,

(
p− k − 1

2
, n− p− k − 1

2

)∣∣∣∣ l,m〉
+
∑
n

e(−p+k−1+m−2n)it〈(
−p− k − 1

2
,
−p+ k − 1

2
+m− n

)
,

(
−p+ k − 1

2
, n− −p+ k − 1

2

)∣∣∣∣ j,m〉〈(
−p− k − 1

2
,
−p+ k − 1

2
+m− n

)
,

(
−p+ k − 1

2
, n− −p+ k − 1

2

)∣∣∣∣ l,m〉 .

(57)

The second term vanishes identically since k ≤ j, l ≤ p − 1 while the Clebsch-Gordan coefficients vanishes
if j, l ≤ −p − 1. If we shift the first summation n → n′ + p−k−1

2 we obtain the expression for the reduced
matrix elements of Spin(4) as in (28).

For later convenience, we introduce the generalized matrix element function on the complex plane

d
(a,k)
jlm (z) =(−1)j−l

√
(a− j − 1)! (j + a)!

(a− l − 1)! (l + a)!

√
(2j + 1)(2l + 1)

(j + l + 1)!
z−(a−k−m−1)√

(j + k)!(j − k)!(j +m)!(j −m)!(l + k)!(l − k)!(l +m)!(l −m)!∑
s,t

(−1)s+tz2t
(k + s+m+ t)!(j + l − k −m− s− t)!

t!s!(j − k − s)!(j −m− s)!(k +m+ s)!(l − k − t)!(l −m− t)!(k +m+ t)!

2F1

[
{l − a+ 1, k +m+ s+ t+ 1}, {j + l + 2}; 1− z2

]
,

(58)
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where z ∈ C, k ∈ Z/2 and a can be either a half integer greater than 1 or a purely imaginary number. We
use for (58) a notation similar to the reduced matrix elements of SL(2,C) and Spin(4) and we distinguish it
from them by the use of the complex argument. The slight abuse of notation is justified since, if a = iρ and

z = e−r then (58) turns into the SL(2,C) reduced matrix elements d
(iρ,k)
jlm (e−r) ≡ d

(ρ,k)
jlm (r)5. If a = p ≥ 1,

p ∈ Z/2 and z = eit then (58) turns into the Spin(4) reduced matrix elements d
(p,k)
jlm (eit) ≡ d(p,k)jlm (t).

4.3 Mapping the vertex amplitude

We compare the expressions of the Lorentzian (39) and the Euclidean (41) vertex amplitude. To find a
relation between the amplitudes, it is sufficient to study the relation between the Lorentzian booster function
(40) and the Euclidean booster function (42).

Booster functions as integrals

The generalized matrix element d
(a,k)
jlm (z) (58) and its connection with the reduced matrix elements of Spin(4)

and SL(2,C) induces an embedding of E+ in the complex z-plane to the unit circle eit ∈ S1 and an embedding
of A+ to the unit interval e−r ∈ [0 1].

The booster functions (40) and (42) depend on the integration of the product of four reduced matrix
elements over the appropriate subgroup. This translates into the integration of the generalized matrix

element d
(a,k)
jlm (z) (58) in the complex plane along the unit circle in the Euclidean case, or the unit interval in

the Lorentzian case. In the following, we relate the integrals of products of d(iρ,k)(z) along these two paths.
For simplicity, we will focus on the minimal case j = l = k. This simplification allows us to avoid

the clutter of the additional sums over the indices s, t present in the reduce matrix elements in the non-
minimal case. However, the calculation in the general case follows the same steps and we can apply the same
arguments of the simplified case. It is just more cumbersome and confusing to keep track of all the terms.
In the simplified case the matrix elements become

d
(a,k)
kkm (z) = z(k+m+1)−a

2F1

[
{k − a+ 1, k +m+ 1}, {2k + 2}; 1− z2

]
. (59)

The integrand of (40) and (42) with general a and omitting the intertwiner index for brevity is

f(ai, ki; z) =
∑
mi

(
ki
mi

) 4∏
i=1

d
(ai,ki)
kikimi

(z)

(
ki
mi

)

=
∑
mi

zK−A+4+M

(
ki
mi

) 4∏
i=1

2F1

[
{ki − ai + 1, ki +mi + 1}, {2ki + 2}; 1− z2

]( ki
mi

) (60)

with K =
∑
i ki, A =

∑
i ai, M =

∑
imi. Notice that the 4jm-symbols vanish if M 6= 0, therefore in the

following we will assume M = 0 if needed.

From Euclidean to Lorentzian integrals

The Euclidean booster functions are defined as the integral of (60) with ai = pi = γji half integer greater
than 1. Our results are valid independently from the imposition of the Yγ map that constrains pi to assume
specific values. In this section, we will keep p (and ρ in the Lorentzian case) generic until the very end.
To avoid unnecessary confusion, we will call the integral of (60) IE(pi, ki), emphasizing its dependence on
Spin(4) labels pi and ki, and discuss the connection to the booster function later. The Spin(4) Haar measure
induces on the complex plane the integration measure

dt
sin2(t)

π
−→ i

(1− z2)2

4πz2
dz

z
= dµ(z) . (61)

5This must not be confused with the analytic continuation ρ→ −ip which could be equivalently written as iρ→ p.
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The Euclidean integral IE expressed as a contour integral over the unit circle is

IE(pi, ki) =
i

4π

∮
S1

dz (1− z2)2
∑
mi

(
ki
mi

)
zK−A+M+1 ×

4∏
i=1

2F1

[
{ki − pi + 1, ki +mi + 1}, {2ki + 2}; 1− z2

]( ki
mi

)
.

(62)

The first argument of all the hypergeometric functions ki − pi is a strictly negative integer since ki < pi
(see Section 2.2). It follows that the hypergeometric functions reduce to polynomials in 1 − z2. However,
from ki − pi + 1 = −2JRi we find that the prefactor zK−A+M+1 introduces a pole singularity in z = 0 and
the complete integrand is meromorphic. The integral can be evaluated using Cauchy residue theorem, and
the result is 2πi times the residue at z = 0 which depends non-trivially on all the parameters through the
product of the hypergeometric functions.

As an example, we work out explicitly the degenerate case jRi = 0 where it is particularly simple to
compute the integral IE with Cauchy’s closed curve theorem. Here ki = pi − 1 and all the hypergeometric
functions are equal to 1. We can take M = 0 otherwise the 4jm-symbols vanish, so that K − A = −4 in
this case. The function (1 − z2)2z−3 has a pole with residue −2 in the origin. The integral is immediately
calculable, reintroducing the intertwiner indices (a) and (b) explicitly

∑
mi

(
ki
mi

)(a)
i

4π
2πi(−2)

(
ki
mi

)(b)

=
δab

2a+ 1
. (63)

This result is exactly what one would expect by performing the integral in the canonical basis remembering
that DJRi(gR) = 1 if JRi = 0 for any gR ∈ SU(2).

The integrand is analytic in the punctured plane. Therefore, it is actually irrelevant which contour one
uses, as long as it contains z = 0. Let us consider the contour Cε represented in red in Figure 1. The
horizontal segments have small distance ε from the real axis. The semicircles around 0 and 1 have small
radius ε.

Figure 1: The contour Cε in red. The point z = 0 in red is a pole singularity in the Euclidean case and a branch point
singularity in the Lorentzian case. The black point is z = 1. In the Lorentzian case the integrand is discontinuous on
the punctured axes.

We can deform the contour integral in (64) from the unit circle to the contour Cε obtaining a completely
equivalent definition of the Euclidean integral. Furthermore, taking the limit ε → 0 does not change the
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result. We will base the analytic continuation of the Euclidean integral on this expression:

IE(pi, ki) = lim
ε→0

i

4π

∮
Cε

dz (1− z2)2
∑
mi

(
ji
mi

)
zK−A+M+1 ×

4∏
i=1

2F1

[
{ki − ai + 1, ki +mi + 1}, {2ki + 2}; 1− z2

]( ji
mi

)
.

(64)

The Euclidean booster function is obtained from (64) by imposing a restriction on p = γk coming from the
Yγ-map.

The Lorentzian booster functions are defined as the integral of (60) with ai = iρi with ρi a positive real
number. Once again we postpone the imposition of the Yγ-map to the very end and to avoid unnecessary
confusion we will call the integral IL(ρi, ki), emphasizing its dependence on SL(2,C) labels ρi and ki. The
SL(2,C) Haar measure induces on the complex plane the integration measure

dr
sinh2(r)

π
−→ − (1− z2)2

4πz2
dz

z
= idµ(z) . (65)

The Lorentzian integral IL can be expressed as a line integral over the unit interval as

IL(ρi, ki) =
1

4π

∫
[0 1]

dz
∑
mi

(
ji
mi

)
(1− z2)2zK−A+M+1 ×

4∏
i=1

2F1

[
{ki − iρi + 1, ki +mi + 1}, {2ki + 2}; 1− z2

]( ji
mi

)
.

(66)

The integrand of (66) differs from the Euclidean one (64) only by a factor of i and the different values of ai
and A =

∑
i ai = i

∑
i ρi. This however implies that the Lorentzian integrand is not meromorphic anymore.

The hypergeometric functions develop a branch point singularity in 1 − z2 = 1, i.e. z = 0. The analytic
continuation of the hypergeometric series outside of the unit disc using Euler’s formula has a branch cut
discontinuity along real numbers x ≥ 1 [29]. In our case, the hypergeometric function is computed in 1− z2.
The branch cut discontinuity is along the whole imaginary axis, represented as a punctured line in Figure
1, and there are two disconnected domains of analyticity. We assign the principal branch | arg(z)| < π/2 on
both sides of the imaginary axis and we define the value on the imaginary axis minus the origin by continuity
from the left.

At the origin each one of the hypergeometric functions in (60) is in general divergent. This happens when
Re(δi − αi − βi) < 0 where αi, βi, δi are the three parameters of 2F1

[
{αi, βi}, {δi}; 1− z2

]
. In our case

Re(δi − αi − βi) = −mi, therefore for some mi the hypergeometric function is divergent at most of order
di = 2 max(0,mi), i.e.

lim
z→0−

zdi+σ2F1

[
{ki − ai + 1, ki +mi + 1}, {2ki + 2}; 1− z2

]
= 0 (67)

for any real σ > 0 6. The product of four hypergeometric functions in (60) is divergent at most logarithmically
in the origin, i.e.

∑
i di = 2 max(0,

∑
imi) = 2 max(0,M) = 0, since we can always take M = 0. This implies

that the prefactor zK−A+1 cures any potential divergence in the origin of (60).7

6The hypergeometric function has the property [29]

lim
w→1−

(1− w)α+β−δ2F1[{α, β}, {δ}, w] =
Γ(δ)Γ(α+ β − δ)

Γ(α)Γ(β)
, (68)

therefore
lim

w→1−
(1− w)α+β−δ+σ2F1[{α, β}, {δ}, w] = 0 , (69)

for any real σ > 0. Substituting w → 1− z2 we obtain (67).
7Notice that this is not peculiar for the minimal case ji = li = ki. In the general case the order of divergence of the product

of the four hypergeometric functions is given by 2 max(0,mi+ ti−(ji−ki−si)). The summation over si is such that ji−ki−si
is always positive, the z2ti factor counterbalances the possible divergence of order 2ti and

∑
imi = 0. We conclude that also

in the general case the divergence (at most logarithmic) of the product of hypergeometric functions is cured by the prefactor
zK−A+1.
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The branch cut discontinuity along the imaginary axis is not the only one. The prefactor zK−A+1 also
has branch point singularities in 0 and ∞ since A is purely imaginary. For this term we consider the branch
| arg(−z)| < π so that the discontinuity is along the positive real axis (represented in Figure 1 as a punctured
line). We note, however, that the hypergeometric functions are continuous across the positive real axis.

We conclude our analysis by relating the integral on the unit interval in (66) to the contour integral over
Cε of the same function in the limit of ε→ 0. The latter is i times the analytic continuation of the Euclidean
integral (64) to purely imaginary ai.

We split the contour Cε in four pieces: let C0ε be the small semicircle around 0, C1ε be the small semicircle
around 1, C+ε be the straight line above the real axis and C−ε be the straight line below the real axis. The
integral along C1ε vanishes since Re(K − A + 1) > 0 and the hypergeometric function is regular there. The
integral along C0ε vanishes for the same reason, since the eventual logarithmic divergence at z = 0 of the
product of the four hypergeometric functions is more than canceled by the prefactor zK−A+1. The integrals
along C+ε , C−ε differ by a factor exp 2πi(K − A+ 1) due to the presence of the branch cut of zK−A+1 while
the hypergeometric function is continuous in the right half-plane Re z > 0. In the limit ε→ 0 we have

lim
ε→0

∮
Cε

dz f(ai; z) = lim
ε→0

(∮
C+ε

dz f(ai; z) +

∮
C−ε

dz f(ai; z)

)
=
(
e2πi(K−A+1) − 1

)∫
[0 1]

dz f(ai; z)

(70)

taking into account the opposite directions induced by the contour Cε. From the definition (64) of the
Euclidean integral we conclude that taking its analytic continuation pi → iρi we obtain (up to a multiplicative
factor) the Lorentzian integral

IE(pi, ki)
pi→iρi−−−−−−→ i

(
e2πi

∑
i(ki−iρi) − 1

)
IL(ρi, ki) (71)

or equivalently

IL(ρi, ki) =
i

1− e2πi
∑
i(ki−iρi)

IE(iρi, ki) (72)

where on the right side we mean the analytic continuation of IE(pi, ki) as a function of pi and ki to purely
imaginary values of the first argument8.

In deriving (71) we considered the minimal case li = ji = ki for simplicity. The generalization to any
j,li ≥ ki, and in particular to the half-minimal case relevant for the booster function ki = ji and li ≥ ji, is
straightforward. All the arguments we made are immediately extended. In particular, the prefactor zK−A+1

remains the same and all the considerations about the product of the hypergeometric functions with minimal
arguments apply also to the more complicated sum over si, ti of products of hypergeometric functions.

From Lorentzian to Euclidean integrals

Formulae (71) and (72) provide also the converse result for the rotation iρi → pi:

IE(pi, ki) = i lim
qi→pi

(
e2πi

∑
i(ki−qi) − 1

)
IL(−iqi, ki) , (73)

where first we do the analytic continuation ρi → −iqi of IL(ρi, ki) with qi ∈ R \ Z and then we take the
limit qi → pi = ki + ni and ni ∈ N+ to regularize the product of the vanishing prefactor with the divergent
function IL(−iqi, ki). In fact, the defining integral representation (66) of IL(ρi, ki) is divergent if we perform
the substitution iρi → pi, for any half-integer pi > ki ≥ 0. However, we can overcome this difficulty noticing
that the same apparent obstruction appears for example in the Euler’s integral representation of the standard
Gamma and Beta functions [29]. In particular, after the substitution iρi → pi the integral in (66) reduces to∫ 1

0

dz (1− z2)2z1+
∑
i(ki−pi)P [1− z2] (74)

8More rigorously, the “analytic continuation” of a function defined on the integers cannot be performed in the mathematical
sense since Z is not an open subset of C. Hence one can just define IE(iρi, ki) to be the evaluation of IE(pi, ki) with pi purely
imaginary. Notice, however, that in light of the converse result (73) we can speak unambiguously of the unique function on the
whole complex plane that extends both IE(pi, ki) and IL(ρi, ki) at the same time.
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where P [1− z2] stands for a generic polynomial in the variable 1− z2 and where we set M = 0. Changing
variables z2 → w we can write this integral as a finite sum of Beta functions∫ 1

0

dw w−2+
1
2

∑
i(ki−pi+1)P ′[1− w] ∼

∑
j

B

(
−2 +

1

2

∑
i

(ki − pi + 1), nj

)
(75)

with first argument always a negative integer and second argument a positive integer. The Beta function
can be analytically continued to complex values of its arguments using for example the Pochammer contour,
possibly with simple poles at the negative integers. Since IL(−iqi, ki) tends to (75) continuously for qi → pi,
this implies that it is possible to analytically extend IL(ρi, ki) to generic complex values of the first parameter,
again possibly with simple poles at the negative integers, i.e. at the values ki−pi+1 relevant for our case. The
simple form (75) holds however only in small a neighborhood of the poles since in general the hypergeometric
functions won’t be expressible as simple polynomials. Remarkably, the vanishing prefactor in (73) exactly
cancels the divergence of the analytically continued IL(−iqi, ki) at its simple poles.

We show how this works in the simple case pi = ki + σ, σ → 1 where we expect to recover (63). In this
case the hypergeometric functions are equal to unity and the integral in (66) reduces to∫ 1

0

dz (1− z2)2z1−4σ. (76)

The integral is divergent for σ → 1. Changing variables z2 → w we obtain the integral

1

2

∫ 1

0

dw (1− w)2w−2σ =
1

2
B(1− 2σ, 3) (77)

which as a complex function of σ has a simple pole in σ = 1 with residue −1. Recalling the prefactor from
(73) we get

i

2
lim
σ→1

(
e−8πiσ − 1

)
B(1− 2σ, 3) = 4π (78)

and inserting this in (66) we get exactly the Euclidean result (63).

Notice that since each ρi span an open subset of C, the previous considerations support strongly the
conjecture that the two functions IE(pi, ki) and IL(ρi, ki) are particular integral representations of a unique
function I(ai, ki) defined on the whole space C4 × Z4, which agrees with IE(pi, ki) for ai = pi and with
IL(ρi, ki) for ai = iρi. Hence, we can speak unambiguously of the analytic continuation of IE and IL. We
do not provide a rigorous proof of this interesting claim here, which would require a more careful treatment
of the interplay between the analytic continuation of the hypergeometric functions, the prefactor zK−A+1

and the integration on the unit interval.

Analytic continuation of vertex amplitudes

Imposing the Yγ map to both the Lorentzian and Euclidean integrals we find the desired relation between
the (analytic continuations of the) Lorentzian and Euclidean booster functions. The analytic continuation
pi → iρi reads γji → iγji and can be interpreted fascinatingly as the rotation of the Immirzi parameter
γ → iγ

BL4 (ja, la, i, k) =
i

1− e2π(i+γ)
∑
i ji
BE4 (ja, la, i, k)(γ→iγ) . (79)

The prefactor can be furthermore simplified remembering that
∑
i ji is always an integer, obtaining the

simpler

BL4 (ja, la, i, k) =
i

1− e2πγ
∑
i ji
BE4 (ja, la, i, k)(γ→iγ) . (80)

From the definition of the vertex amplitudes (39) and (41) and using (80) we find

ALv (jf , ie) =

(∏
e

i

1− e2πγ
∑
i∈e ji

)
AEv (jf , ie)

(γ→iγ) . (81)
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Vice versa, the analytic continuation iρi → pi when the Yγ map is imposed reads iγji → γji and can be
interpreted as the inverse rotation of the Immirzi parameter iγ → γ, equivalently γ → −iγ. The booster
functions are related by

BE4 (ja, la, i, k) = i
[(
e2πγ

∑
i ji − 1

)
BL4 (ja, la, i, k)

](iγ→γ)
(82)

where the rotation iγ → γ must be regularized taking the limit defined in (73). A similar expression for the
vertex amplitude is readily obtained

AEv (jf , ie) = i

[∏
e

(
e2πγ

∑
i∈e ji − 1

)
ALv (jf , ie)

](iγ→γ)
. (83)

This completes the derivation of the prescription for the analytic continuation of Euclidean and Lorentzian
vertex amplitudes one into the other.

5 Conclusion

In the spin foam literature, the Euclidean and Lorentzian EPRL models are traditionally presented differently.
Although the guiding principle is the same, that is imposing the linear simplicity constraints weakly, the
resulting implementations look dissimilar. Performing calculations in the Euclidean model is much more
straightforward than in the Lorentzian one. Therefore, many results are derived within the first [30, 31, 32,
33] and then inferred to be valid in the second or re-derived from scratch [34, 35]. Moreover, the model with
Euclidean signature carries the stigma of not being relevant or connected to physical calculations.

When formulated in the canonical basis and adopting the Cartan decomposition, the two models look
very alike, differing only in the booster functions (66) and (64), thanks to a few key correspondences. First,
the algebra of SL(2,C) maps to the algebra of Spin(4) if we rotate the generators of the Lorentzian boosts

into i times the generators of the Euclidean “boosts” ~A ↔ i ~K and vice versa. Second, this map induces a
correspondence between SL(2,C) and Spin(4) group elements that, using the Cartan decompositions (10)
and (26), reduces to a rotation of the non-compact coordinate ir → t. Third, the map between the algebras
induces a correspondence between irreducible representation (p, k) of Spin(4) and the unitary irreducible
representation (ρ, k) in the principal series of SL(2,C) as (p, k) ↔ (iρ, k). We obtain the matrix elements
in the (p, k) representation of Spin(4) from the matrix elements in the (ρ, k) representation of SL(2,C)
through the analytic continuation of the representation labels and group elements simultaneously. Finally,
we show that the booster functions of the models with different signature, and, more in general, the vertex
amplitudes, can be obtained from one another by rotation of the Immirzi parameter γ ↔ iγ.

This work bridges the gap between the spin foam EPRL models with different signatures and gives a
prescription on how to map the results obtained in the Euclidean framework to the Lorentzian one and back.

In addition, we found that the integral forms of the booster functions can be thought as special cases
of a general integral defined for complex ai that analytically continues both the Euclidean and Lorentzian
integrals. In terms of the Yγ maps that enforce ai = γji, we can think of this as an extension of the booster
functions to the case of an arbitrary complex Immirzi parameter9. Then, it could be possible in principle to
define a general spin foam model defined with complex Immirzi parameter γ that reduces to the Lorentzian
EPRL model and the Euclidean EPRL model for purely imaginary or real integer values of γ. This idea is
supported by the fact that the (ρ, k) representations of the principal series of SL(2,C) are defined for any
ρ ∈ C, but they are unitary only when ρ ∈ R [36]. However, the physical meaning of these hypothetical
“complex EPRL models” is not clear to us and we leave the exploration of these ideas to future works.

It is interesting to relate our findings to the early formulation of Loop Quantum Gravity. The original
canonical formulation of LQG was based on complex (self-dual) Ashtekar variables. In terms of these variables

9Amusingly, the key contribution of Giorgio Immirzi (who extended an idea from Fernando Barbero) was to highlight how
the complex phase space of Ashtekar variables could be canonically transformed to a real phase space using a real parameter,
namely the Immirzi parameter, to avoid the imposition of the reality conditions.
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the constraints of the Hamiltonian formulation of General Relativity are low order polynomials. The major
drawback is that one has to impose “reality conditions” on the canonical variables to recover real Lorentzian
GR. Since the quantization of these reality conditions is problematic, the focus of the LQG community has
shifted to the use of real variables (the Barbero-Immirzi variables) as soon as they were introduced. The
price to pay is a more complicated form of the constraints and a less clear geometric interpretation of the
real connection [37]. However, in the Euclidean signature these problems do not arise since the self-dual
connection is real, and it is possible to show that a “Wick rotation” maps the Euclidean constraints of
General Relativity to the Lorentzian ones [7, 38, 39]. In this work we define a similar “Wick rotation” in
the quantum theory using the covariant formulation of Loop Quantum Gravity.

Our work opens the way to many interesting ideas that deserve future explorations. In the context of
computer simulations, we expect our result to contribute to numerical codes for the EPRL model [20, 21]
to speed up the calculation of the booster functions. Alternatively, we could rethink the entire numerical
calculation scheme, avoiding the Cartan decomposition, and setting up the computation using the canonical
basis of Spin(4) with the rotation γ → iγ. It would be interesting also to study a possible connection to
other analytic continuations of the EPRL spin foam models based on the complexification of the integration
domain [40] or using Markov Chain Monte-Carlo computations [41]. The computation of the Bekenstein-
Hawking entropy of black holes in LQG can be derived using state counting after analytically continuing the
formula to γ = ±i [42, 43]. We can look for an interpretation of this analytic continuation using our results.
The applications go beyond LQG and spin foam models. For example, the booster functions are related to
the Clebsch-Gordan coefficients of the respective groups [10]. We can use our results to relate the Clebsch-
Gordan coefficients of SL(2,C) in the principal series to the analytic continuation of the ones of Spin(4)
(given by a {9j} symbol) [26, 27]. One possibility is to use well known explicit formulae for the SL(2,C)
Clebsch-Gordan coefficients [44] and the {9j} symbol [45] in terms of sums of products of hypergeometric
functions.

We conclude with the remark that our prescription for mapping through analytic continuation the uni-
tary irreducible representations of Spin(4) and SL(2,C) can be immediately adapted to other spin foam
models based on the same gauge groups. More generally, it would be interesting to study possible physical
implications of this intriguing analytic continuation beyond the context of spin foam models.
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Appendices

A SU(2) conventions

Here we summarize the SU(2) objects we use in the paper. A useful parametrization of a group element
g ∈ SU(2) is the so called Euler angles parametrization

g = e−iφ
σ3
2 e−iθ

σ2
2 e−iψ

σ3
2 , (84)

where σi are the Pauli matrices and 0 ≤ φ < 2π, 0 ≤ θ < π, and 0 ≤ ψ < 4π. The Haar measure in this
parametrization is given by

dg =
1

16π2
sin θdθdφdψ . (85)
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The matrix elements of a group element g ∈ SU(2) in the representation of spin j is called Wigner matrix
and in the basis |j,m〉 is given by:

Dj
mn(g) ≡ 〈j,m| g |j, n〉 =eiφ

m
2 e−iψ

n
2

√
(j +m)!(j −m)!(j + n)!(j − n)!· (86)∑

s

(
(−1)s

(
cos θ2

)2j+n−m−2s (
sin θ

2

)m−n+2s

(j + n− s)!s!(m− n+ s)!(j −m− s)!

)
. (87)

Which satisfies the orthogonality relation:∫
SU(2)

dgDj
mn(g)Dj′

m′n′ =
1

2j + 1
δjj′δmm′δnn′ , (88)

and the symmetry property:

Dj
mn(g†) = Dj

nm(g) = (−1)n−mDj
−n,−m(g) . (89)

The tensor product of two SU(2) representations j1 and j2 can be decomposed in terms of a sum of SU(2)
representations j with j = |j1 − j2|, · · · , j1 + j2. The Clebsh-Gordan coefficients

〈j1,m1, j2,m2|j,m〉 (90)

relates the states of the three representations. The Clebsh-Gordan coefficients are real and non-zero if and
only if:

|j1 − j2| ≤ j ≤ j1 + j2 and m = m1 +m2 . (91)

They satisfy the orthogonality relation∑
m1,m2

〈j1,m1, j2,m2|j,m〉 〈j1,m1, j2,m2|l, n〉 = δjlδmn . (92)

There are many explicit expressions for the Clebsh-Gordan coefficients. In Section 4.2 we used the Van Der
Waerden’s formula [46]:

〈j1,m1, j2,m2|j,m〉 = δm,m1+m2

√
2j + 1

√
(j1 + j2 − j)!(j1 − j2 + j)!(−j1 + j2 + j)!

(j1 + j2 + j + 1)!√
(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j +m)!(j −m)!∑
t

(−1)t
1

t!(j1 + j2 − j − t)!(j1 −m1 − t)!(j2 +m2 − t)!(j − j2 +m1 + t)!(j − j1 −m2 + t)!

(93)

Where the range of summation is given by the existence conditions of the factorials. This expression can
be also used to define an analytic continuation of the Clebsh-Gordan coefficients with complex spins [12]. A
symmetric equivalent of the Clebsh-Gordan coefficients are the Wigner 3jm-symbols(

j1 j2 j3
m1 m2 m3

)
≡ (−1)j1−j2−m3

√
2j3 + 1

Cj3,−m3

j1m1j2m2
(94)

The 3jm-symbols we use are reals and non zero if and only if

|j1 − j2| ≤ j3 ≤ j1 + j2 and m1 +m2 +m3 = 0 . (95)

They satisfy the orthogonality relations:∑
j,m

(2j + 1)

(
j1 j2 j
m1 m2 m

)(
j1 j2 j
n1 n2 m

)
= δm1n1

δm2n2
, (96)

∑
m1,m2

(2j + 1)

(
j1 j2 j
m1 m2 m

)(
j1 j2 l
m1 m2 n

)
= δjlδmn . (97)
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The integral of thee matrix elements is given by the product of two 3jm-symbols∫
SU(2)

dgDj1
m1n1

(g)Dj2
m2n2

(g)Dj3
m3n3

(g) =

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
n1 n2 n3

)
. (98)

We can couple four SU(2) representations j1, j2, j3, and j4 in many (equivalent) ways. If choosing the
recoupling basis (12) we define the 4jm-symbols as(

j1 j2 j3 j4
m1 m2 m3 m4

)(i)

≡
i∑

m=−i
(−1)i−m

(
j1 j2 i
m1 m2 m

)(
i j3 j4
−m m3 m4

)
. (99)

The states

|i〉 =
∑

m1,m2,m3,m4

√
2i+ 1

(
j1 j2 j3 j4
m1 m2 m3 m4

)(i)

|j1,m1, j2,m2, j3,m3, j4,m4〉 (100)

are the orthogonal invariant states in the tensor product of the four representations ji. They obey the
orthogonality relations:

∑
m1,m2,m3,m4

(
j1 j2 j3 j4
m1 m2 m3 m4

)(i)(
j1 j2 j3 j4
m1 m2 m3 m4

)(i′)

=
δii′

di
. (101)

In this work we adopted the compact notation [10]:(
ji
mi

)
=

(
ji
mi

)(i)

=

(
j1 j2 j3 j4
m1 m2 m3 m4

)(i)

. (102)

The integration over the Haar measure of four Wigner matrices can be expressed in term of 4jm-symbols
as: ∫

SU(2)

duDj1
m1n1

(u)Dj2
m2n2

(u)Dj3
m3n3

(u)Dj4
m4n4

(u) =
∑
j

(2j + 1)

(
ji
mi

)(i)(
ji
ni

)(i)

. (103)

The vertex amplitude includes the 15j-symbols of the first kind [46], which can be expressed as the contraction
over their magnetic indices of the product of five 4jm-symbols:

{15j}(ik, ja) ≡
∑
ma

(
j1 j2 j3 j4
m1 m2 m3 m4

)(i1)( j1 j5 j6 j7
m1 m5 m6 m7

)(i2)( j7 j2 j8 j9
m7 m2 m8 m9

)(i3)

(
j9 j6 j3 j10
m9 m6 m3 m10

)(i4)( j10 j8 j5 j4
m10 m8 m5 m4

)(i5)
. (104)

B Explicit proof of (56)

The starting point is the expression for the SL(2,C) matrix elements (11). For better bookkeeping we will
denote z = e−r. We use the properties of the 2F1 function to write it as the sum of two 2F1 functions
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evaluated at z−2, obtaining:

d
(ρ,k)
jlm (r) = (−1)j−l

√
(iρ− j − 1)! (j + iρ)!

(iρ− l − 1)! (l + iρ)!

√
(2j + 1)(2l + 1)

(j + l + 1)!
z−(iρ−k−m−1)√

(j + k)!(j − k)!(j +m)!(j −m)!(l + k)!(l − k)!(l +m)!(l −m)!∑
s,t

(−1)s+tz2t
(k + s+m+ t)!(j + l − k −m− s− t)!

t!s!(j − k − s)!(j −m− s)!(k +m+ s)!(l − k − t)!(l −m− t)!(k +m+ t)!{
(j + l + 1)!(l −m− iρ− k − s− t− 1)!

(l − iρ)!(j + l −m− k − s− t)!
z−2(k+m+s+t+1)

2F1

[
{j + iρ+ 1, k +m+ s+ t+ 1}, {m+ iρ+ k + s+ t− l + 1}; z−2

]
+

(j + l + 1)!(m+ iρ+ k + s+ t− l − 1)!

(j + iρ)!(k +m+ s+ t)!
z−2(l−iρ+1)

2F1

[
{j + l −m− k − s− t+ 1, l − iρ+ 1}, {l −m− iρ− k − s− t+ 1}; z−2

]}
.

(105)

We can write the two 2F1 functions explicitly, and using the properties of the Pochhammer symbols, we
obtain:

d
(ρ,k)
jlm (z) = (−1)j−l

√
(2j + 1)(2l + 1)

√
(iρ− j − 1)!

(l + iρ)! (j + iρ)!√
(j + k)!(j − k)!(j +m)!(j −m)!(l + k)!(l − k)!(l +m)!(l −m)!{

1

(l − iρ)!
√

(iρ− l − 1)!

∑
s,t,n

(−1)s+t(−1)nz−(iρ+k+m+2s+2n+1)

(j + iρ+ n)!(k +m+ s+ t+ n)!(l −m− iρ− k − s− t− 1− n)!

t!s!n!(j − k − s)!(j −m− s)!(k +m+ s)!(l − k − t)!(l −m− t)!(k +m+ t)!

+
√

(iρ− l − 1)!
∑
s,t,n

(−1)s+tz2t+iρ+k+m−2l−2n−1

(j + l −m− k − s− t+ n)!(m+ iρ+ k + s+ t− l − 1− n)!

t!s!n!(j − k − s)!(j −m− s)!(k +m+ s)!(l − k − t)!(l −m− t)!(k +m+ t)!(iρ− l − 1− n)!

}
.

(106)

The summations over s and t can be decoupled by shifting the index n→ n− s− k−m in the first sum and
n→ n+ t+ k − l in the second. Notice that this change of variable is well defined since s, k +m and k − l
are all integers. Moreover, since the expression is getting quite lengthy we split it in two pieces

d
(ρ,k)
jlm (z) = F1 + F2 (107)

Where we defined

F1 = (−1)j−l
√

(2j + 1)(2l + 1)

√
(iρ− l − 1)! (iρ− j − 1)!

(l + iρ)! (j + iρ)!√
(j + k)!(j − k)!(j +m)!(j −m)!(l + k)!(l − k)!(l +m)!(l −m)!∑

s,t,n

(−1)s+tziρ−k−1+m−2n

(j −m+ n− s)!(iρ+m− n− 1 + s)!

s!(j − k − s)!(j −m− s)!(k +m+ s)!

1

t!(l − k − t)!(l −m− t)!(k +m+ t)!(iρ− k − 1− n− t)!(k − l + n+ t)!
,

(108)
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and

F2 = (−1)j−l
√

(2j + 1)(2l + 1)

(l − iρ)!

√
(iρ− j − 1)!

(l + iρ)! (j + iρ)!(iρ− l − 1)!√
(j + k)!(j − k)!(j +m)!(j −m)!(l + k)!(l − k)!(l +m)!(l −m)!∑

s,t,n

(−1)t+n−m−kz−(iρ−k+1−m+2n)

(iρ− k + j + n−m− s)!
s!(j − k − s)!(j −m− s)!(k +m+ s)!(−k + n−m− s)!

(n+ t)!(−iρ− 1− n− t+ l)!

t!(l − k − t)!(l −m− t)!(k +m+ t)!
.

(109)

We focus on F1 first. We shift one of the sum by t→ t+ l − k − n and we rearrange the terms:

F1 =
∑
s,t,n

ziρ−k−1+m−2n

√
(2j + 1)(iρ− j − 1)!(j + k)!(j − k)!(j +m)!(j −m)!

(j + iρ)!

(−1)j−k−n(−1)s
(j −m+ n− s)!(iρ+m− n− 1 + s)!

s!(j − k − s)!(j −m− s)!(k +m+ s)!√
(2l + 1)(iρ− l − 1)!(l + k)!(l − k)!(l +m)!(l −m)!

(l + iρ)!

(−1)t
1

t!(iρ− l − 1− t)!(k −m+ n− t)!(n− t)!(l +m− n+ t)!(l − k − n+ t)!

(110)

The SU(2) Clebsch-Gordan coefficients can be expressed, using the Van der Waerden’s formula (93) and
[46], in terms of the 3F2 hypergeometric function evaluated in 1

〈j1,m1, j2,m2| j,m〉 =
√

2j + 1

√
(j1 + j2 − j)!(j1 − j2 + j)!(−j1 + j2 + j)!

(j1 + j2 + j + 1)!√
(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j +m)!(j −m)!∑
t

(−1)t
1

t!(j1 + j2 − j − t)!(j1 −m1 − t)!(j2 +m2 − t)!(j − j2 +m1 + t)!(j − j1 −m2 + t)!

=
√

2j + 1

√
(j1 − j2 + j)!(−j1 + j2 + j)!

(j1 + j2 + j + 1)!(j1 + j2 − j)!√
(j1 +m1)!(j2 −m2)!(j +m)!(j −m)!

(j1 −m1)!(j2 +m2)!

1

(j − j1 −m2)!(j − j2 +m1)!

3F2(j − j1 − j2,m1 − j1,−j2 −m2; j − j2 +m1 + 1, j − j1 −m2 + 1; 1) .

(111)

The 3F2 admits a well-defined analytic continuation for complex parameters, and as a consequence a well-
defined analytic continuation of the Clebsch-Gordan coefficients.

We can perform the sums over s and t in (110) exactly in terms of 3F2 hypergeometric functions evaluated
in 1. Using an identity of the 3F2 functions and manipulating the factorials in front we can recognize the
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two sums as analytically continued Clebsch-Gordan coefficients10

F1 =
∑
n

ziρ−k−1+m−2n〈(
iρ+ k − 1

2
,m− n+

iρ− k − 1

2

)
,

(
iρ− k − 1

2
, n− iρ− k − 1

2

)∣∣∣∣ j,m〉〈(
iρ+ k − 1

2
,m− n+

iρ− k − 1

2

)
,

(
iρ− k − 1

2
, n− iρ− k − 1

2

)∣∣∣∣ l,m〉 .

(112)

Similarly, in F2 we can perform the sums over s and t in terms of two 3F2 functions evaluated in 1 and
we can identify the analytically continued Clebsch-Gordan coefficients

F2 =
∑
n

z−(iρ−k+1−m+2n)

〈(
−iρ− k − 1

2
,
−iρ+ k − 1

2
+m− n

)
,

(
−iρ+ k − 1

2
, n− −iρ+ k − 1

2

)∣∣∣∣ j,m〉〈(
−iρ− k − 1

2
,
−iρ+ k − 1

2
+m− n

)
,

(
−iρ+ k − 1

2
, n− −iρ+ k − 1

2

)∣∣∣∣ l,m〉
(113)

Inserting the expression of F1 and F2 in (107) we obtain an expression of the reduced matrix elements in
the (ρ, k) representation in terms of complex Clebsch-Gordan coefficients

d
(ρ,k)
jlm (r) =

∑
n

e−(iρ−k−1+m−2n)r〈(
iρ+ k − 1

2
,
iρ− k − 1

2
+m− n

)
,

(
iρ− k − 1

2
, n− iρ− k − 1

2

)∣∣∣∣ j,m〉〈(
iρ+ k − 1

2
,
iρ− k − 1

2
+m− n

)
,

(
iρ− k − 1

2
, n− iρ− k − 1

2

)∣∣∣∣ l,m〉
+
∑
n

e−(−iρ+k−1+m−2n)r〈(
−iρ− k − 1

2
,
−iρ+ k − 1

2
+m− n

)
,

(
−iρ+ k − 1

2
, n− −iρ+ k − 1

2

)∣∣∣∣ j,m〉〈(
−iρ− k − 1

2
,
−iρ+ k − 1

2
+m− n

)
,

(
−iρ+ k − 1

2
, n− −iρ+ k − 1

2

)∣∣∣∣ l,m〉 .

(114)
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