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Abstract

In this article, we develop a new general inference method for selecting learn-

ing models. The method relies upon a specific hold-out cross-validation, which

takes into account the dependency within the data. This allows us to retrieve

the model that best fits the learning strategy of a single individual. The novelty

of our approach lies on the choice of the testing set, both in the experimental

design and in the data analysis. This individual approach is then applied to two

category learning models (ALCOVE and Component-cue) on data-sets manipu-

lating presentation order, after verification of the reliability of our method. We

found that both models performed equally well during transfer, but Component-

cue best fits the majority of participants during learning. To further analyze

these models, we also investigated a potential relation between the underlying

mechanisms of the models and the actual types of presentation order assigned

to participants.
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1. Introduction

Computational models are now common in many domains of cognitive sci-

ence, for instance to study memory (Lemaire & Portrat, 2018; Oberauer &

Kliegl, 2006), decision making (Arifovic & Ledyard, 2011; Novikov et al., 2018;

Roth & Erev, 1995), attention (Borji & Itti, 2013; Malem-Shinitski et al., 2020),5

and categorization (Carvalho & Goldstone, 2019; Kruschke, 1992; Love et al.,

2004). Because formal models abound in cognition, methods have been devel-

oped to offer rigorous common grounds to evaluate their performance (Myung,

2000; Myung & Pitt, 1998; Pitt et al., 2002). The purpose of our study is to pro-

mote the use of a general method to fit formal learning models to experimental10

data, with a particular focus on models of category learning.

In categorization, a large variety of practices exist to fit models to data. Some

studies have used the same set of observations to both estimate the parameters of

the models and compute their predictions (Nosofsky et al., 2017, 2018; Sanders

& Nosofsky, 2020), running the risk of over-fitting the data (Cawley & Talbot,15

2010). Other studies have relied on the use of computer simulations with the

aim of either estimating the parameters of the models or determining their

predictions (Carvalho & Goldstone, 2019; Nosofsky et al., 1994, 2017). In these

studies, the estimated parameters and the overall predictions of the models

were obtained by averaging the best-fitting parameters and the classification20

predictions found in the simulations. Finally, a wide array of criteria have been

used to estimate fit to the data (Carvalho & Goldstone, 2019; Nosofsky et al.,

1992, 1994, 2018). Some examples are the Sum of Squared Deviations (SSD), the

Weighted Sum of Squared Deviations (WSSD), the likelihood (either trial-by-

trial, or block-by-block, or epoch-by-epoch), the Akaike Information Criterion25

(AIC), and the Bayesian Information Criterion (BIC).

In addition to this heterogeneity of practices, in contexts when observa-

tions are not independent (such as learning) classical statistical criteria are

not reliable. While these criteria have statistical guarantees when applied to

independent and identically distributed (i.i.d.) data, such guarantees are no30
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longer available with dependent data. For instance, Akaike Information Crite-

rion (AIC) and Bayesian Information Criterion (BIC) offer theoretical guaran-

tees when the number of observations tends to infinity and when observations

are i.i.d. (Akaike, 1998; Claeskens & Hjort, 2007; Konishi & Kitagawa, 2008;

Schwarz, 1978). Since participants learn during categorization tasks and since35

their learning process ends in finite time, participants’ observations are depen-

dent on one another and their number is limited.

In this article, we propose a new statistical inference method for model se-

lection that can be applied in contexts involving learning. Our method falls

under the category of cross-validation methods, that are generally more flexible40

than classical statistical criteria (Allen, 1974; Stone, 1974). Here, we propose

the simplest kind of cross-validation: the hold-out which consists in separating

observations in two sets, one for parameter estimation and one for model testing.

However, training and testing sets are not randomly selected as in usual cross-

validation methods. Indeed, data of a single individual acquired from learning45

tasks cannot be thought independent and this dependency structure within the

data need to be precisely taken into account. Therefore, models are tested ei-

ther on the transfer phase (when the object of interest is performance during

transfer) or on unsupervised blocks of the learning phase (when the object of

interest is learning progression). Learning refers to the stage in which categories50

are formed, while transfer refers to the stage in which individuals’ knowledge

is tested upon presentation of new stimuli. However, the learning phase is gen-

erally exclusively composed of supervised blocks (Carvalho & Goldstone, 2014;

Mathy & Feldman, 2009). Therefore, with the aim of applying our inference

method to the learning phase alone, we specifically designed and conducted an55

experiment including unsupervised blocks. This specific experimental design is

completely original in learning experiments. Up to our knowledge, this is the

first design which, combined with the adequate statistical analysis, allows us to

determine which model best fits a learning phase.

Although our method is flexible enough to be applied to all kinds of learning60

models, here it is applied to compare two models of category learning. The two
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models on which our investigation is focused are Gluck and Bower’s Component-

cue (Gluck & Bower, 1988) and Kruschke’s ALCOVE (Kruschke, 1992). Both

models have the ability to evolve over time, accounting for both category learn-

ing and transfer. The selection of these two models was motivated by the fact65

that, although their mathematical structure is similar, they implement different

learning strategies. Indeed, both models are based on artificial neural networks

(Dreyfus, 1990; Rosenblatt, 1958); however, they implement either a complex

rule-based strategy (Component-cue) or a similarity-based strategy (ALCOVE)

(Högden et al., 2019). A complex rule-based strategy refers to the process70

with which participants classify new items on the basis of complex previously

acquired rules, whereas a similarity-based strategy refers to the process with

which participants classify new items on the basis of their similarity to stored

exemplars or prototypes. Analyzing models with a similar mathematical ar-

chitecture allowed us to focus on the psychological mechanisms implemented75

into these respective models. Our goal was to determine whether a complex

rule-based or a similarity-based strategy bests fit our data-sets, after showing

statistical guarantees of our inference method through numerical simulations.

Also, these numerical simulations supported the use of an individual approach,

in which each participant is solely fit.80

To further analyze these models, we made use of two types of presentation

order involving a variation of stimulus ordering within a category (Bower et al.,

1969; Medin & Bettger, 1994). The rule-based order is designed to facilitate

a rule-abstraction process ordering stimuli following a “principal rule plus ex-

ceptions” structure, whereas the similarity-based order is designed to maximize85

the similarity between consecutive stimuli (Elio & Anderson, 1981, 1984; Mathy

& Feldman, 2009, 2016). The rationale is that a model should perform bet-

ter when stimuli are presented following a presentation order inspired by the

mechanisms at play in the model. For instance, a model integrating a rule-

based or a complex rule-based strategy should benefit from a presentation in90

which stimuli obeying the principal rule are presented before the exceptions.

Inversely, a model integrating a similarity-based strategy should benefit from
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a presentation that maximizes the similarity between contiguous examples. In

both cases, the external context that best suits the internal mechanism of a

model should facilitate the extraction of the categories. Therefore, our hypoth-95

esis is that Component-cue should best fit participants in the rule-based order,

while ALCOVE should best fit participants in the similarity-based order.

To summarize, the objective of this article is three-fold: i) to present a gen-

eral method to guide the evaluation and selection of learning models (Section 2),

ii) to apply this method on designed data-sets for comparing two category learn-100

ing models (Component-cue and ALCOVE) that implement different learning

strategies (Section 5.2), and iii) to investigate whether the learning strategies

at play in the models are related to the order in which stimuli are presented,

when the chosen order is inspired by these strategies (Section 5.3). Numerical

simulations validating our inference method are given in Section 5.1, following105

the description of the models and data-sets (Section 3 and 4).

2. Statistical Inference Method

Here, we first describe how the parameters of the models are estimated.

Then, we present the statistical inference method used to determine which model

best accounts for category learning and transfer. Numerical simulations assess-110

ing the accuracy of the estimates of the chosen models, as well as the reliability

of the method are given in the section Results.

2.1. Parameter Estimation

The parameters of the models were estimated using the Maximum Likelihood

Estimation (MLE) (Aldrich, 1997):

θ̂ ∈ arg min
θ∈Θ

{− logLM (D ; θ)} ,

where M denotes the model, LM its likelihood, and D the data-set used for the

estimation. The MLE was performed using the gradient descent algorithm. To115

avoid local minima, the gradient descent algorithm was run 10 times, taking

each time different initial conditions.
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2.2. Model selection

Models were fit to our data-sets using the hold-out cross-validation method,

which consists in training the models on a subset of the data and testing them120

on the remaining subset. As discussed in the introduction, the use of a cross-

validation technique was preferred to classical statistical criteria because of its

flexibility and ability to be applied in contexts involving learning. Because it

would have been too intricate to apply convoluted cross-validation techniques

on non-i.i.d. data, the simplest kind of cross-validation (hold-out) was adopted.125

When cross-validation techniques are applied to i.i.d. data, training and testing

sets are completely exchangeable. However, as mentioned above our observa-

tions during learning are dependent on one another because of feedback. This

dependency within the data makes it extremely difficult to train models on ob-

servations that occur after the observations on which models are tested (this130

would require a very complex “expectation-maximisation” phase that is out of

the scope of the present paper). Potential solutions are to either train models on

observations that occur before the observations on which models are tested, or

to test models on observations with no feedback and on which a “frozen” model

that does not evolve is used. The latter is used here, whereas the former has135

been used in spatial learning tasks for non-human animals (Moongathottathil-

James et al., 2021). In both cases, the method is a particular case of hold-out

where the testing set has to be intentionally well-chosen.

The predictions of the models were evaluated with either the Sum of Squared

Deviations (SSD) or the likelihood. The SSD is given by the sum of the squared

difference between the prediction of the model and the participants’ response

across the testing set:

ESSD(M) =
∑

x(t)∈DT

(
Pθ̂M

(
A |x(t), Ht−1

)
− z(t)

)2

,

where M denotes the model; Pθ̂M
(
A |x(t), Ht−1

)
is the prediction of the model

for the stimulus x(t), given the sequences of stimuli and feedback Hi−1 until140

time t− 1; z(t) is the response given by the participant for the classification of
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the stimulus x(t); and DT is the testing set. The parameter θ̂ was estimated on

the training set.

The evaluation of the model using the likelihood is given by:

EL(M) = − logLM (DT ; θ̂),

where M denotes the model; LM its likelihood; θ̂ the estimated parameter on

the training set; and DT the testing set. The model that best fit our data-sets

M̂ is the model with the lowest evaluation with either the SSD or likelihood

criteria (∗ = SSD or L):

M̂ ∈ arg min
M

{E∗(M)}.

Although we advise the use of the likelihood criterion when the parameter es-

timation is performed using MLE, we additionally considered SSD in order to145

allow a continuity with previous studies in categorization. Indeed, the use of

SSD in psychology is still popular (Carvalho & Goldstone, 2019; Nosofsky et al.,

1992, 1994, 2018; Palmeri, 1999).

3. Overview of two models of category learning

Here, we present the category learning models that we compared using the150

statistical inference method described above. As mentioned in the introduction,

ALCOVE and Component-cue have a similar mathematical structure, but im-

plement different learning strategies. ALCOVE learns the category membership

of the training stimuli and classifies new items on the basis of their similarity to

these acquired stimuli. Conversely, Component-cue learns the combination of155

features that are a good predictor of the category membership of the training

stimuli and classifies new items on the basis of these diagnostic combination of

features.

3.1. ALCOVE

Attention Learning COVEring map model (ALCOVE) (Kruschke, 1992) is

an artificial neural network composed of three layers of nodes: i) a single input
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x(t)

ξ1 ξ2 · · · ξNL-1 ξNL

K1 · · · KN

input

stimuli

categories

Figure 1: Artificial neural network structure of ALCOVE.

node receiving the stimuli, ii) a layer of intermediate nodes coding for the learn-

ing stimuli, and iii) a layer of output nodes coding for the categories in which

stimuli can be classified (see Figure 1). The intermediate nodes are linked to

the output nodes through association weights, whose evolution allows the model

to learn. When a stimulus x(t) reaches the input node, the intermediate nodes

ξj (for j = 1, . . . , NL) are activated by the quantity:

a
(t)
j = S(x(t), ξj),

where NL is the number of learning stimuli. The term S(x(t), ξj) denotes the

similarity between stimuli x(t) and ξj , and it is computed as an exponentially

decaying function of the distance between the two stimuli:

S(x(t), ξj) = e−c·d(x(t),ξj)p ,

where d(x(t), ξj) is the distance between stimuli x(t) and ξj , p a positive constant,

and c a freely estimated sensitive parameter (c ≥ 0). The distance between

stimuli x(t) and ξj is computed as follows:

d(x(t), ξj) =

[
N∑
i=1

ωi · |x(t)
i − ξ

j
i |
r

] 1
r

,

where N is the dimension of the psychological space in which stimuli are em-160

bedded, ωi the attention allocated to dimension i (ωi ≥ 0 and
∑N
i=1 ωi = 1), r

a positive constant; and x
(t)
i and ξji the feature values of stimuli x(t) and ξj on

dimension i. The values of p and r are determined on the basis of the nature of

the stimuli. In our case, p and r are set equal to 1 (see Section 4).
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All these quantities a
(t)
j (for j = 1, . . . , NL) are weighted and summed to

form outputs. The output node associated with category K is activated by the

quantity:

O
(t)
K =

NL∑
j=1

a
(t)
j · w

(t)
j,K ,

where w
(t)
j,K is the association weight linking intermediate node ξj to output

node K, at the arrival of the t-th stimulus. The outputs were constrained to

vary between -1 and 1. The probability of classifying a stimulus into a given

category is computed as a function of the outputs. Two formulas have been used

in the literature: an exponential formula (Kruschke, 1992) and a linear formula

(Nosofsky et al., 1992, 1994; Palmeri, 1999). According to the exponential

formula, the probability of classifying the t-th stimulus x(t) as belonging to a

given category A (knowing the sequence of stimuli and feedback Ht−1 until time

t− 1) is given by:

P(A |x(t),Ht−1) =
eφO

(t)
A∑

K∈K
eφO

(t)
K

, (1)

where φ is a freely estimated positive parameter and K the set of all categories.

According to the linear version, the probability of classifying the t-th stimulus

x(t) as belonging to a given category A (knowing the sequence of stimuli and

feedback Ht−1 until time t− 1) is given by:

P(A |x(t),Ht−1) =
O

(t)
A + b∑

K∈K

(
O

(t)
K + b

) (2)

where b is a category bias parameter (b ≥ 1) and K the set of all categories.165

The exponential version is denoted by the letter E (i.e., ALCOVEE), while the

linear version by the letter L (i.e., ALCOVEL). In our study, both formulas

were considered.

Once the classification probability are computed, the association weights

w
(t)
j,K and attention weights ω

(t+1)
i are updated in order to minimize the differ-

ence between feedback and outputs of the model. More specifically, the error of
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the model for the t-th stimulus is computed as follows:

E(t) =
∑
K∈K

(
T (t)
K −O(t)

K

)2

,

where

T (t)
K =

 1 if x(t) ∈ K

−1 otherwise

The association weights are updated to decrease the error of the model as follows:

w
(t+1)
j,K = w

(t)
j,K − λw ·

∂E(t)

∂w
(t)
j,K

= w
(t)
j,K + λw · a(t)

j ·
(
T (t)
K −O(t)

K

)
, (3)

where λw is a freely estimated learning rate parameter (λw ≥ 0). The attention

weights are equally updated to decrease the error of the model. Their updating

is given by the following rule:

ω
(t+1)
i = ω

(t)
i − λω ·

∂E(t)

∂ω
(t)
i

= ω
(t)
i − λω ·

∑
K∈K

NL∑
j=1

(
a

(t)
j · w

(t)
j,K · c|x

(t)
i − ξ

j
i |·

·
(
T (t)
K −O(t)

K

))
,

where λω is a freely estimated learning rate parameter (λω ≥ 0). The associ-

ation and attention weights are initiated at 0. ALCOVE can also be applied170

to reproduce performance during transfer. In this scenario, since feedback is

not provided during transfer, the weights are no longer updated and a “frozen”

model is considered. This is also true on unsupervised blocks of the learning

phase where participants’ classification is monitored without feedback.

3.2. Component-cue175

Component-cue (Gluck & Bower, 1988) is an artificial neural network, com-

posed of three layers of nodes: i) a single input node receiving the stimuli, ii)

a layer of intermediate nodes coding for the features of the stimuli, and iii) a
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x(t)

F1 F2 · · · FN -1 FN

K1 · · · KN

input

features

categories

Figure 2: Artificial neural network structure of Component-cue.

layer of output nodes coding for the categories in which stimuli can be classi-

fied (see Figure 2). As in ALCOVE, the intermediate nodes are linked to the

output nodes through association weights, whose evolution allows the model to

learn. When a stimulus x(t) reaches the input node, the intermediate nodes Fj
(j = 1, . . . ,N ) are activated as follows:

a
(t)
j =

 1 if x(t) has Fj

0 otherwise.

All of these quantities a
(t)
j (for j = 1, . . . ,N ) are weighted and summed to

form outputs. The output node associated with category K is activated by the

quantity:

O
(t)
K =

N∑
j=1

a
(t)
j · w

(t)
j,K ,

where w
(t)
j,K is the association weight linking intermediate node Fj to output

node K. Again, the outputs were constrained to vary between -1 and 1. Simi-

larly to ALCOVE, the classification probabilities are computed as in Equation

(1) (if the exponential formula is considered) or as in Equation (2) (if the linear

formula is considered). The same notations as before are used to denote the180

two versions. Again, once the classification probability are computed, the asso-

ciation weights are updated in order to minimize the error of the model. The

association weights of Component-cue are updated as in Equation (3) and their

initialization is set at 0.
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4. Overview of the data-sets185

Models were compared based on two separate data-sets. The first data-set

corresponds to the results of an experiment conducted by (Mathy & Feldman,

2016), which was designed to assess the effects of within-category orders on

category transfer. The second data-set corresponds to the results of an experi-

ment conducted by (Mezzadri et al., 2021). Although this second data-set has190

already been used to test a model of category transfer, it was specifically de-

signed for the application of our method to both the learning phase alone and

the totality of the experiment. As mentioned in the introduction, the learn-

ing phase of a categorization task is generally supervised. Supervision implies

dependency of the observations, which heightens the complexity of the appli-195

cation of cross-validation techniques. The introduction of unsupervised blocks

within the learning phase allowed us to apply our method, without increasing

its complexity. Although they are not novel experiments, the procedure of both

experiments is briefly recalled.

4.1. Data-set 1 (Mathy & Feldman, 2016)200

Participants (N = 44) were instructed to learn a 4-feature category structure

(see Figure 3) based on either a rule-based presentation order or a similarity-

based presentation order. This structure, called 5-4 category set (Medin &

Schaffer, 1978), allowed to study how participants categorize 7 novel stimuli

during a transfer phase, after learning 5 + 4 = 9 stimuli (5 items belonged to205

category A and 4 items to category B). Participants were instructed to press

one of two response keys corresponding to the categories. A feedback indicating

the correctness of their responses was provided, except in the transfer phase.

Stimuli. Stimuli varied along four Boolean dimensions (shape, color, size, and

filling pattern). The options for each dimension were: square or circle for shape;210

blue or gray for color; small or big for size; and plain or striped for filling pat-

tern. The combination of these features formed 24 = 16 items (Figure 3, on

the bottom). Each dimension was instantiated by the same physical feature for
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T1 T2

B3 A1

B1 B2

T3 T4

A5

A2 A3

T7

T6T5

A4B4

Figure 3: Categories and stimulus items of Data-set 1. The items varied along four Boolean

dimensions (shape, color, size and filling pattern) represented here in a Hasse Diagram forming

a hypercube. At the top, the structure of the 5-4 category set. The examples of category A are

indicated by black dots, those of category B by white dots, and transfer item are represented

by empty vertices. At the bottom, illustration of the items of Data-set 1.

all participants. As can be seen in Figure 3 (on the bottom), color differenti-

ated the objects at the top of the hypercube from those at the bottom, shape215

differentiated the objects at the front of the hypercube from those at the back,

size distinguished the objects in the left cube from those in the right cube, and

filling pattern differentiated the right and left objects within the cubes.

Phases. The experiment was composed of a supervised learning phase (in which

feedback was provided at each trial), followed by an unsupervised transfer phase220

(in which no feedback was provided). Participants had to correctly classify

stimuli in four consecutive blocks of 9 stimuli to complete the learning phase.

Once participants met this learning criterion, a transfer phase was initiated.

The transfer phase was composed of 5 blocks of 16 stimuli (the 9 learning items

plus 7 transfer items).225

Ordering of stimuli. During learning, training blocks were alternated with ran-

dom blocks. Training blocks were used to manipulate order, while random blocks

were used to monitor learning. In training blocks, categories were blocked (i.e.,

AAAABBBB or BBBBAAAA) and the order of the stimuli within a category

was manipulated following either a rule-based or a similarity-based order. Half230
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of the participants were randomly assigned to the similarity-based condition.

In the rule-based order, stimuli obeying the main rule were presented strictly

before the exceptions to the rule. The principal rule was determined by the

color (all gray items are members of category A and all blue items are members

of category B), while the exceptions were the small gray hatched circle and235

the big blue plain circle. In the similarity-based order, members within a cate-

gory were presented in a way that maximized the similarity between consecutive

stimuli. The first stimulus was randomly selected and subsequent stimuli were

(randomly) selected among those that were the most similar to the immediately

previous item. Similarity between two items was computed by counting the240

number of common features that they shared and ties were solved randomly.

For further details we refer the reader to (Mathy & Feldman, 2016).

4.2. Data-set 2 (Mezzadri et al., 2021)

As in the previous data-set, participants (N = 130) were instructed to learn

a single 5-4 category set based on different types of order. Although the cate-245

gories and stimuli were similar to that of Data-set 1, Data-set 2 extended the

manipulation of presentation orders. In addition to the within-category manip-

ulations, both between-category and across-blocks conditions were manipulated.

These variations were introduced to avoid picking a condition which could favor

one of the two condition of our main factor (rule-based or similarity-based). To250

summarize, Data-set 2 extends Data-set 1 on three levels: i) the introduction

of unsupervised blocks during learning, allowing the application of our method

to the learning phase alone, ii) the larger variety of order manipulations, and

iii) the higher number of participants.

Stimuli. Stimuli were the same as in Data-set 1. However, dimensions were255

instantiated by different features. Indeed, color distinguished the objects at the

front of the hypercube from those at the back, shape distinguished the objects

in the left cube from those in the right cube, size distinguished the right and

left objects within the cubes, and filling pattern distinguished the objects at the

top of the hypercube from those at the bottom.260
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Phases. As in Data-set 1, a learning phase was followed by a transfer phase.

However, Data-set 2 made use of two blocks of supervised learning (in which the

order of the stimuli was manipulated and feedback was provided), followed by

one block of unsupervised learning (in which stimuli were randomly presented

with no feedback). This pattern was repeated until the end of the learning265

phase. Participants had to correctly classify stimuli in three unsupervised blocks

of 9 stimuli (not necessarily consecutive) to complete the learning phase. Once

participants met this learning criterion, a transfer phase was initiated. As in

Data-set 1, the transfer phase was composed of 5 blocks of 16 stimuli.

Ordering of stimuli. The experiment was characterized by a full factorial design.270

Three factors were used, each one having two levels: a within-category order

manipulation (rule-based vs. similarity-based), a between-category order ma-

nipulation (interleaved vs. blocked), and a manipulation of order across blocks

(variable vs. constant). The combination of these types of order formed eight

conditions (e.g., “rule-based + interleaved + constant”, etc.). The number of275

participants assigned to each condition is given in Table 1. In the interleaved or-

der, categories were strictly alternated (i.e., ABABABAB), while in the blocked

order, categories were strictly blocked (i.e., AAAABBBB or BBBBAAAA).

As described above, in the rule-based order stimuli belonging to a same category

were presented following a “principal rule plus exceptions” structure, whereas280

the similarity-based order maximized the similarity between immediately con-

tiguous examples. In the variable manipulation across blocks, the sequence of

stimuli varied from one block to another, while in the constant manipulation

across blocks, the unique sequence was presented across blocks. For further

details we refer the reader to (Mezzadri et al., 2021).285

5. Results

We first present the numerical simulations of accuracy of the parameter

estimation and reliability of the method. Then, we present the results of the

inference method applied to ALCOVE and Component-cue on both data-sets.
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Rule-based Similarity-based

Constant Variable Constant Variable

Interleaved 16 14 13 15

Blocked 17 15 21 19

Table 1: Number of participants assigned to each of the 8 conditions of Data-set 2.

Finally, we investigate whether performance of the models is related to the order290

to which participants were assigned.

5.1. Numerical simulations

5.1.1. Parameter estimation

Numerical simulations were conducted to assess the quality of the parame-

ter estimation, as a function of the size of the data-set. The accuracy of the295

estimates was highly dependent on whether the exponential or linear version of

the models was considered. Parameters of the exponential version were accu-

rately estimated when the size of the data-set was equal to or greater than 80

blocks. On the contrary, parameters of the linear version were overall accurately

estimated when the size of the data-set was greater than 160 blocks, with the300

exception of parameter b (for further details, see Chapter 5 of (Mezzadri, 2020)).

Although an accurate estimation of the parameters required data-sets of large

size, the predicted probabilities of the models were accurate enough with smaller

data-sets (30-40 blocks). Since we were not interested in accurately estimating

the parameters of the models but only their classification probabilities, data-sets305

with 30-40 blocks were judged adequate. Both our data-sets met this condition,

thus guarantying an accurate estimation of the predictions of the models. More-

over, since the learning phase of single participants lasted 30 blocks on average,

this allowed us to fit participants individually.
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5.1.2. Hold-out reliability310

Numerical simulations were conducted to assess the reliability of our method.

In these simulations, the learning models were used to generate a set of artifi-

cial data. These artificial data-sets were then used to determine whether the

inference method was able to detect the model with which the data-sets were

generated. These steps were iterated 100 times to give a statistical significance315

to the analysis. The results of the numerical simulations are shown in Figure 4.

The graph shows the percentage of times that the simulated data-sets were ac-

tually generated by the model that was selected by the method (i.e., the model

reaching the lowest evaluation with either the SSD or likelihood criteria). Both

criteria gave similar results.320

Both the exponential and linear versions of ALCOVE were identified as

ALCOVE 81-86% of the time; however, only 56-60% of the time they were

identified with the correct version. The exponential version of Component-

cue was identified as Component-cue 75-78% of the time, but 10-14% of the

time it was identified with the incorrect version. Finally, the linear version of325

Component-cue was the most recognizable model with a correct identification of

almost 90%. To summarize, our simulations ensure that the model characterized

by the lowest evaluation is the model underlying the data (regardless of the

version) with a probability of 75-78% at least. Moreover, only the linear version

of Component-cue is recognizable with a high probability (almost 90%). The330

identification of the other versions is not guaranteed with a high probability.

5.2. Model-fitting results

Here, we present the results of the application of the hold-out cross-validation

method to Data-set 1 and Data-set 2. Since we were interested in studying how

participants learned and remembered the categories, those who did not meet335

this criterion were removed from the analysis. In Data-set 1, one participant (in

the similarity-based order) did not meet the learning criterion, whereas in Data-

set 2, 6 participants did not meet the learning criterion. Also, 36 participants

incorrectly classified more than 25% of the training items during transfer and
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Figure 4: Results of the numerical simulations assessing the reliability of the method. The

graph shows the percentage of times that the simulated data-sets were actually generated by

the model with the lowest error (using the SSD or likelihood criteria). A total of 20 iterations

× 43 participants = 860 hold-out methods were performed. The hold-out method was applied

to each participant, separately. Models were fit on the same sequence of stimuli used in

Data-set 1: training was performed on the learning phase, while testing was performed on the

transfer phase. The gradient descent algorithm in the MLE was performed 10 times.
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Rule-based Similarity-based

Constant Variable Constant Variable

Interleaved 2 — 3 0 — 4 0 — 1 1 — 6

Blocked 0 — 4 1 — 5 0 — 9 2 — 4

Table 2: Number of participants that were removed from the analysis, for each condition of

Data-set 2. The number of participants who did not reach the learning criterion is shown on

the left of “—”, while the number of participants who incorrectly classified more than 25% of

the training items during transfer is shown on the right of “—”. For clarifications about the

mentioned presentation orders, see Section 4.

were then removed from the analysis (for details on which condition they were340

assigned to see Table 2). Regarding trials in which participants did not classify

stimuli on time (amounting to 1.4% in Data-set 2; participants in Data-set

1 always classified stimuli on time), one of the two categories was randomly

selected to facilitate modeling.

5.2.1. Data-set 1345

Figure 5 (on the top) shows the results of the application of the hold-out

method to Data-set 1, with the transfer phase as the testing set. Each par-

ticipant was fit separately. The graph shows the number and percentage of

participants who were best fit by the various learning models, depending on

the evaluation criteria. Component-cue best performed on 63-66% of the par-350

ticipants, with a dominance of the linear version with the SSD criterion and a

dominance of the exponential version with the likelihood criterion. Simulations

ensured us that the model underlying the responses of the participants who were

best fit by Component-cue was actually Component-cue with a probability of

75-78%. Moreover, when the best-fitting model was ALCOVE or Component-355

cueL the probability increased to 81-86% or 89-93%, respectively.
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5.2.2. Data-set 2

Figure 5 (in the middle and on the bottom) shows the results of the applica-

tion of the hold-out method to Data-set 2, with either the transfer phase or the

unsupervised blocks of the learning phase as the testing set. Each participant360

was fit separately. The graph shows the number and percentage of participants

who were best fit by the learning models, depending on the evaluation crite-

ria. In the graph in the middle, models were trained on the supervised blocks

of the learning phase and tested on the transfer phase. Approximately half of

the participants were best fit by ALCOVE (44-48%) and half of the partici-365

pants were best fit by Component-cue (52-56%). In the graph on the bottom,

models were trained on the supervised blocks of the learning phase and tested

on the unsupervised blocks of the same phase. This time, the majority of the

participants (75-81%) was best fit by Component-cue, with a dominance of the

exponential version. Again, simulations ensured us that these results are liable370

with a probability of 75-78%.

5.3. Relation between models and within-category orders

Here, we investigate a potential connection between the two strategies at

play in the models (a complex rule-based strategy in Component-cue and a

similarity-based strategy in ALCOVE) and the within-category orders used to375

present stimuli (rule-based and similarity-based orders). Again, one plausible

hypothesis is that a model integrating a mechanism X should be favored by

an order inspired by X. Another way to put it is that it would be paradoxical

for a model to show a preference for a type of presentation which a priori

would not favor its implemented mechanisms. To investigate this hypothesis,380

we analyzed i) whether the number of participants that were best fit by a specific

model was related to the within-category order assigned to these participants

(in “Distribution of participants analysis”), and ii) whether the generalization

patterns of the model that best fit our data were related to the within-category

order in which stimuli were presented (in “Generalization patterns analysis”).385

The description of the analysis on generalization patterns will be preceded by
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Figure 5: Application of the hold-out method on Data-set 1 (on the top) and Data-set 2 (in

the middle and on the bottom). The graphs show the number and percentage of participants

that were best fit by the learning models, as a function of the models and evaluation criteria.

On the top, models were trained on the learning phase and tested on the transfer phase

(Data-set 1). In the middle, models were trained on the supervised blocks of the learning

phase and tested on the transfer phase (Data-set 2). On the bottom, models were trained

on the supervised blocks of the learning phase and tested on the unsupervised blocks of the

learning phase (Data-set 2).
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a test of the difference of performance between participants in the rule-based

and similarity-based orders. This additional test will serve as a baseline for our

analysis on generalization patterns.

5.3.1. Distribution of participants analysis390

Data-set 1. Table 3 (on the top) shows the number of participants in Data-set

1 whose responses were best predicted by either Component-cue or ALCOVE,

as a function of the within-category order and evaluation criterion. With both

criteria, Component-cue best fitted a higher number of participants in the rule-

based order as compared to the similarity-based order. Inversely, ALCOVE best395

fitted a higher number of participants in the similarity-based order as compared

to the rule-based order. Moreover, participants assigned to the rule-based order

were overall best fit by Component-cue. A Fisher’s exact test of independence

was separately performed on the SSD and likelihood tables to assess whether

the relation that emerged between models and orders was significant. None of400

the two tests were found significant (p-value = 0.06 with the SSD and p-value

= 0.53 with the likelihood). The striking difference between the two p-values

might be due to the small sample of the data-set.

Data-set 2. Table 3 (on the bottom) shows the number of participants in Data-

set 2 whose responses were best predicted by either Component-cue or AL-405

COVE, as a function of the within-category order and evaluation criterion. We

considered the results of the analysis in which models were trained on the su-

pervised blocks of the learning phase and tested on the transfer phase. Again,

Component-cue best fitted more participants in the rule-based order than in

the similarity-based order, while ALCOVE best fitted more participants in the410

similarity-based order than in the rule-based order. Moreover, participants as-

signed to the rule-based order were overall best fit by Component-cue, whereas

participants assigned to the similarity-based order were overall best fit by AL-

COVE. Although the relation between models and orders was more visible

than before, the Fisher’s exact test of independence was not significant (p-value415

= 0.09 with the SSD and p-value = 0.14 with the likelihood).
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SSD Likelihood

Type of order ALCOVE Component-cue ALCOVE Component-cue

Data-set 1

Rule-based 5 17 6 16

Sim.-based 11 10 8 13

Data-set 2

Rule-based 15 28 17 26

Sim.-based 24 21 25 20

Table 3: Number of participants in Data-set 1 (on the top) and Data-set 2 (on the bottom)

whose responses were best predicted by either Component-cue or ALCOVE, as a function

of the within-category order (rule-based vs. similarity-based) and evaluation criterion (SSD

vs. Likelihood).

5.3.2. Additional test on generalization patterns

We previously mentioned that Data-set 1 was used in (Mathy & Feldman,

2016) to show the influence of within-category presentation order on generaliza-

tion patterns. Here, we present an additional test confirming this result. This

test represents a baseline for our next analysis. We considered participants’

generalization patterns by computing the proportion of time (across transfer)

that each participant classified the transfer items into category A. By definition,

participants adopting a rule-based strategy would classify new stimuli on the

basis of the main rule (which for Data-set 1 is all gray items belong to category

A and all blue items belong to category B, and for Data-set 2 is all striped

items belong to category A and all plain items belong to category B). The use

of this strategy would produce the following putative generalization pattern (see

Figure 3):

(P(A |T1), . . . ,P(A |T7)) = (1, 1, 0, 0, 0, 0, 1) ,

where P(A |Ti) is the probability to classify transfer item Ti into category A

(for i = 1, . . . , 7; we had 7 transfer items). Inversely, participants adopting a

similarity-based strategy would classify new stimuli on the basis of their sim-
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ilarity to stored items. The use of this strategy would produce the following

putative generalization pattern (see Figure 3; only the category assignment of

the closest items was used):

(P(A |T1), . . . ,P(A |T7)) =

(
1

4
,

1

2
, 0,

1

2
,

1

4
,

1

2
, 1

)
.

Comparing these two stereotypical generalization patterns, participants adopt-

ing a rule-based strategy would classify items T1 and T2, items T3 and T7, and

items T4, T5 and T6 into category A with, respectively, a higher, an equal, and a420

lower probability as compared to participants adopting a similarity-based strat-

egy. This means that, if participants’ generalization patterns are projected on

the vector v = (1, 1, 0,−1,−1,−1, 0), participants following a rule-based strat-

egy have higher projection values than participants following a similarity-based

strategy.425

Therefore, the influence of presentation order on generalization patterns can

be studied in a straightforward manner by analyzing the projections of par-

ticipants’ generalization patterns on vector v, as a function of the presenta-

tion order. A difference in location between participants in the rule-based and

similarity-based orders would mean a difference in generalization patterns. This430

difference in location was assessed running a one-sided Wilcoxon-Mann-Whitney

test (we tested whether participants following a rule-based order had higher

projection values than those following a similarity-based order). The use of

the Wilcoxon-Mann-Whitney test allowed us to avoid making hypotheses about

the distribution underlying the data. The test turned out significant for both435

data-sets (p-value = 0.021 for Data-set 1 and p-value = 0.022 for Data-set 2),

showing that the generalization patterns of participants in the rule-based order

were closer to a rule-based classification pattern as compared to participants in

the similarity-based order.

5.3.3. Generalization patterns analysis440

This analysis aims at investigating whether the order assigned to participants

(rule-based vs. similarity-based) was related to the model that best fit their re-

24



sponses (ALCOVE vs. Component-cue). Similarly to the previous analysis, the

generalization patterns provided by the best-fitting model were projected on the

vector v = (1, 1, 0,−1,−1,−1, 0). Two tests were conducted: a first test assess-445

ing the difference in location between the projections of ALCOVE and those of

Component-cue, and a second test assessing the difference in location between

the projections of participants in the rule-based order and those of participants

in the similarity-based order. Both made use of a one-sided Wilcoxon-Mann-

Whitney test. Because we expected to find that the closest projections to a450

rule-based generalization pattern would have been those of Component-cue and

those of the participants in the rule-based order, a one-sided test was preferred

to a two-sided test.

Data-set 1. The first test was significant (p-value = 0.0002), showing that

the projections of the generalization patterns of Component-cue were higher455

than the projections of the generalization patterns of ALCOVE. This means

that, when considering the best-fitting model, the generalization patterns of

Component-cue were more consistent with a rule-based retrieval than those of

ALCOVE. The second test fell short of significance (p-value = 0.059), show-

ing that the projections of the generalization patterns of participants in the460

rule-based order were slightly higher than the projections of the generalization

patterns of participants in the similarity-based order. This means that the

best-fitting models were not clearly able to reproduce the difference in general-

ization patterns found in the data between participants in the rule-based and

similarity-based orders.465

Data-set 2. As Data-set 1, only the first test was significant (p-value = 0.0005

for the first and p-value = 0.373 for the second). Again, the generalization

patterns of Component-cue were more consistent with a rule-based retrieval

than those of ALCOVE, when considering the best-fitting model. However, the

best-fitting models were not able to reproduce the fact that different types of470

presentation order created a distortion in the representation of the categories.
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6. Discussion

In the last three decades, research in categorization has seen a rapid evolu-

tion of models of category learning and representation (Carvalho & Goldstone,

2019; Lee & Webb, 2005; Love et al., 2004; Mezzadri et al., 2021; Nosofsky &475

Palmeri, 1998). However, little effort has been directed toward the promotion

of a rigorous method for comparing learning models (Pitt et al., 2002), and

a common testing ground is still lacking. Our study attempts to address this

question by presenting a general inference method for the selection of learning

models.480

Our main contribution includes the promotion of a general method for fit-

ting learning models to data. Here, we propose the use of a cross-validation

method (hold-out) as a better technique than classical statistical criteria to ac-

count for dependent data and small samples. Training and testing sets in the

hold-out method were appropriately selected to suit our objective. To study485

performance during transfer, models were trained during learning and tested

during transfer, whereas to study learning progressions, models were trained on

supervised learning blocks and tested on unsupervised learning blocks. Because

the learning phase is generally composed of supervised blocks exclusively, an

experiment that alternates blocks of supervised learning with blocks of unsu-490

pervised learning was specifically designed to fit our purposes. Also, numerical

simulations assessing the accuracy of the parameter estimation allowed us to

apply the method to individual data.

Here, we summarize and generalize a series of good practices, that we hope

will serve as guidelines for future studies. A first good practice is to make use of495

cross-validation techniques to test learning models. Training and testing mod-

els on different subsets allows the respect of the structure of dependency within

the data, while avoiding the risk of over-fitting them. Our results suggest the

use of the hold-out method as an adequate trade-off between reliability, com-

plexity of its application, and computational cost. A second good practice is500

to evaluate how well parameters (or alternatively, classification probabilities)
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are estimated, as a function of the size of the data-set. This analysis allows

researchers to determine whether models can be fit to individual or collective

data. A third good practice is to select the same criterion for estimating the

parameters and evaluating the models concurrently. Finally, a forth good prac-505

tice is to study whether the selected cross-validation method is able to identify

the model underlying the artificial data that were generated with it.

Another contribution is the application of our inference method to com-

pare two common category learning models: ALCOVE and Component-cue.

These models were not chosen because we consider them as being the most510

representative of the domain, but because of their similar underlying structure.

These models implement alternative strategies, while sharing a similar neuron

network structure. ALCOVE implements a similarity-based strategy, whereas

Component-cue rather implements a (possibly complex) rule-based strategy.

By fitting these models to two data-sets, we found that during transfer (in515

both Data-set 1 and Data-set 2) almost half of the participants were best fit

by ALCOVE, while during learning (in Data-set 2; this analysis on Data-set 1

was not possible) the majority of participants were best fit by Component-cue.

Our numerical simulations ensured the reliability of these results with a high

confidence (75-78% at least). A complex rule-based strategy was preferred by520

participants during learning, while both a complex rule-based and a similarity-

based strategies were approximately equally used during transfer. However, the

nature of the task might have favored the use of a complex rule-based strategy

during learning.

A last contribution includes the investigation of a putative relation between525

best-fitting models (ALCOVE and Component-cue) and within-category orders

(rule-based and similarity-based). This investigation was driven by the hypoth-

esis that an environment fitting the internal mechanism of a model should facil-

itate the extraction of the categories. Therefore, a rule-based order should be

beneficial for models implementing a rule-based or a complex rule-based strat-530

egy (such as Component-cue), whereas a similarity-based order should be bene-

ficial for models implementing a similarity-based strategy (such as ALCOVE). A
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first factor we investigated was the number of participants in the rule-based and

similarity-based orders that were best fit by the chosen category learning models.

Although participants in the rule-based order were best fit by Component-cue535

(in both data-sets) and participants in the similarity-based order were best fit by

ALCOVE (in Data-set 2), the difference was not significant (in both data-sets).

A second factor we investigated is the generalization patterns provided by the

best-fitting model, as a function of presentation orders. The results showed that

the generalization patterns of Component-cue were closer to a rule-based clas-540

sification than the generalization patterns of ALCOVE. An additional analysis

showed that the models that best fit participants’ performance were not able

to reproduce the difference in generalization patterns assessed during transfer

between participants in the rule-based and similarity-based orders. To summa-

rize, we found some evidence pointing toward a relation between models and545

presentation order; however, further investigations are necessary to evaluate the

consistency of this result.

6.1. Limitations and Perspectives

Our study only compared two category learning models, without including

other relevant models that implement other learning strategies (Ashby et al.,550

1998; Erickson & Kruschke, 1998; Gluck & Bower, 1988; Kruschke, 1992; Kr-

uschke & Johansen, 1999; Love et al., 2004; Nosofsky & Palmeri, 1998). Also,

the categories we studied (the 5-4 category set) are characterized by a clear rule-

plus-exceptions structure. The use of such a structure might have promoted the

adoption of a rule-based strategy over a similarity-based one. To overcome these555

limitations, the present study should be extended to a larger variety of models

and categories.

In machine learning, the hold-out method is used to identify discrepancies

between feedback and predictions of models (Kopper et al., 2020; Yadav &

Shukla, 2016). In our article, the method was used in a different spirit, with560

the idea that models are trained using feedback whereas they can be tested us-

ing participants’ responses when no feedback is provided. Therefore in machine
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learning, feedback serves both as a training tool and a testing tool, while in our

context two different tools were used with the purpose of training and testing the

models (feedback as training tool and participants’ responses when no feedback565

is provided as testing tool). Although this adopted strategy seems to give good

results on simulated data (see Figure 4 page 18), a more rigorous mathematical

formalization of this new inference method is needed. Also, there are experi-

ments where participants are never deprived of feedback. This is especially true

in cognitive tasks for non-human animals in which reward for a correct behav-570

ior is always given. In a current work under redaction (Moongathottathil-James

et al., 2021), we are thus using a different approach for applying the hold-out

method to learning models on data with constant feedback. In this case, we used

the last part of the learning phase as the testing set and we allowed parameters

to be updated during testing as well.575

Acknowledgements

The present work was supported by the French government, through the
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