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Background and objectives: while traditional sleep staging is achieved through the visualexpert-basedannotation of a polysomnography, it has the disadvantages of being unpractical and expensive. Alternatives have been developed over the years to relieve sleep staging from its heavy requirements, through the collection of more easily assessable signals and its automation using machine learning. However, these alternatives have their limitations, some due to variabilities among and between subjects, other inherent to their use of sub-discriminative signals.

Many new solutions rely on the evaluation of the Autonomic Nervous System (ANS) activation through the assessment of the heart-rate (HR); the latter is modulated by the aforementioned variabilities, which may result in data and concept shifts between what was learned and what we want to classify. Such adversary effects are usually tackled by Transfer Learning, dealing with problems where there are differences between what is known (source) and what we want to classify (target). In this paper, we propose two new kernel-based methods of transfer learning and assess their performances in Rapid-Eye-Movement (REM) sleep stage detection, using solely the heart rate.

Methods: our first contribution is the introduction of Kernel-Cross Alignment (KCA), a measure 1

Introduction

Sleep staging

While Polysomnography (PSG), following the American Academy of Sleep Medicine (AASM) [START_REF] Berry | The AASM manual for the scoring of sleep and associated events, Rules, Terminology and Technical Specifications[END_REF], is the gold standard for sleep staging, it is inconvenient, expensive and time-consuming. Alternatives to the PSG have been developed over the years, as to reduce analysis time and cost by automatising sleep scoring using machine learning, and as to be more convenient through consideration of more accessible signals discriminative of sleep stages. For instance, it has been established that the Autonomic Nervous System (ANS) activity is discriminative of some of the stages [START_REF] Trinder | Autonomic activity during human sleep as a function of time and sleep stage[END_REF][START_REF] Radha | Sleep stage classification from heart-rate variability using long short-term memory neural networks[END_REF][START_REF] Hedner | Sleep staging based on autonomic signals: a multi-center validation study[END_REF], as the sympathetic and parasympathetic balance expression changes between stages: Wakefulness (W) and REM are characterized by high variations in the sympathetic tone, while non-REM sleep (NREM, i.e. N1, N2 and N3 sleep stages) has a parasympathetic predominance.

Heart-rate (HR) is modulated by the ANS and can be used to quantify its activity; the HR spectral components low frequencies (0.04-0.15Hz) are linked to the sympathovagal balance, while high frequencies (0.15-0.5Hz) relate to the parasympathetic activity [START_REF] Brandenberger | Autonomic Nervous System Activity during Sleep in Humans[END_REF]. For this reason, some alternatives to the PSG rely on the acquisition of the HR, and on the extraction of discriminative features from the time and time-frequency domains, among others. Using the HR is convenient, as it can be monitored with low discomfort for the usere.g., using a single-lead electrocardiogram (ECG) [START_REF] Yilmaz | Sleep stage and obstructive apneaic epoch classification using single-lead ECG[END_REF], or by monitoring the pulse-rate (PR) through photoplethysmography (PPG) [START_REF] Walch | Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device[END_REF] or ballistocardiography (BCG) [START_REF] Migliorini | Automatic sleep staging based on ballistocardiographic signals recorded through bed sensors[END_REF]. Note that these alternatives are not as informative as the PSG, as they only indirectly relate to sleep stages which have been defined on the PSG.

Limitations and objective

In this paper, we consider a solution based on the exploitation of the HR alone and we focus on REM sleep detection against non-REM sleep for each epoch. Our database is composed of numerous recordingsnightsfrom various subjects, which proves challenging in the training of an efficient detector, as the HR is modulated by subject-dependent parameters (e.g. age, sex, body-mass index, pathology), and for a given-subject, recording-dependent parameters (e.g. stress, environment, drug intake). Some of these parameters have well-known effects on the HR (for example, reduction of the mean variability in elderly population); other have unknown effect.

There are also hidden parameters which may affect the HR (e.g. the genome). All these variabilities complicate the detection task. Indeed, in the beginning of our study, we have trained and optimised a Support Vector Machine (SVM) detector, using HR-based features from the literature. We trained the detector on one third of the recordings (training dataset); we tuned the detector hyperparameters so as to maximise the detector's average performances on the second third of our recordings (validation dataset), and estimated the detector performances on the remaining third (testing dataset); those seem to have reached an asymptote and we seek how to further improve our detector. We hypothesise that part of this observed limitation is due to the aforementioned variabilities, and tend on correcting for their adversary effects.

The direct, natural approach to this problem would be to try and specialise multiple detectors for subcategories of nights directed by their parameters; however, not only do these relate to sleep parameters on average and with high variance, but we cannot account for the unknown, inaccessible parameters which affect the classification task; this seems insufficient in characterising a new unlabelled target night. We believe that characterisation is to be found in the data itself, and therefore opt in correcting the potential shift(s) by taking into account the similarity between source and target data to improve the decision given by our base detector.

In this paper, we introduce our first contribution: Kernel-Cross Alignment (KCA), the extension of Kernel-Target Alignment (KTA) to measure the similarity between a source and a target. After introducing KCA, we develop on the unusual usage we make of both KCA and KTA to transfer knowledge (second contribution of the paper), namely Kernel Cross Alignment Transfer Learning (KCATL) and equivalently Kernel-Target Alignment Transfer Learning (KTATL). Our objective is the assessment of both methods in transferring knowledge on REM/non-REM detection.

The remainder of this paper organises as follows: in Subsections (2.1 and 2.2) we present our data (i.e. our sources and targets) and our reference detectors; we explain what data shifts may exist between any couple of nights and then identify to what subcategory of transfer learning our problem belongs to in Subsections (2.3 to 2.5). In Subsection (2.6), we introduce KTA and its traditional use, and use it to introduce KCA, our extension of KTA, in Subsection (2.7). In Subsection (2.8), we explain how both can be used for transfer learning, and how it can help in predicting performances; we also give some recommendations relative to the operational setup of our methods in Subsection (2.9). Experimental results are presented in Section (3). Finally, in Section (4), we give our conclusions and perspectives.

Materials and methods

Dataset composition

Our database is composed of a learning set (LS -59 recordings from 36 subjects) on which we train our classifier(s), a validation set (VS -60 recordings from 32 subjects) on which we tune our system parameters and a testing set (TS -56 recordings from 30 subjects) to ensure the detector is robust and to assess its performances. Each recording corresponds to one night of sleep (8h), and is the simultaneous recording of the traditional PSG and of an ECG; every recording is associated to an hypnogram (temporal representation of sleep stages through the night), which has been established on the PSG by certified sleep experts or FDA-approved algorithms ( [START_REF] Muzet | Assessing sleep architecture and continuity measures through the analysis of heart rate and wrist movement recordings in healthy subjects: comparison with results based on polysomnography[END_REF][START_REF] Anderer | An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database[END_REF]).

The composition of the database is given in Table [START_REF] Berry | The AASM manual for the scoring of sleep and associated events, Rules, Terminology and Technical Specifications[END_REF] in regards of age, sex, and pathology (healthy, depressive and subjects with respiratory trouble); recordings have been divided so that there is an approximatively equivalent proportion of each pathology, sex and age in each group, which explains the uneven numbers. All subjects have met the recruitment criteria, and all recordings have been quality reviewed; subject with cardiac pathologies and recordings with losses of signal, outliers, and desynchronised signals have been removed. As to ensure that the datasets are fully independent, all recordings from a given subject belong to a single dataset. Considering the composition of our database, there is likely a great inter-individual variability, which may partially explain the data shift issue illustrated in Figures ( 1 and2).

REM detector

The HR is extracted from the ECG RR intervals, and after pre-processing steps aiming to correct for potential outliers, we extract five efficient REM-discriminative features [START_REF] Ebrahimi | Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals[END_REF][START_REF] Mendez | Sleep staging from Heart Rate Variability: time-varying spectral features and Hidden Markov Models[END_REF][START_REF] Willemen | An evaluation of cardiorespiratory and movement features with respect to sleep-stage classification[END_REF] • F1: The very low frequency power of the centred heart-rate (< 6mHz) using the spectrogram.

• F2: The local increase of the heart-rate (difference between two low pass filter outputs).

• F3: The width of the frequency interval that concentrates 90% of the heart-rate power in the range [0.20 -0.33]Hz.

• F4: The very low frequency power of the centred heart-rate (< 6mHz) estimated using an AR10 model.

• F5: The ratio of the maximum amplitude of the HR spectrum in the range [0.20 -0.33]Hz, to the maximum amplitude in the range [0.15 -0.20]Hz.

We consider LS as our source dataset and VS as our target dataset and focus on the detection of REM against N2 and N3, as Wake is detected through other means, and N1 is a transitory stage of low prior probability.

We denote by S i the i st source recording of LS; on each of these sources, we train a reference detector which will be used to classify target data and to estimate the REM detection performances without transfer learning. In this paper, we opted for Support Vector Classifiers (SVCs) as classification models without transfer.

Target labels Y T being unknown, for a given source S, we denote by Y {S} T the output of the detector trained on S and applied to the data of T . As to measure our detectors and methods performances, we consider two types of operating points depending on what we want to assess:

-For a source detector, the Detection Rate (DR) associated to a False-Alarm Rate (FAR) fixed at 7.2% on average on VS. The mean FAR is reached by application of a decision threshold, determined in the validation step.

-For a source detector S and a given target T , we denote by p {S} T

the DR associated to a FAR of 7.2%, or ideal operating point, as we will be unable to choose a threshold for each source-new target couple, as to allow comparison of performances and to conclude on our methods pertinence.

The FAR (antispecifity) of 7.2% ensures optimal performances of the global sleep staging system; in this paper, it allows comparison of performances with disregard of labels prior probabilities.

Our measurement of performances correspond to the DR (sensitivity) associated to a fixed specificity of 100 -7.2 = 92.8%; we also give the corresponding accuracy.

We compare our best single reference detector (without transfer) in REM detection performances to two other from the literature in Table (2) above; these were computed from the confusion matrices given in [START_REF] Xiao | Sleep stages classification based on heart rate variability and random forest[END_REF][START_REF] Oy | A Sleep Analysis Method Based on Heart Rate Variability[END_REF] using the same method as for our performances estimation. Although these results were obtained on different datasets, this table serves to validate our reference approach, as it gives satisfactory detection performances; from this point on, our objective is to improve said performances by using the proposed transfer learning methods.

Shifts hypotheses

We hypothesise that there are adversary shifts between recorded nights [START_REF] Long | Effects of Between-and Within-Subject Variabil-ity on Autonomic Activity during Sleep and Their Limitations on Sleep Staging: A Multilevel Analysis[END_REF]. Let's denote by S a source and T a target (any arbitrarily selected pair of nights); we consider that there might be three types of shifts between S and T , that is:

-Prior shift, a difference in the labels prior distribution probabilities: p(Y S ) = p(Y T ).

-Covariate shift, a difference in the probability density functions: p(X S ) = p(X T ).

-Concept shift, a difference in the labels conditionally to the observations:

p(Y S |X S ) = p(Y T |X T ).
Regarding the validity of these hypotheses, prior shift is certain, as the REM prior probability ranges from 0 to 30% of a recording duration, with an average of 20%. It is directly linked to the quality of sleep, to pathologies and drugs intake. For concept shift, part of it is due to the inter- scorer variability: it has been shown that human scoring, established on the PSG (our reference), may vary among experts, as part of the decision is slightly subject to interpretation [START_REF] Rosenberg | The American Academy of Sleep Medicine inter-scorer reliability program: sleep stage scoring[END_REF]; this is especially true for pathological subjects, for which the manual scoring is more complicated. Finally, we quantified covariate shift using the Maximum Mean Discrepancy [START_REF] Smola | Maximum mean discrepancy[END_REF] (MMD) between all observations, independently of the labels which are supposed unknown; observed values prove that there is indeed such shift between many pairs of nights.

In Figures ( 1 and 2), we give an example of such a couple of source and target, where data shift is clear; representation is based on our three most REM-discriminative features, the first three presented in Subsection (2.2).

Transfer learning

So far, we have presented our data and data shift problem. In this section we identify which category of transfer learning may solve such issue, and give a shallow comparative of our methods to others from the literature in the following section.

For a detector to achieve good classification performances, the data distribution on which it was trained -source data -must not differ from the new, unlabelled data we want to classify -target data; the situation where target data differ from source data is one of the situations tackled by transfer learning, which aims at transferring knowledge from the source to improve the classification performances on the target. In many situations, the need for transfer learning arises from the difficulty to acquire the target labels, as they may be very expensive of even impossible to assess.

Transfer learning is a fairly large subcategory of machine learning; among others, it tackles any type of classification problem where there are differences between source and target, either in the classification tasks (labels) and/or in the domains (observations and how they relate to the labels) [START_REF] Pan | A Survey on Transfer Learning[END_REF][START_REF] Weiss | A survey of transfer learning[END_REF][START_REF] Zhuang | A comprehensive survey on transfer learning[END_REF]. In our situation, the task is unique (REM detection) and the chosen features to represent our data are fixed. The hypothetical differences between any of our sources and our target are the aforementioned shifts: source and target domains are different-but-related. This constitutes homogeneous transductive transfer learning, often referred to as domain adaptation [START_REF] Kouw | An introduction to domain adaptation and transfer learning[END_REF][START_REF] Sun | A survey of multi-source domain adaptation[END_REF], as many solutions rely on some transformations to increase similarity of source and target domains.

Domain adaptation

In the literature, most domain adaptation techniques rely on resolution of constrained optimisation problems, and many solutions are iterative and usually do not scale well with great amounts of data [START_REF] Kouw | A review of domain adaptation without target labels[END_REF][START_REF] Redko | A survey on domain adaptation theory[END_REF]. In our case, as the amount of data, for a given target recording, is high and as we require fast computation, we propose objective functions that allow direct solutions.

In this paper, we try to take advantage of the amount of available source data by correcting/improving the decision, using semi-supervised criteria relying on both what was learnt (supervised part) and what is observed on the data (unsupervised part). Our problem is uninformed, that is, we suppose that no target label is known. As it will be shown, we adapt domains implicitly using similarity profiles in a Reproducing Kernel Hilbert (RKHS), easily computed using the kernel trick.

Both methods presented in this paper rely on similarity profiles between any target observations and, in the case of KCATL all source observations and associated known labels; in the case of KTATL all other target observations and estimated labels. In both cases, the solution is directly obtained.

Uninformed and computationally-efficient methods of domain adaptation include the work in [START_REF] Daumé | Frustratingly easy domain adaptation[END_REF],

where the common subdomain supposedly shared by source and target is given greater importance through feature augmentation; the work in [START_REF] Liang | Distant supervised centroid shift: A simple and efficient approach to visual domain adaptation[END_REF], relying on feature transformation: the objective is to find a subspace where source and target centroids are closer; the work in [START_REF] Herath | Learning an invariant hilbert space for domain adaptation[END_REF], where the structure of an Hilbert space is learnt, leading to an invariant latent space, in which both discrepancy between source and target distributions, and both dissimilarity between labelled samples, are minimised.

In our work, and as it is illustrated by Figure 3, we compute a similarity profile between each target observation and all source observations (or all target observations in the case of KTATL).

Considering these similarity profiles is the key to a relative invariance to covariate and prior shifts.

Kernel-Target Alignment

Now that we have compared our methods to others from the literature, we introduce KTA, which is used both to explain our first contribution -KCA (Subsection 2.7) and our methods of transfer learning -KCATL and KTATL (Subsections (2.8.2 and 2.8.3)). We emphasise that KTA and KCA are measures of similarity between Gram matrices and label matrices, while KTATL and KCATL are methods of transfer learning relying on maximisation of KTA and KCA, respectively, the unknown target labels.

Kernel methods in classification rely on the choice of a function φ( * ), whose role is to make data linearly separable after application of this transformation (e.g. in SVMs). For a given kernel, the Gram matrix K is computed between the observations x * , of elements:

K ij = k(x i , x j ) = φ(x i ), φ(x j ) H (1) 
where k( * , * ) denotes the kernel function and * , * H denotes the inner product in the RKHS induced by φ; the resulting Gram matrix constitutes a map of similarity: in the case of a unit-norm kernel, the closer is K ij to 1, the likelier it is for observations i and j to belong to the same class.

In the case of binary classification, with coding -1 for one class and +1 for the other, the ideal mapping function is the one that directly returns the correct label for any given input observation, that is φ(x) = y. The corresponding ideal Gram matrix K * ij = y i y j is of elements 1 for observations coming from the same class and -1 from different classes; in training, labels are known and therefore, one can compute K * and tune the kernel function so that its Gram matrix K resembles K * as much as possible.

Based on this idea, KTA has been developed to do kernel engineering/kernel tuning; indeed, for a given Gram matrix K, KTA is its alignment A [START_REF] Cristianini | On kernel-target alignment[END_REF][START_REF] Wang | An overview of kernel alignment and its applications[END_REF] with the ideal kernel matrix K * :

A(K, K * ) = K, K * F K, K F K * , K * F (2)
where * , * F denotes the Frobenius inner product and K * = Y Y , Y being the ground-truth labels in vector form. The more similar the matrices are, the closer the alignment to 1. To do kernel-tuning, it finally suffices to maximise KTA w.r.t. K; this is the traditional use of KTA.

Kernel Cross Alignment

Our idea to extend KTA to assess the similarity between source labels, target labels (estimated in our use of KCA), and the mutual Gram matrix of observations. The very definition of alignment works for non-square matrices, so we simply express KCA as:

KCA (T, S) = A(K T S , Y T Y S ) = K T S , Y T Y S F ||K T S || F ||Y T Y S || F (3)
where K T S is the cross-Gram matrix between X T and X S . Both KTA and KCA are measures of coherence between two matrices; the difference is that the former is focused on the sole target, while our contribution measures the coherence between the cross-label matrix Y T Y S and the cross-Gram matrix between source and target observations K T S ; in fine, KTA is simply the particular case of KCA where S ≡ T .

Application to Transfer Learning

The three methods presented in this subsection constitute optimisation problems w.r.t. the sought target labels alone. Other parameters such as the kernel and reference detectors output are supposed fixed; their choice and optimisation have been done beforehand.

Quadratic Loss Transfer Learning

In a previous work, Quadratic-Loss Transfer Learning (QLTL) [START_REF] Muller | QLTL: a Simple yet Efficient Algorithm for Semi-Supervised Transfer Learning[END_REF], we deviated from KTA traditional use by maximising Kernel-Target Polarisation (the non-normalised equivalent of KTA) w.r.t. the (unknown) target label vector Y T for a fixed input Gram matrix K T T (computed within the target observations X T ) and the output of a previously trained detector Y {S} T ; QLTL is designed multi-source transfer learning but we focus here on a single source and adapt the problem and solution accordingly. For the sake of compactness, we do not detail the method here, and only give the corresponding optimisation problem and its solution:

argmin Y T ||Y {S} T -Y T || 2 -λY T K T T Y T ( 4 
)
where λ is the optimisation problem sole hyperparameter, that balances the importance between supervision (left part of the performance criterion) and the unsupervised information contained in K T T (right part of the performance criterion); the problem convexity is ensured by the constraint

0 ≤ λ < 1 µmax
, where µ max is the greatest eigenvalue of K T T ; we then use a normalised parameter

λ rel ∈ [0, 1[ so that λ = λ rel µmax .
The solution is given by Equation ( 5) below, but obtaining the solution by zeroing the gradient does not require matrix inversion.

Y T = (I N -λK T T ) -1 Y {S} T (5) 
In this paper, we compute QLTL for each source-target couple; we use λ rel = 0.35 as it resulted in the best performances for this method. Results will be presented in Figure ( 4) for comparison to our new contributions. 

argmax Y T Y T K T S Y S s.t. ||Y T || = 1 (6) 
KCP in maximised for Y T collinear to K T S Y S ; the solution is therefore given and obtained immediately by:

Y T = K T S Y S ||K T S Y S || (7) 
fine, we use the unsupervised information contained in K T S (linking source and target observations) and expect an improvement of the output of the supervised information given by Y S ; this is Kernel-Cross Alignment Transfer Learning (KCATL).

We illustrate how KCATL works in Figure (3): in the main panel is represented the cross-Gram matrix computed using target and source observations (rows and columns of the matrix, respectively); the hotter the colour, the more similar are two observations. In the lower and left panels are represented the source and target, respectively: the blued areas correspond to the ground-truth REM, which is known for the source and assumed unknown for the target. The dashed black-line is the statistic of decision obtained by applying the reference detector trained on S to its own data, while the red line is the statistic of decision outputted by KCATL.

First, as can be seen, the patterns of the cross-Gram matrix correlate very well with the blued areas of both source and target: if both source and target observations correspond to REM (or both to NREM), the colour is hot; otherwise, if source and target observations come from different labels (one is REM, the other NREM), the colour is cold. This is the principle behind KCATL.

Second, KCATL output (red line) is obtained by weighing the decision statistic of the source on itself (dashed black line) by the similarity measures contained in the cross-Gram matrix. Finally, this way, we take advantage of both the supervised information given by the source S and the unsupervised information contained in the cross-Gram matrix.

Transfer Learning using KTA

Following the same idea as for KCATL, we define Kernel-Target Alignment Transfer Learning (KTATL) as the following constrained optimisation problem and its solution, which is also immediately obtained:

argmax Y T Y T K T T Y T s.t. ||Y T || = 1 → Y T = K T T Y {S} T ||K T T Y {S} T || (8) 
where K T T is the Gram matrix computed between target observations (unsupervised information)

and

Y {S} T
is the output of detector S on target data (supervised information), which makes the connection between S and T .

Operational setup

Performances obviously depend on how well a reference detector S (presented in Subsection (2.2)) performs on a given target T . First, for KCATL, we experimentally observed that it is better to use for every source S the output of the detector on its own data Y {S} S rather than the true labels Y S ; it might mitigate the effects of inter-scorer variability, and improve coherence between source data and their labels. Second, for the solutions presented in Equation ( 7) and ( 8 : our recommendation is to use the raw output of the detector, rather than its binarised form.

Performances also highly depend on the quality of the Gram matrix, that is how it contains discriminant information; the choice of the kernel function and its parameters is obviously important.

Because the Gram matrix is composed of dot products, the choice of the origin of coordinates system is of utmost importance. A lot of previous work has been done on kernel centring in the feature space [START_REF] Cortes | Algorithms for learning kernels based on centered alignment[END_REF][START_REF] Meila | Data centering in feature space[END_REF]; these prove the dramatic impact of centring on the results.

this paper, we centre using the arithmetic mean in the RKHS H, that is:

K C (x T i , x S j ) = φ(x T i ) - 1 N T N T k=1 φ(x T k ), φ(x S j ) - 1 N S N S l=1 φ(x T l ) H
In matrix form, the corresponding centred kernel matrix expresses as:

K T S C = C N T K T S C N S (9) 
where C N = I N -1 N J N is the centring matrix [START_REF] Cortes | Algorithms for learning kernels based on centered alignment[END_REF], N T and N S are the number of target and source observations, respectively; I denotes the identity matrix and J the all-ones matrix. In the case of KTATL, the centred kernel matrix simply expresses as:

K T T C = C N T K T T C N T (10) 
Experimental results demonstrated the beneficial impact of data centring, which confirms the results of [START_REF] Meila | Data centering in feature space[END_REF]. We also studied data centring through dual optimisation of KCA w.r.t. both the sought target labels and the centres in [START_REF] Muller | Influence of Data Centring in Kernel-Cross Alignment: Application to Transfer Learning[END_REF]; however, the resulting methods are iterative and computation time scales with the number of observations to classify. This is incompatible with our application, so we did not consider optimal centring in this paper.

Results

In Figure [START_REF] Hedner | Sleep staging based on autonomic signals: a multi-center validation study[END_REF], we have sorted the reference detectors (black stars) average performances over all the target nights; as aforementioned in Section (2.2), we consider the average DR on the target set for a mean FAR of 7.2%. On this curve are represented: the results of QLTL (magenta circles), of KCATL (red pluses) and of KTATL (blue crosses). In general, the better a reference detector, the lesser the improvement (compare the and rights parts of the figure). QLTL seems to always improve the performances, but by a small amount; KCATL improves some detectors a lot, but there are also cases of negative transfer (e.g. indexes 28 and 31); on the average, KTATL performs the best with lower variance and no case of negative transfer on our data. KTATL might be more robust: KTATL is a function of the K T T Gram-matrix, which does not change for different sources. In the case of KCATL, the cross-Gram matrix K T S varies with the source; atypical source data might explain negative transfer.

On average on all sources applied to every target, we observe an improvement of sensitivity of 4.54 ± 3.32% using QLTL, of 8.36 ± 9.68% using KCATL and of 12.86 ± 10.35% using KTATL, over the reference method without transfer (SVC in this study).

As can be seen on Figure [START_REF] Hedner | Sleep staging based on autonomic signals: a multi-center validation study[END_REF], using the best reference detector (rightmost) seems to indicate that there is no need for transfer learning (performance improvement is marginal, whatever the method used). However, the performances are averaged over all the targets. Accordingly, we cannot conclude that for a given target, the best detector on the average will be efficient.

In Figure [START_REF] Brandenberger | Autonomic Nervous System Activity during Sleep in Humans[END_REF] three reference source detectors (SVCs) would miss the REM period at T ≈ 2.45h (as presented in Figure ( 5)).

As one of the conclusions of the previous paragraph, there exist much better reference detectors or methods of transfer rather than just applying the best reference detector on the average. For a given transfer method and a given target, choosing an efficient reference detector requires an estimator of the performance than can be reached (without knowledge of the target labels). Source selection is one of the perspectives of this work. x-axis: time (hours); y-axis, from top to bottom: reference hypnogram; SVC (reference detector without transfer), QLTL, KCATL and KTATL output for each source, respectively. Refer to Table (3) for corresponding values.

Conclusions and perspectives

In this paper, our main contribution is the introduction of cross-Gram matrices and their use in transfer learning. Cross-Gram matrices can be used to define Kernel-Cross Alignment (KCA), an extension of Kernel-Target Alignment (KTA). KTA is generally used to tune a kernel function. In our work, we use KCA and KTA but in a dual way: the kernel is fixed and our variables are the unknown target labels. This leads to our second contribution, two computationally-efficient meth- odswhose solutions are not obtained iteratively, KCATL and KTATL, to deal with data shift.

In KCATL, the connection between source and target is performed through the cross-Gram matrix and the outer product between the known source labels and unknown target labels. In KTATL, only the outer product between estimated target labels (using the source) and unknown target labels is used as way to transfer knowledge through the target-Gram matrix. As was shown, these methods give satisfactory performances on our application, which consists in detecting REM sleep using the heart rate, for which there are many sources of data shift.

We remind that Gram matrices are composed of dot products in the feature space, which critically depend on the choice of the origin of the coordinate system. There is already much literature on the subject, but this is not fully resolved for our methods while we pointed out strong impact on performances.

We also observed that there are certain sources and targets for which transfer fails; we are also investigating which data properties explain such failures. In the case of sources, they could be eliminated using our validation set (our targets); in the case of targets, we could rely on a perfor-mance predictor to detect bad targets, among others.

For some applications, a few targets labels might be available; this could be of great help in selecting the right transfer method. This is tackled by the so-called informed transfer learning.
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  and Table(3), we compare the output of different sources for each method of transfer; the ground-truth is given by the target hypnogram (reference established on the PSG) in the upper part of the figure: blued areas represent REM, and greyed parts wakefulness and N1 sleep stage that we do not consider as false-alarm, as aforementioned in Subsection (2.2). First, source S1

		0.9								
		0.8								
	rate (%)	0.7								
	sensitivity/detection	0.4 0.5 0.6								
	Mean	0.3								
									SVC (Ref. detector)
		0.2							KCATL KTATL	
									QLTL	
		0.1								
		10	15	20	25	30	35	40	45	50	55
		Source index sorted by increasing ref. performances (#)
	corresponds to the best reference detector (rightmost source of Figure (4); as can be seen, it is
	outperformed by source S2, with or without transfer. Second, source S3 gives an example of
	dramatically beneficial transfer: the reference detector has very low sensitivity, while KTATL
	improves the decision a lot -almost a 60% improvement of the sensitivity). Third, two out of

Figure 4: Performances comparison for each source detector on all targets; x axis: source index sorted by increasing reference performances, y axis: average DR at FAR=7.2% on all targets.

Table 3 :

 3 Sensitivity/DR for a fixed specificity of 92.8% (FAR of 7.2%) for each source and method of Figure[START_REF] Brandenberger | Autonomic Nervous System Activity during Sleep in Humans[END_REF] applied to the same target.
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