Supplementary Information 1: Modern and archaeological site descriptions. Mouchi et al.: 'Provenance study of oyster shells by LA-ICP-MS'

#### Localities of modern oysters

#### Baie des Veys (Normandy)

The Baie des Veys is located on the North side of the French coastline, in connection with the English Channel (**Figure 1-1**), which opens into the Atlantic Ocean. This area presents a semidiurnal tidal range of 8 m, and is characterized by an overall siltation induced by a poor resuspension of fine sediment particles caused by a weaker ebb than flow (Le Gall, 1970). This stronger flow limits the impact by the freshwater input from land on salinity in the bay (Sylvand, 1995). Two main channels recharge the bay with freshwater. The Carentan Channel, on its western part, is constituted by two main rivers, the Douve and the Taute, which drain a large part of the Bessin plain and the Cotentin. On the eastern part of the bay, the Isigny Channel is formed by the Vire and the Aure rivers. The watershed from these channels comprises limestone, basalt, acidic and alkaline metavolcanic rock and diorite (Baize et al., 1997).

Oysters collected from this locality are from a rearing experiment performed in a commercial oyster farm (Lartaud et al., 2010). The oyster farm is located several kilometres east from the Isigny Channel. During the experiment, shells were chemically labelled *in vivo* at a monthly rhythm, which allowed to specifically target the portions of the shells that were formed on site. Both *C. gigas* (n=5) and *O. edulis* (n=5) specimens were used in this study. The names of the groups are Cg\_BdV\_M and Oe\_BdV\_M, respectively.

#### Riec-sur-Bélon (Brittany)

Riec-sur-Bélon is located on the southern part of Brittany, on the Atlantic Ocean coastline (**Figure 1-3**). This locality is provided by freshwater from two river tributaries, namely the Aven and the Bélon. Tidal range is 5 m with a semidiurnal rhythm. The Bélon watershed is mainly composed of leucogranite, orthogneiss and micaschist rock (Béchennec et al., 1996, 2001; Monfort et al., 2006).

Historically, Riec-sur-Bélon was the first oyster farm to be implemented in Brittany during the 19<sup>th</sup> century. The oyster farm is located on the Bélon side of the estuary, where salinity is generally below 20 (Arzul and Quiniou, 2014). *Ostrea edulis* (n=3) were collected from this locality, and are referred to as Oe\_RsB\_M.

#### Marennes-Oléron (Charente-Maritime)

The Marennes-Oléron bay is located on the western part of France, on the Atlantic Ocean coastline (**Figure 1-4 A**). It opens on the Atlantic on its northern and southern borders by the pertuis of Antioche and the pertuis of Maumusson, respectively, while the Oléron Island borders the western part of the bay. A current from the Atlantic runs from North to South in the bay, and the tidal range is 5 m with a semidiurnal rhythm. The bay is recharged with freshwater from two rivers, the Charente (North side of the bay) and the Seudre (South side of the bay). The Charente has a rate of flow of 36 m<sup>3</sup>.s<sup>-1</sup>, which represents 30 times that of the Seudre (Soletchnik et al., 1998). The Charente watershed (10,100 km<sup>2</sup>) crosses geologic formations of limestone and river deposits (Bourgueil et al., 1968; Bourgueil and Moreau, 1967, 1970; Platel et al., 1977, 1978) and originates from granite and gneiss formations in the Massif Central (Le Pochat et al., 1986). The Seudre watershed is substantially smaller, with only 780 km<sup>2</sup>, and is composed of limestone and river deposits (Ternet and Berger, 1968; Platel et al., 1977, 1978).

Oysters are commercially farmed in the area, on the northern part of the bay. According to the direction of the Atlantic flow, this locality should be under the influence of the Charente river (and not the Seudre river). Specimens from *C. gigas* (n=3) and *O. edulis* (n=3) are referred to as Cg\_MO\_M and Oe\_MO\_M groups, respectively and were collected from a rearing experiment (Lartaud et al., 2010).

#### Tès (Arcachon basin)

The Arcachon basin is formed by a lagoon of 156 km<sup>2</sup> on the Atlantic Ocean coastline, on the western part of France, and 200 km south of the Marennes-Oléron bay (**Figure 1-5**). Oysters collected from this location were subject to a semidiurnal tidal range of 3 m. The basin is recharged with

freshwater from three main channels, the Eyre, the Porge and the Landes, as well as 26 other streams and ground water running through a watershed of 4,138 km<sup>2</sup>. The watershed is composed mainly of Cenozoic river deposits as well as limestone and clay (Dubreuilh and Bouchet, 1992).

Only *C. gigas* specimens (n=8) were collected from this locality, and are designated as the Cg\_Tes\_M group.

#### Leucate (Aude)

The Salses-Leucate lagoon is a shallow coastal basin 14 km long and 5 km wide, located on the southwestern French Mediterranean coast (**Figure 1-6**). Freshwater supply is provided by groundwater discharges from karstic springs with a total flow of 5 x 10<sup>5</sup> m<sup>3</sup>.d<sup>-1</sup> (Fleury et al., 2007). Although the entire surface of the karstic waters is still unknown, it is estimated that it extends 60 km inland from the shore (Salvayre, 1989; Ladagnous and Le Bec, 1997). Mediterranean seawater penetrates the lagoon through three inlets separated by sandy barriers.

The Leucate lagoon also hosts a farming area, but the *C. gigas* specimens (n=5) presented here were collected from a natural broodstock living on the northern inlet of the pool. These specimens are designated here as Cg\_Leu\_M.

#### Diana lagoon (Corsica island)

The Diana lagoon (**Figure 1-7 A**) is located in the oriental coast of the island of Corsica (Tyrrhenian sea, NW Mediterranean). Its catchment area is  $\sim 62 \text{ km}^2$  and bounded to the west by relatively high shale massifs. To the east, it extends into the Tyrrhenian Sea coast by a continental shelf made up of Tertiary and Quaternary marine and alluvium formations. Quaternary deformations affected this coastal plain, which explains its hilly aspect and the formation of the Diana Lagoon (Casabianca 1967, Longère et al. 1972, Ottmann 1956).

The Diana lagoon stretches towards the southwest and extends over 550 to 570 ha (4 km in length and an average width of 2 km) with limestone, marls and sandstone (Caron et al., 1990). Connection with the sea was formerly carried out by a *grau* (local name for a channel connecting a

coastal pond with the sea) in the form of a 0.5 m deep gully, frequently silted up and therefore rarely open to the sea (Le Gall, 1953). Random connection with the sea would be the consequence of the low flow rates of watersheds, resulting in a slow renewal of water bodies outside the rare periods of opening of the *grau*. The water renewal rate would be relatively long, around 19 months (Paulmier 1996). According to Schachter and de Casabianca (1965), this *grau* was pierced by man. Currently work is regularly carried out to maintain a permanent opening in order to preserve shellfish and fish farms (Paulmier 1996, SOMIVAC – CTGREF, 1979).

*Crassostrea gigas* specimens (n=2) were collected from this site. The corresponding group is Cg\_Dia\_M.

#### Archaeological sites

#### Landévennec abbey (Brittany)

Landévennec (**Figure 1-2**) is located at the south of the Brest bay, on the last meander of the Aulne river (Bardel, 1991). In this archaeological site there is evidence of oyster exploitations from the  $7^{th}$  to  $17^{th}$  century. Two sites of flat oysters were sampled. The first one is an embankment on the exterior of a building dated to the 8-9<sup>th</sup> centuries CE (stratigraphic level 19611, n=1). The second one is a trench filling from the end of the  $14^{th}$  to the  $15^{th}$  century CE (stratigraphic level 19539, n=1).

Geology of the Aulne watershed comprises mainly schists, with sandstone, rhyolite and metagabbro (Babin and Darboux, 1982; Castaing, 1988; Le Gall, 1988; Plusquellec et al., 1999). *Ostrea edulis* specimens collected from this site are referred to as the Oe\_Lan\_A group.

#### Brouage (Charente-Maritime)

The archaeological site of the Maison Champlain is inside the citadel port of Brouage opposite the Oléron Island between two rivers, the Charente and the Seudre (Champagne et al. 2012; **Figure 1-4 B**). During its construction in the 16<sup>th</sup> century CE, this citadel was in the middle of the Saintonge gulf opened to the ocean with marine influences. This gulf is currently filled and forms a dried marsh. The Brouage Channel skirted the citadel at the north of its walls. During the 16<sup>th</sup> and the 17<sup>th</sup> centuries, ships were then sailing in this Channel, now partially filled by mud. The analyzed flat oysters are from the second half of the 16<sup>th</sup> century CE (stratigraphic level 3959). Due to the position of the site, it is supposed that the watershed corresponds to the Charente, described in the section above presenting the modern Marennes-Oléron locality.

Oyster specimens (O. edulis; n=4) from this site are referred to as the Oe\_Bro\_A group.

#### Broue tower (Charente-Maritime)

The Medieval site of Broue is located on the North side of the Seudre river, on the Atlantic Ocean coast of France, in Charente-Maritime (**Figure 1-4 C**). The site is positioned on a peninsula surrounded by swamps fitted out as salt marshes. The site is composed of remains of a wall from a former church and a three-level, 15 by 28 m rectangular tower dated from the 11<sup>th</sup> century CE using dendrochronology and radiocarbon dating on charcoal (Normand et al., 2019).

The exploitation of local marine molluscs for human consumption is recognized from the 11<sup>th</sup> to the 15<sup>th</sup> c. CE. Like the Charente river for the Brouage locality, the exact position of the Seudre river during the 15<sup>th</sup> c. CE is unknown. Due to the position of the Tower however, it is possible that the oyster specimens collected from this site may have grown under the influence of the Seudre river (through surroundings streams), contrary to those from Brouage, or a mix between the Seudre and the Charente rivers, and under the influence of their respective watersheds (see description in the section above presenting the modern Marennes-Oléron locality).

Oyster specimens (*O. edulis*) were collected from two stratigraphic units of the site: 1192 (n=3) and 1297 (n=3), dated to the 11<sup>th</sup> and the 14<sup>th</sup> centuries CE, respectively (Normand et al., 2019). Specimens from both stratigraphic units are gathered as the Oe\_BrT\_A group.

#### Aléria (Corsica island)

The colony of Aléria (Alalia) was founded by the Phocaeans on the east coast of Corsica around 565 BCE (Jehasse and Jehasse 1997). Located on a hill in the Eastern Plain, the ancient city is in the immediate vicinity of the mouth of the Tavignano, the second river in Corsica, and the Diana Lagoon (**Figure 1-7 B**). Alalia was taken by the Romans in 259 BCE and became Aléria. Its proximity to the Latin coast and the influence of Etruscan culture made Aléria the capital of Roman Corsica and a prosperous city, the remains of which today constitute a major archaeological site (Bergeret et al., 2015; Coutelas and Allegrini-Simonetti, 2017) with a forum, a courtroom, villas, shops, a temple, an amphitheatre, thermal baths and sewers. The Diana pond, which probably housed the old port of war (*Dianæ portus*), has been well known since Antiquity for its oysters, which were consumed locally and allegedly exported to Rome (Jehasse and Jehasse, 1997). At the fall of Rome, around the 5<sup>th</sup> century CE, the Vandals, who swept over Corsica, razed the city (Jehasse and Jehasse, 1997). The analyzed shells originate from a 15-cm thick deposit, which has been recognized over a distance of 3 m inside the Roman forum.

The Tavignano watershed comprises schists, granite, gneiss, metabasalt, and to a lesser extent marls and sandstone (Jauzin et al., 1976; Amaudric du Chaffaut et al., 1985; Caron et al., 1990; Rossi et al., 1994). *Ostrea edulis* specimens (n=2) from this site are referred to as the Oe\_Ale\_A group.

#### La Malène (Occitany)

This site comprises fortifications dated from the 6<sup>th</sup> century CE, located on top of a cliff (Schneider and Clément, 2012), approximately 120 km north of the Mediterranean coastline of France (**Figure 1**). The *castrum* is thought to have hosted high social status occupants, due to the presence of golden currency and silver nails (Schneider and Clément, 2012), and represents one of the last sites from the Antiquity with *O. edulis* oyster shells as remains of consumption by the elite. It is considered that these oysters were transported over relatively short distances, indicating the Mediterranean coastline as an origin, yet without precise locality (Bardot-Cambot and Forest, 2014). This assumption is confirmed by the observation (Forest, 2020 for Mureau, 2020) of some oyster shells attached to valves of *Flexopecten glaber*, a bivalve species endemic to the Mediterranean Sea. Oyster specimens (n=6) from this site are indicated as the Oe\_Mal\_A group.

Cybèle (Lyons city)

The city of Lyons (Auvergne-Rhône-Alpes, eastern France; **Figure 1**) is rich in Antiquity sites dating from the 1<sup>st</sup> century BCE. In the area of the Fourvière hill, a pit filled by food wastes was discovered in proximity of building remains tentatively attributed to a sanctuary to the goddess Cybèle. Among the pit wastes, approximately 200 *O. edulis* oyster shells dated from the 1<sup>st</sup> century CE were found, whose origin is still debated (Bardot-Cambot, 2013). Based on morphometric measurements and associated mollusc shells, two groups of oyster shells were identified, with one tentatively attributed to the Mediterranean coastline and the other to the Atlantic coastline (Bardot-Cambot, 2013). Specimens from this site, collected from both morphometric groups, are referred to as Oe\_X1\_A (n=6) and Oe\_X2\_A (n=8), respectively.

#### REFERENCES

Amaudric du Chaffaut, S., Bonin, B., Caron, J.M., Conchon, O., Rossi, P., 1985. Notice explicative, Carte géol. France (1/50 000), feuille Venaco (1114). Orléans, *BRGM*, 41 p., Carte géologique par S. Amaudric du Chaffaut et al.

Arzul, G., Quiniou, F., 2014. Plancton marin et pesticides : quels liens ? Quae Editions, 124 p.

Babin, C., Darboux, J.R., 1982. Notice explicative, Carte géol. France (1/50 000), feuille Le Faou (275). Orléans, *BRGM*, 46 p., Carte géologique par C. Babin et al.

Baize, S., Camuzard, J.-P., Freslon, M., Langevin, C., Laignel, B., 1997. Notice explicative, Carte géol. France (1/50 000), feuille Carentan (117). Orléans *BRGM*, 83 p, Carte géologique par S. Baize et al.

Bardel, A., 1991. L'Abbaye Saint-Gwénolé de Landévennec. Archéologie médiévale, 21, 51-101.

Bardot-Cambot, A., 2013. Les coquillages marins en Gaule romaine. Approche socio-économique et socioculturelle. *BAR International Series*, 2481, Archaeopress, Oxford, 270 p.

Bardot-Cambot, A. Forest, V., 2014. Une histoire languedocienne des coquillages marins consommés, du Mésolithique à nos jours. *In*: Costamagno S. (Ed.) Histoire de l'alimentation humaine : entre choix et contraintes. *Actes du 138<sup>e</sup> congrès national des sociétés historiques et scientifiques* (Rennes, 2013). Actes des congrès nationaux des sociétés historiques et scientifiques. Édition électronique, p. 88-104.

Béchennec, F., Guennoc, P., Guerrot, C., Lebret, P., Thiéblemont, D., 1996. Notice explicative, Carte géol. France (1/50 000), feuille Concarneau (382). Orléans, *BRGM*, 129 p., Carte géologique par F. Béchennec, P. Guennoc, Y. Delanoë, P. Lebret, B. Hallégouët, S. Le Meur.

Béchennec, F., Hallégouët, B., Thiéblemont, D., 2001. Notice explicative, Carte géol. France (1/50 000), feuille Rosporden (347). Orléans, *BRGM*, 121 p., Carte géologique par F. Béchennec, B. Hallégouët. Bergeret, A., Allegrini-Simonetti, F., Gael, B., Coutelas, A., Vidal, L., 2015. L'antique Aléria. Une perspective scientifique élargie. *Dossiers d'Archéologie*, Hors-Série, Faton, 370, 42-49.

Bourgueil, B., Moreau, P., 1967. Notice explicative, Carte géol. France (1/50 000), feuille Cognac (708). Orléans, *BRGM*, 12 p., Carte géologique par B. Bourgueil et P. Moreau.

Bourgueil, B., Moreau, P., 1970. Notice explicative, Carte géol. France (1/50 000), feuille Angoulême (709). Orléans, *BRGM*, 20 p., Carte géologique par B. Bourgueil et P. Moreau.

Bourgueil, B., Moreau, P., Vouve, J., 1968. Notice explicative, Carte géol. France (1/50 000), feuille Saintes (683). Orléans: BRGM, 19 p, Carte géologique par B. Bourgueil et al., 1968.

Caron, J.M., Loÿe-Pilot, M.D., 1990. Notice explicative, Carte géol. France (1/50 000), feuille Pietra-di-Verde (1115). Orléans, *BRGM*, 51 p., Carte géologique par J.M. Caron, M.D. Loÿe-Pilot, O. Conchon, H. Scius.

Casabianca, M.D., 1967. Étude écologique des étangs de la côte orientale (Corse). Bulletin de la Société des sciences historiques et naturelles de la Corse, 1, 41-74.

Castaing, C., 1988. Notice explicative, Carte géol. France (1/50 000), feuille Huelgoat (276). Orléans, *BRGM*, 62 p., Carte géologique par C. Castaing et al.

Champagne, A., Aoustin, D., Dupont, C., 2012. La citadelle de Brouage et la dynamique paléoenvironnementale du marais charentais : l'apport de la malacologie et de la palynologie. *Bilan Scientifique Régional 2011 de Poitou-Charentes, Service Régional de l'Archéologie*. Poitiers, 294-303.

Coutelas, A., Allegrini-Simonetti, F., 2017. Une capitale méconnue : la ville romaine d'Aléria (Corse) et sa parure urbaine. *Mélanges de l'École française de Rome-Antiquité*, 129-2. <u>https://doi.org/10.4000/mefra.4527</u>.

Dubreuilh, J., Karnay, G., Bouchet, J.-M., Le Nindre, Y.-M., 1992. Notice explicative, Carte géol. France (1/50 000), feuille Arcachon (825). Orléans, *BRGM*, 53 p., Carte géologique par J. Dubreuilh, J.-M. Bouchet.

Fleury, P., Bakalowicz, M., de Marsily, G., 2007. Submarine springs and coastal karst aquifers: A review. *Journal of Hydrology*, 339, 79–92, doi 10.1016/j.jhydrol.2007.03.009.

Forest, V., 2020. Étude archéozoologique préliminaire : conchyliologie. La Malène – Les Piboulèdes (Lozère) (périodes antique et médiévale). Rapport inédit.

Jauzin, A., Pilot, M.D., Orszag-Sperber, F., 1976. Notice explicative, Carte géol. France (1/50 000), feuille Ghisonaccia (1119). Orléans, *BRGM*, 28 p., Carte géologique par A. Jauzin, M.D. Pilot, F. Orszag-Sperber.

Jehasse, J., Jehasse L., 1997. Aléria ressuscitée - Aleria rediviva, quarante ans de découvertes archéologiques. La Marge Edition, Ajaccio, France, 212 pp.

Ladagnous, H. Le Bec, C., 1997. Lagune de Salses-Leucate. I. – Analyse bibliographique. *Rapport interne de l'IFREMER*, 94 p., R.INT.DEL/97-02/SETE.

Lartaud, F., de Rafélis, M., Ropert, M., Emmanuel, L., Geairon, P., Renard, M., 2010. Mn labelling of living oysters: artificial and natural cathodoluminescence analyses as a tool for age and growth rate determination of *C. gigas* (Thunberg, 1793) shells. *Aquaculture*, 300 (1), 206-217, doi 10.1016/j.aquaculture.2009.12.018.

Le Gall, J., 1953. La mise en valeur des étangs salés de la côte orientale de Corse par les cultures marines. https://archimer.ifremer.fr/doc/00059/17031/. Le Gall, J., 1970. La Baie des Veys : caractères principaux de la sédimentation et faciès de dépôt. *Ph.D. thesis*, Université de Caen, 151 p.

Le Gall, B., 1988. Notice explicative, Carte géol. France (1/50 000), feuille Gourin (311). Orléans, *BRGM*, 81 p., Carte géologique par B. Le Gall, J. Garreau.

Le Pochat, G., Floc'h, J.P., Platel, J.P., Recoing, M., 1986. Notice explicative, Carte géol. France (1/50 000), feuille Montbron (710). Orléans, *BRGM*, 48 p., Carte géologique par G. Le Pochat et al.

Longere, P., Dorel, D., Marin, J., 1972. Etude bathymétrique et sédimentologique des étangs de Diane et d'Urbino en Corse. *Revue des travaux de l'Institut des Pêches maritimes*, 36(1), 31-45.

Monfort, P., Hervio-Heath, D., Caprais, M.P., Pommepuy, M., Annézo, J.P., Loaec, S., Le Mennec, C., Guillerm, E., Boulben, S., Bilien, G., Bonsor, R., Porter, J., Pickup, R., 2006. Le bassin versant du Bélon. : vers une restauration durable de la qualité bactériologique des eaux estuariennes. RST/LER/FBN/CC/06.10, 119 p. https://archimer.ifremer.fr/doc/00200/31077/

Mureau, C., 2020. Consommation et exploitation des ressources animales dans l'est du Massif central et le Languedoc de la fin de l'Antiquité tardive au haut Moyen Âge. *Ph.D. thesis*, Université de Bourgogne-Franche-Comté, Dijon.

Normand, E., Champagne, A., et alii, 2019. Broue (Saint-Sornin – Charente-Maritime) : un site élitaire au coeur des marais charentais. *Rapport intermédiaire de fouille programmée triennale – campagne 2019*, SRA Nouvelle-Aquitaine – site de Poitiers, 236 p.

Ottmann, F., 1956. Sur la stratigraphie du Néogène dans la plaine d'Aléria (Corse orientale). *Comptes Rendus Hebdomadaires Des Séances De L'Academie Des Sciences*, 242(19), 2377-2379.

Paulmier, P., 1996. Etude bibliographique et synthèse des travaux et études relatifs aux étangs littoraux de la Corse. n° 1 85/96. <u>https://archimer.ifremer.fr/doc/00072/18333/</u>.

Platel, J.-P., Moreau, P., Vouvé, J., Colmont, G.R., 1977. Notice explicative, Carte géol. France (1/50 000), feuille Pons (707). Orléans: BRGM, 43 p, Carte géologique par J.-P. Platel et al., 1977.

Platel, J.-P., Moreau, P., Vouvé, J., Debenath, A., Colmont, G.R., Gabet, C., 1978. Notice explicative, Carte géol. France (1/50 000), feuille St-Agnant (682). Orléans: BRGM, 52 p, Carte géologique par J.-P. Platel et al., 1978.

Plusquellec, Y., Rolet, J., Darboux, J.R., 1999. Notice explicative, Carte géol. France (1/50 000), feuille Châteaulin (310). Orléans, *BRGM*, 162 p., Carte géologique par Y. Plusquellec et al.

Rossi, P., Durand-Delga, M., Caron, J.M., Guieu, G., Conchon, O., Libourel, G., Loÿe-Pilot, M.D., Ollé, J.J., Péquignot, G., Potdevin, J.L., Rieuf, M., Rodriguez, G., Sedan, O., Vellutini, P.J., Rouire, J., 1994. Notice explicative, Carte géol. France (1/50 000), feuille Corte (1110). Orléans, *BRGM*, 150 p., Carte géologique par P. Rossi et al.

Salvayre, H., 1989. Les karsts des Pyrénées-Orientales (caractères hydrogéologiques et spéléologiques généraux). *Karstologia*, 13, 1-10, doi 10.3406/karst.1989.2199.

Schachter, D., De Casabianca, M.L., 1965. Contribution à l'étude écologique des étangs de la plaine orientale de Corse. Rapports et Procès-Verbaux des Réunions - Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée, 18, 661-664. Schneider, L. Clément, N., 2012. Le *castellum* de La Malène en Gévaudan. Un "rocher monument" du premier Moyen Age (VIe-VIIe s.). Académie des Inscriptions et Belles Lettres, La Lozère (48) Carte archéologique de la Gaule, *Comptoir des presses d'universités*, pp. 317-328, EAN 978-2-87754-277-7.

Soletchnik, P., Faury, N., Razet, D., Goulletquer, P., 1998. Hydrobiology of the Marennes-Oléron bay. Seasonal indices and analysis of trends from 1978 to 1995. *Hydrobiologia*, 386, 131-146.

SOMIVAC-CTGREF, 1979. Etude des écosystèmes des étangs de Biguglia - Diana - Urbino. *Mis. interm. prot. amenag. esp. nat., médit.*, 59 pp.

Sylvand, B., 1995. La Baie des Veys, 1972-1992 : structure et évolution à long terme d'un écosystème benthique intertidal de substrat meuble sous influence estuarienne. *Ph.D. thesis*, Université de Caen, 409 p.

Ternet, Y., Berger, G., 1968. Notice explicative, Carte géol. France (1/50 000), feuille Royan-Tour de Cordouan (706). Orléans, *BRGM*, 12 p., Carte géologique par Y. Ternet et G. Berger.

#### Supplementary Information 2: Quality assurance - certified reference material

Mouchi et al., 'Provenance study of oyster shells by LA-ICP-MS'

| Ti | 2.2736   | 2.3324   | 2.3595   | 2.3476   | 2.2848   | 2.3003   | 2.2649   | 2.2891   | 2.2674   | 2.3602   | 2.3099   | 2.3023   | 2.2599   | 2.3762   | 2.7395   | 2.2984   | 2.7671   | 2.2959   | 2.2954   | 2.2796   | 2.2557   | 2.2994   |
|----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Cr | 16.5774  | 16.8700  | 17.7942  | 18.2726  | 18.8189  | 16.9895  | 16.6198  | 16.5918  | 16.4741  | 17.2286  | 16.4020  | 16.6167  | 16.4305  | 17.8385  | 16.2219  | 17.4146  | 16.5426  | 16.8858  | 16.2256  | 17.1177  | 16.6614  | 16.5631  |
| Cu | 16.6029  | 17.3238  | 18.2190  | 16.9732  | 15.7939  | 16.6900  | 14.4835  | 17.5775  | 17.1590  | 16.4407  | 15.9323  | 16.6613  | 16.6255  | 16.3726  | 15.9883  | 16.7814  | 16.0706  | 16.7942  | 16.1808  | 16.6688  | 16.4055  | 16.9166  |
| Zn | 139.3879 | 144.5496 | 141.1708 | 143.7813 | 143.9091 | 133.3415 | 127.5495 | 137.7744 | 134.5128 | 131.5537 | 131.4955 | 140.6195 | 143.7138 | 134.3885 | 137.4514 | 146.7883 | 142.2726 | 142.9469 | 137.8980 | 134.6058 | 149.6410 | 133.5366 |
| Sr | 329.2198 | 331.7063 | 330.9741 | 334.6362 | 339.9092 | 331.9276 | 323.4683 | 327.8998 | 335.3608 | 335.6301 | 329.6827 | 330.1760 | 335.8523 | 328.6288 | 330.4466 | 325.9773 | 331.7110 | 334.7126 | 328.5690 | 326.7636 | 330.1479 | 324.6989 |
| Y  | 31.4587  | 32.3494  | 31.9576  | 32.5076  | 32.5670  | 32.4271  | 31.4186  | 32.4185  | 33.3097  | 33.5834  | 32.8959  | 33.0287  | 32.6357  | 31.5167  | 31.9106  | 32.2697  | 33.2090  | 33.1196  | 32.5903  | 31.5066  | 31.7899  | 31.0894  |
| Ва | 650.2420 | 668.1087 | 724.8344 | 699.1811 | 699.8398 | 694.2838 | 656.0428 | 688.9788 | 675.2198 | 709.3624 | 686.2008 | 696.0376 | 685.5269 | 661.8345 | 673.0266 | 659.7785 | 681.0933 | 695.7817 | 679.2944 | 697.3440 | 712.1397 | 675.8795 |
| La | 24.2957  | 25.3058  | 25.0690  | 25.5478  | 24.9511  | 24.7224  | 24.8380  | 24.8347  | 25.2556  | 25.7947  | 25.7741  | 25.7954  | 25.1247  | 24.4167  | 25.1572  | 24.8928  | 25.4779  | 25.7475  | 25.4751  | 24.5332  | 24.4126  | 24.0641  |
| Се | 51.8448  | 54.3902  | 56.5603  | 55.2400  | 54.2901  | 52.9865  | 50.6877  | 52.2842  | 53.3296  | 52.8364  | 53.9721  | 54.3498  | 53.0642  | 53.6355  | 52.5953  | 53.1375  | 53.5574  | 54.0159  | 53.1211  | 54.7381  | 54.0940  | 52.9243  |
| Pr | 6.4161   | 6.6396   | 6.5903   | 6.6933   | 6.7186   | 6.5474   | 6.2842   | 6.3479   | 6.5324   | 6.5845   | 6.6712   | 6.6445   | 6.5356   | 6.7186   | 6.5284   | 6.4325   | 6.5323   | 6.6700   | 6.4597   | 6.4588   | 6.4564   | 6.3971   |
| Nd | 27.6150  | 28.2644  | 28.5236  | 29.2309  | 29.1816  | 28.4382  | 27.4694  | 28.1593  | 28.4758  | 29.5044  | 28.6128  | 28.6380  | 28.2635  | 28.7205  | 28.3555  | 27.5664  | 28.5524  | 28.5883  | 27.7396  | 27.9169  | 27.6081  | 27.2994  |
| Sm | 6.2436   | 6.3813   | 6.4659   | 6.3958   | 6.4288   | 6.3493   | 6.2223   | 6.3458   | 6.4419   | 6.6506   | 6.5165   | 6.4522   | 6.4366   | 6.1684   | 6.3377   | 6.1972   | 6.4339   | 6.5630   | 6.3497   | 6.2732   | 6.1950   | 6.1361   |
| Pb | 10.3056  | 10.6500  | 11.5045  | 11.6650  | 12.0327  | 11.2178  | 10.4480  | 10.4911  | 9.7574   | 10.1300  | 10.0130  | 10.3265  | 10.4820  | 10.3795  | 9.8529   | 10.4622  | 10.1013  | 10.3810  | 10.2045  | 10.1623  | 10.3890  | 10.0684  |
| U  | 1.6562   | 1.7724   | 1.8848   | 1.8177   | 1.7968   | 1.7234   | 1.5747   | 1.7243   | 1.7570   | 1.7056   | 1.7361   | 1.7958   | 1.7683   | 1.7572   | 1.7273   | 1.8086   | 1.7145   | 1.7759   | 1.7146   | 1.7763   | 1.7369   | 1.7557   |

A total of 22 measurements of the BCR-2 basalt reference material have been performed for this study to address the quality of the measurements by LA-ICP-MS. The values are indicated below.

GeoReM preferred values (GeoReM: Jochum et al. 2005):

| TiO <sub>2</sub> | 2.15 – 2.44 %m/m. 34 values (compiled: 2.26 – 2.265 %m/m. 3 values)  |
|------------------|----------------------------------------------------------------------|
| Cr               | 11 – 152 μg/g. 102 values (compiled: 15.85 – 18 μg/g. 3 values)      |
| Cu               | 9.7 – 50.27 μg/g. 98 values (compiled: 19 – 19.66 μg/g. 2 values)    |
| Zn               | 110 – 195 μg/g. 96 values (compiled: 127 – 129.5 μg/g. 3 values)     |
| Sr               | 176 – 400 μg/g. 142 values (compiled: 337.4 – 346 μg/g. 3 values)    |
| Υ                | 28.13 – 52 μg/g. 127 values (compiled: 36.07 – 37 μg/g. 3 values)    |
| Ва               | 445 – 808.96 μg/g. 128 values (compiled: 677 – 683.9 μg/g. 3 values) |
| La               | 20 – 31 μg/g. 135 values (compiled: 24.9 – 25.08 μg/g. 3 values)     |
| Ce               | 46 – 66 μg/g. 136 values (compiled: 52.9 – 53.12 μg/g. 3 values)     |
| Pr               | 6 – 15 μg/g. 132 values (compiled: 6.7 – 6.827 μg/g. 3 values)       |
| Nd               | 25.5 – 37 μg/g. 165 values (compiled: 28 – 28.7 μg/g. 3 values)      |
| Sm               | 5.9 – 10 μg/g. 161 values (compiled: 6.547 – 6.7 μg/g. 3 values)     |
| Pb               | 7 – 18.1 μg/g. 121 values (compiled: 10.59 – 11 μg/g. 3 values)      |
| U                | 1.46 – 2 µg/g. 165 values (compiled: 1.683 – 1.69 µg/g. 3 values)    |

Jochum. K.P. Nohl. U. Herwig. K. Lammel. E. Stoll. B. Hofmann. A.W. 2005. GeoReM: A new Geochemical database for reference materials and isotopic standards. *Geostand. Geoanalytical Res.* 29. 333-338. doi 10.1111/j.1751-908X.2005.tb00904.x.

### Supplementary Information 4 Mouchi et al., 'Provenance study of oyster shells by LA-ICP-MS'

Boxplots by element for all shell groups.















Supplementary Information 5: Seasonal influence of elemental composition of oyster shells.

Mouchi et al.: 'Provenance study of oyster shells by LA-ICP-MS'

Dendrograms show that seasonal clusters are not supported by the elemental compositions of shells whatever the species (*C. gigas* and *O. edulis*) or the sites (Baie des Veys, Normandy, English Channel; and Marennes-Oléron, Charente-Maritime, Atlantic Ocean). Seasons are represented by '1' and '2'.



## Cg\_MO\_M - Ward method

## $Cg\_MO\_M$ - Average method



#### Oe\_MO\_M - Ward method

Oe\_MO\_M - Average method





# Cg\_BdV\_M - Average method





Oe\_BdV\_M - Average method



Moreover, the distribution of all the measurements for the 14 groups of shells with seasonal calibration (*i.e.*, all the groups except Cg\_Leu\_M) visualized by t-SNE does not display significant differences between seasons, as indicated by the figure below.



**Figure above:** Visualization of shell groups' partitioning using t-SNE showing groups of shells emphasizing the lack of impact of seasons. **a:** t-SNE from Figure 3 of the manuscript for convenience. **b:** Same as **a**, displaying measurements corresponding to winters (crosses) and summers (squares). Colors have been changed compared to **a** to properly observe the various groups. Note that the Cg\_Leu\_M (in green dots on **a**) are not displayed on **b** as no seasonal calibration is available for this group.

## Supplementary Information 6: Temporal resolution of measurements from Modern labelled specimens from Marennes-Oléron (Oe\_MO\_M).

Mouchi et al.: 'Provenance study of oyster shells by LA-ICP-MS'

The pictures below show natural light and cathodoluminescence observations of two *Ostrea edulis* specimens (Da-edn-6-3 and Da-edn-6-4) from a rearing experiment at Marennes-Oléron (Lartaud et al., 2010). These specimens were chemically labelled using manganese-enriched seawater on April  $13^{th}$  and June  $12^{th}$  2006. The labels are visible by a bright growth increment in cathodoluminescence pictures. The position and size of the 200 µm measurements by LA-ICP-MS are indicated by white circles, and represent approximately half the space separating the two labels, which corresponds to one month of growth. Variations of this temporal resolution can occur according to shell growth rate during this period (*e.g.* reduced growth in winter months).

Lartaud, F., de Rafélis, M., Ropert, M., Emmanuel, L., Geairon, P., Renard, M., 2010. Mn labelling of living oysters: artificial and natural cathodoluminescence analyses as a tool for age and growth rate determination of *C. gigas* (Thunberg, 1793) shells. *Aquaculture*, 300 (1), 206-217, doi 10.1016/j.aquaculture.2009.12.018.



Supplementary Information 7: Influence of specific elements on discrimination.

Mouchi et al.: 'Provenance study of oyster shells by LA-ICP-MS'

In our manuscript, we provide a method, using 14 elements, to discriminate the origin of multiple oyster shell groups from France and Corsica Island. These 14 variables appear to be the minimum to provide sufficient quality of the discriminating method. Here are provided t-SNE visualizations using the same dataset, with U, Ba and Pb respectively removed as variables. The visual distinction of groups from different origins is systematically reduced when removing a variable.



**Figure above:** Visualization of shell groups' partitioning using t-SNE showing discrimination of groups of shells being reduced when removing U, Ba and Pb from the variables.