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This article is focused on the effect of vortices within the aluminum combustion zone on the aluminum combustion instabilities that can occur in solid rocket motors. As this instability is a thermoacoustic instability, the aluminum combustion dynamics is evaluated considering the rayleigh source term with or without vortices. This term is computed by postprocessing numerical simulations of a generic solid rocket motor, forced acoustically.

Introduction: State of the art

Unsteady behaviors in complex systems are usually the most difficult aspects to predict and to control. To design new engines, various small-scale experiments and numerical simulations are executed without real capacities to predict the working of this new design. In addition to the significant cost represented by all of these tests or simulations, they do not make it possible to control unsteady and complex phenomena like combustion instabilities. Moreover, the physics observable in the new system designed remains very poorly understood. Theoretical approaches, despite assumptions sometimes too restrictive, allow a global vision (at the scale of the system) over the entire operating range.

Combustion instabilities are defined as the manifestation of a coupling between flow and combustion generating flow instabilities which can be problematic for the system [START_REF] Poinsot | Prediction and control of combustion instabilities in real engines[END_REF][START_REF] Schuller | Dynamics and control of premixed combustion systems based on flame transfer and describing functions[END_REF]: premature engine shutdown induced by flame blowoff [START_REF] Shanbhogue | Lean blowoff of bluff body stabilized flames: Scaling and dynamics[END_REF] or structural damage due to pressure oscillations produced by flame instabilities [START_REF] Huls | Acoustoelastic interaction in combustion chambers: modeling and experiments[END_REF]. Many couplings between combustion and flow are possible and they are complex to understand and control. For example, in solid rocket combustion chambers, several phenomena, which can produce and amplify pressure oscillations, can be identified [START_REF] Culick | Unsteady motions in combustion chambers for propulsion systems[END_REF][START_REF] Hirschberg | Vortex nozzle interaction in solid rocket motors: A scaling law for upstream acoustic response[END_REF][START_REF] Hirschberg | Influence of nozzle cavity on indirect vortex-and entropy-sound production[END_REF]: vortex shedding, indirect-combustion noise (entropy inhomogeneities through contractions), vortex-nozzle interactions, unsteady combustion of the solid propellant and the combustion dynamics of the aluminum droplets (released in the chamber from an aluminized solid propellant). Also, these phenomena are suspected to interact with each other [START_REF] Orlandi | Aluminium droplets combustion and SRM instabilities[END_REF]. One of these phenomena in a generic solid rocket motor is deeply studied by theoretical developments in this work: the aluminum dynamics which can drive an instability called thermoacoustic instability by the French solid propulsion community [START_REF] Orlandi | Aluminium droplets combustion and SRM instabilities[END_REF][START_REF] Dupays | Propagation of an acoustic wave in a twophase reactive medium[END_REF][START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF][START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF][START_REF] Genot | Instabilités thermoacoustiques dans les moteurs à propergol solide[END_REF] because the aluminum combustion can respond to acoustic oscillations and amplify them. The other sources of sound are neglected.

Aluminum combustion instability is a quite complex physical phenomenon because aluminum droplet combustion modeling is still an open question [START_REF] Beckstead | A summary of aluminum combustion[END_REF][START_REF] Fabignon | Recent advances in research on solid rocket propulsion[END_REF][START_REF] Braconnier | Detailed analysis of combustion process of a single aluminum particle in air using an improved experimental approach[END_REF][START_REF] Braconnier | Experimental investigation of the aluminum comnbustion in SRM representative gas species: effect of CO2/CO[END_REF][START_REF] Braconnier | Experimental investigation of the aluminum combustion in different O2 oxidizing mixtures: Effect of the diluent gases[END_REF]. This distributed combustion (individual burning droplets [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF]) takes place in an acoustic boundary layer [START_REF] Culick | Unsteady motions in combustion chambers for propulsion systems[END_REF][START_REF] Genot | Instabilités thermoacoustiques dans les moteurs à propergol solide[END_REF][START_REF] Flandro | Effects of vorticity on rocket combustion stability[END_REF] close to the solid propellant surface (where they come from, see Fig. 1).

In the state of the art, most of the works focused on a deep analysis of the aluminum droplet combustion dynamics induced by acoustics in solid rockets assumed a very rustic aluminum combustion model which is a combination of the classical D 2 -law with a Heaviside function to stop the droplet combustion [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF][START_REF] Genot | Instabilités thermoacoustiques dans les moteurs à propergol solide[END_REF]. It should be noted that this very rustic model may make sense considering the latest experimental results [START_REF] Braconnier | Experimental investigation of the aluminum combustion in different O2 oxidizing mixtures: Effect of the diluent gases[END_REF] that show a very spheric and symmetric droplet combustion (which can be modeled by a D 2 -law) and a sudden quenching of the droplet combustion (a Heaviside function). In addition, this modeling has been successfully used for instability predictions in actual solid rocket motors [START_REF] Orlandi | Aluminium droplets combustion and SRM instabilities[END_REF][START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF][START_REF] Ballereau | Numerical simulations and searching methods of thrust oscillations for solid rocket motors[END_REF].

With this rustic model, Gallier and Godfroy [START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF] developped an analytical model quantifying the combustion dynamics, assuming that the heat release rate fluctuations from the combustion of aluminum droplets result mainly from the longitudinal velocity fluctuations of the flow around the droplets. In their analysis, the Ranz-Marshall correlation [START_REF] Ranz | Evaporation from drops[END_REF] has been used to model the coupling between the droplet evaporation and the surrounding gas flow. This assumption has been checked in [START_REF] Gallier | Combustion response of an aluminum droplet burning in air[END_REF]. However, the analytical model of Gallier and Godfroy [START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF] was not compared with any simulations. Based on this unvalidated model, Casalis et al. [START_REF] Casalis | Some recent advances in the instabilities occurring in long solid rocket motors[END_REF] derived dimensionless numbers controlling the thermoacoustic source. In this new article, improvements and analyses are proposed based on recent state-of-the-art advancements.

Genot et al. [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF] compared the analytical model of Gallier and Godfroy [START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF] to numerical simulations and demonstrated that some aspects of the aluminum combustion dynamics were underestimated in their analytical model. They completed this analytical model considering that the heat release rate fluctuations induced by the aluminum combustion dynamics are essentially controlled by the gaseous flow dynamics along the droplet trajectories taking in account the droplet memory and the instant when the droplets are injected (from the solid propellant surface). Consequently, both velocity fluctuations and droplet diameter fluctuations need to be considered to determine the correct fluctuations of the evaporation rate from the droplets and the correct fluctuations of the heat released by the unsteady droplet combustion. A series of analytical models was derived in [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF] linking these quantities with different approximations for the gaseous flow dynamics around the droplets. These models were shown to well reproduce the heat release rate fluctuations observed in numerical flow simulations of a generic solid rocket motor (Fig. 1) over the entire combustion region [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF][START_REF] Genot | Instabilités thermoacoustiques dans les moteurs à propergol solide[END_REF].

These heat release rate fluctuations can be split in two contributions [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF][START_REF] Genot | A numerical analysis of aluminum droplet combustion driven instabilities in solid rocket motors[END_REF][START_REF] Genot | Thermo-acoustic instabilities driven by fuel droplet lifetime oscillations[END_REF]. First, it was shown that the combustion dynamics of the individual aluminum droplets, close to the solid propellant surface, within the acoustic boundary layer of the flow, drive heat re-lease rate fluctuations within the volume of the reactive droplet cloud. A second source of heat release rate fluctuations is also found at the reactive droplet cloud boundary where droplet combustion ceases. The origin of these heat release rate fluctuations was further examined in [START_REF] Genot | Thermo-acoustic instabilities driven by fuel droplet lifetime oscillations[END_REF]. It was shown that they were associated with the dynamics of the burning droplets just before quenching (here modeled by a Heaviside function) and with the droplet lifetime oscillations. An analytical model was also derived for this contribution to heat release rate fluctuations when the combustion is abruptly quenched for some droplet residue diameter.

These models for the heat release rate fluctuations are illustrated in Figure 2. The model of Gallier and Godfroy [START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF] corresponds to the left subfigure of Figure 2 and the model of Genot et al. [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF] to the right subfigure of Figure 2. Droplets are injected radially in r = R all along the chamber of length L. They are submitted to longitudinal fluctuations (transverse to their trajectory). The red zone highlights the reactive droplet cloud and the white zone is an inert zone after combustion with residual droplets (alumina droplets). In the right subfigure, model improvements are highlighted by a blue square around the variable (here the droplet velocity fluctuations ûp ) and new models are highlighted by variables in blue (here the droplet diameter fluctuations D and the droplet cloud boundary motion rc driven by droplet lifetime oscillations [START_REF] Genot | Thermo-acoustic instabilities driven by fuel droplet lifetime oscillations[END_REF]). The mathematical formulation of the model of Genot et al. [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF] for the heat release rate fluctuations is derived below.

The rustic aluminum combustion model is defined as following [START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF][START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF]:

q = qD 2 H(D -D r ) (1) 
with q the heat release rate, H the Heaviside function which stops the combustion of the droplet when its size reaches the residue diameter D r , D the droplet diameter and qD 2 the heat release rate defined by the D 2 -law:

qD 2 = ∆H r N p πD µ Pr ln(1 + B)Sh (2)
where ∆H r is the reaction enthalpy, N p the number of droplets per unit volume, µ the gas viscosity, Pr the Prandtl number, B the Spalding number and Sh the Sherwood number modeled by the Ranz-Marshall correlation [START_REF] Ranz | Evaporation from drops[END_REF]:

Sh = 2 + 0.6Re p 1/2 Pr 1/3 (3) 
In the Fourier space, the fluctuations of the heat release rate, following Genot et al. [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF][START_REF] Genot | Thermo-acoustic instabilities driven by fuel droplet lifetime oscillations[END_REF], can be split in two contributions:

q = qD 2 H(D -D r ) 0 + qD 2 ,0 Ĥ(D -D r ) = qv.c. + qb.c. ( 4 
)
with • the fluctuations in the Fourier space, the subscript 0 for time average of the quantity (for instance q0 = 1 T T qdt), v.c. the volume contribution (corresponding to the fluctuations of qD 2 ) and b.c. the boundary contribution (corresponding to the Heaviside function fluctuations). The volume contribution is derived as following:

qv.c. q0 = Sh 0 -2 2Sh 0 δu p,0 |δu p | 2 0 (û p -û) + 1 + Sh 0 -2 2Sh 0 D D 0 (5) 
with u p = u p ex + v p e r the droplet velocity, u = uex + ve r the gas velocity, δup = u pu and δu p = u pu. The boundary contribution to the heat release rate fluctuations is equal to [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF][START_REF] Genot | Thermo-acoustic instabilities driven by fuel droplet lifetime oscillations[END_REF]:

qb.c. q0 = - qD 2 ,0 q0 2 1 - r-r c,0 |r c | 2 1/2 π|r c | rc ( 6 
)
where r is the radial position and r c the boundary position of the reactive droplet cloud which is unsteady. So the flapping motion rc of the boudary is defined in the Fourier space as following [START_REF] Genot | Thermo-acoustic instabilities driven by fuel droplet lifetime oscillations[END_REF]:

rc = 2t c,0 v p D 0 D 2 i -D 2 r D (7) 
with v p the radial droplet velocity, D i the injection droplet diameter (initial droplet diameter at the solid propellant surface), D r the residue diameter (after combustion) and t c the combustion time:

t c,0 = Prρ p (D 2 i -D 2 r ) 4µ ln(1 + B)Sh 0 ( 8 
)
where Pr is the Prandtl number, ρ p the droplet density, µ the gas density and B the Spalding number. The longitudinal droplet velocity fluctuations are given below:

ûp = r R û v p τ d,0        1 + C Re δu 2 p,0 |δu p | 2 0        e r r       iωτ d,0 +1+C Re δu 2 p,0 |δup | 2 0       dr vp τ d,0 dr (9) 
where i 2 = -1, C Re a constant defined below, ω = 2π f the excited angular frequency, τ d the drag characteristic time [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF]: 

τ d = 1 + B 1 + 0.
The gas flow velocity and the mean flow were taken from the numerical simulation for the verification of this model Eqs. (4-11) [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF].

Linear thermoacoustic source of the instability: model reduction and verification

In unstable solid rocket motors, longitudinal modes are usually those excited and more particularly the first longitudinal mode [START_REF] Culick | Unsteady motions in combustion chambers for propulsion systems[END_REF][START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF]. In case of pure thermoacoustic instabilities (without solid propellant response, hydrodynamic instabilities), the acoustic losses can be assumed linear and the aluminum combustion dynamics weakly nonlinear [START_REF] Genot | Instabilités thermoacoustiques dans les moteurs à propergol solide[END_REF]. From these observations, only one acoustic mode will be considered and aluminum combustion dynamics will be linearized.

In the previous section, the state of the art about the aluminum combustion dynamics was reminded. In the theory of the linear stability, the pressure oscillation amplitude grows with a growth rate α such as [START_REF] Culick | Unsteady motions in combustion chambers for propulsion systems[END_REF][START_REF] Culick | Prediction of the stability of unsteady motions in solid propellant rocket motors[END_REF]:

α = α losses + α alu (12) 
with α losses < 0 the growth rate due to the acoustic losses [START_REF] Genot | Instabilités thermoacoustiques dans les moteurs à propergol solide[END_REF][START_REF] Genot | A numerical analysis of aluminum droplet combustion driven instabilities in solid rocket motors[END_REF][START_REF] Culick | Prediction of the stability of unsteady motions in solid propellant rocket motors[END_REF] and α alu the growth rate induced by the thermoacoustic coupling (aluminum combustion dynamics and chamber acoustics), assuming a 2Daxisymmetric chamber (Fig 1) [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF]:

α alu = 2(γ -1) R 2 L 0 ψ 2 dx L 0 ψ R 0 q η (R e ) rdrdx (13) 
R e means the real part, ψ ≈ cos(kx) is the longitudinal mode (with k = ω/a 0 the wave length and a 0 the sound speed), η the pressure amplitude (such that the pressure fluctuations in the Fourier space can be defined as p = ηψ), R the radius of the chamber, L the length of the chamber. This growth rate α alu (Eq. 13) is dependent on the heat release rate fluctuations which can be modeled by the analytical model derived in section 1. As the heat release rate can be split into two contributions, the thermoacoustic growth rate can also be split:

q = qv.c. + qb.c. , α alu = α v.c. + α b.c. ( 14 
)
The objective of this paper is to simplify these previous expressions (Eqs. [START_REF] Huls | Acoustoelastic interaction in combustion chambers: modeling and experiments[END_REF][START_REF] Culick | Unsteady motions in combustion chambers for propulsion systems[END_REF][START_REF] Hirschberg | Vortex nozzle interaction in solid rocket motors: A scaling law for upstream acoustic response[END_REF][START_REF] Hirschberg | Influence of nozzle cavity on indirect vortex-and entropy-sound production[END_REF][START_REF] Orlandi | Aluminium droplets combustion and SRM instabilities[END_REF][START_REF] Dupays | Propagation of an acoustic wave in a twophase reactive medium[END_REF][START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF][START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF] and Eq. ( 13)) removing the integrals to highlight the key parameters or dimensionless numbers which drive this thermoacoustic coupling. As a reminder to readers, all the results presented in this paper are dependent on assumptions: (i) linear fluctuations (and linear combustion dynamics), (ii) a rustic aluminum combustion model and (iii) a 2D-axisymmetric chamber.

Model reduction of the heat release rate fluctuations

To reduce the expressions of the analytical model for the heat release rate fluctuations derived in section 1 (Eqs. [START_REF] Huls | Acoustoelastic interaction in combustion chambers: modeling and experiments[END_REF][START_REF] Culick | Unsteady motions in combustion chambers for propulsion systems[END_REF][START_REF] Hirschberg | Vortex nozzle interaction in solid rocket motors: A scaling law for upstream acoustic response[END_REF][START_REF] Hirschberg | Influence of nozzle cavity on indirect vortex-and entropy-sound production[END_REF][START_REF] Orlandi | Aluminium droplets combustion and SRM instabilities[END_REF][START_REF] Dupays | Propagation of an acoustic wave in a twophase reactive medium[END_REF][START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF][START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF]) and the corresponding growth rate (Eq. ( 13)), simplifications of the velocity and diameter fluctuations (Eqs. ( 9) and ( 11)) are derived in following. Then, this new simplified model for the heat release rate fluctuations will be compared with the numerical results of Genot et al. [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF].

Velocity fluctuations

Gallier and Godfroy [START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF] derived a very simplified model for the gas velocity fluctuations û, very close to the solid propellant surface:

û = ûac (1 -F) (15) 
with ûac the acoustic velocity and F a correcting function to take in account the acoustic boundary layer:

F = e iω vp (R-r) (16) 
This model is oversimplified and must be used with caution but it roughly models the acoustic boundary layer. Moreover, its expression allows a simplified integration of Eq. ( 9). Some other approximations are done in following: C Re ≈ 0, droplets injected at the equilibrium with the gas (u p = v p e r = ve r = -v in j e r ) and the variation of the mean flow, in the combustion zone, is negligible compared to the variation of velocity fluctuations in the radial direction r. With all these assumptions, Eq. ( 9) finally reduces to:

ûp -û = -û ac ωτ d,0 ωτ d,0 -i 1 -e iωτ d,0 +1 vpτ d,0 (R-r) (17) 

Droplet diameter fluctuations

With the same assumptions and the expression Eq. ( 17), diameter fluctuations Eq. ( 11) can be reduced to:

D = -B D ûac ωτ d,0 ωτ d,0 -i           1 -e A D (R-r) A D - e iωτ d,0 +1 vp τ d,0 (R-r) -e A D (R-r) A D - iωτ d,0 +1 v p τ d,0           (18)
where A D and B D equal to:

A D = iω v p - µ ln(1 + B)(Sh 0 + 2) v p Prρ p D 2 0 , B D = - µ ln(1 + B)(Sh 0 -2) v p Prρ p D 0 |δu p | 2 0 /δu p,0 (19) 

Model verification of the new model for the heat release rate fluctuations

Finally, with these reductions for D and ûpû, the heat release rate fluctuations q = qv.c. + qb.c. can be expressed without integrals (Eqs. (4-7) and Eqs. [START_REF] Braconnier | Experimental investigation of the aluminum combustion in different O2 oxidizing mixtures: Effect of the diluent gases[END_REF][START_REF] Flandro | Effects of vorticity on rocket combustion stability[END_REF]):

qv.c. q0 = Sh 0 -2 2Sh 0 δu p,0 |δu p | 2 0 (û p -û)+ 1 + Sh 0 -2 2Sh 0 D D 0 (20) qb.c. q0 = - qD 2 ,0 q0 2 1 - r-r c,0 |r c | 2 1/2 π|r c | rc (21) rc = 2t c,0 v p D 0 D 2 i -D 2 r D ( 22 
) ûp -û = -û ac ωτ d,0 ωτ d,0 -i 1 -e iωτ d,0 +1 vpτ d,0 (R-r) (23) 
D = -B D ûac ωτ d,0 ωτ d,0 -i           1 -e A D (R-r) A D - e iωτ d,0 +1 vp τ d,0 (R-r) -e A D (R-r) A D - iωτ d,0 +1 v p τ d,0           (24)
The model of Genot et al. [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF] ( q with integrals) has been compared with a numerical simulation. This simulation was carried out by solving the compressible Navier-Stokes equations with the perfect gas law in a twoway coupling Eulerian framework using Marble's two-phase flow equations [START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF][START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF][START_REF] Marble | Dynamics of a gas containing small solid particles[END_REF]. The governing equations were discretized and resolved by a finite volume technique adapted to unstructured meshes. The numerical schemes were second-order accurate in space and second-order accurate in time using explicit twostep RungeKutta time stepping. The simulation was carried out in a two-dimensional axisymmetric framework (Fig. 1). A radial injection modeling the solid propellant combustion (gas and aluminum droplets) is imposed in r = R and an exit boundary condition at the end of the nozzle is considered. The solid propellant burning velocity is neglected, and the geometry is fixed in this simulation because the flow velocity is much higher than the solid propellant burning velocity. The computational grid is composed of 360,000 quads with about 600 points in the axial direction and 600 points in the radial direction. The grid is clustered near the propellant burning surface to resolve the aluminum distributed combustion. The region where aluminum combustion reaction takes place is indicated in red in Fig. 1. The smallest grid spacing at the propellant surface is about 0.1 mm, and the mesh is refined in the aluminum combustion region. Outside the aluminum combustion region, particles are inert. Turbulence is not taken into account in these simulations to focus the analysis on the coupling between the acoustics and unsteady aluminum droplet combustion [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF][START_REF] Apte | Unsteady flow evolution in porous chamber with surface mass injection, part 1: Free oscillation[END_REF] without dealing with the complexity of interactions with turbulence. Grid convergence has been checked, and no significant differences have been found between results calculated with this grid and a coarser mesh with 172,000 quads. Droplets were injected in equilibrium with the gas, and the aluminum droplets were subjected to forced acoustic oscillations such that their combustion dynamics was linear. The frequency excited corresponds to the first longitudinal mode which is the mode usually observed for unstable cases [START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF][START_REF] Genot | A numerical analysis of aluminum droplet combustion driven instabilities in solid rocket motors[END_REF]. More details about the simulations are given in [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF].

To check that this new model Eqs. (20-24) (a reduction of the model of Genot et al. without integrals) is still close to the numerical simulation results from Genot et al. [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF], Figures 3 and4 compare this new model with the model of [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF] and the numerical simulation (called 'Simulation' in the Figures). Figures 3 and4 illustrate the heat release rate fluctuations (modulus and phase angle) at the first quarter of the tube (L/4 = 1.75 m) and at the third quarter (3L/4 = 5.25 m). The phase angle is computed relatively to the phase angle of the local pressure oscillations. These two positions correspond to the extrema of the thermoacoustic source for the first longitudinal mode [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF][START_REF] Genot | A numerical analysis of aluminum droplet combustion driven instabilities in solid rocket motors[END_REF]. The mean flow and the gas velocity fluctuations û come from the simulation [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF] to ensure that potential discrepancies are related to models.

Figures 3 and4 show very close results between the model of Genot et al. [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF] and the numerical results (as already demonstrated in [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF]). The modulus computed by the new model (without integrals) is also very close to the numerical results. The phase angle is less well reproduced by this new model but the results are widely acceptable given the assumptions. This new model is used and integrated in following to go further in the reductions and analyses.

Final reduction of the thermoacoustic source: dimensionless number dependency

The growth rate α alu = α v.c. + α b.c. linked to the thermoacoustic source is split into two contributions (Eq. ( 13)):

α v.c. = 2(γ -1) R 2 L 0 ψ 2 dx L 0 ψ R 0 qv.c. η (R e ) rdrdx (25) 
α b.c. = 2(γ -1) R 2 L 0 ψ 2 dx L 0 ψ R 0 qb.c. η (R e ) rdrdx (26) 
with the heat release rate fluctuations q which can be modeled by Eqs. [START_REF] Ranz | Evaporation from drops[END_REF][START_REF] Gallier | Combustion response of an aluminum droplet burning in air[END_REF][START_REF] Casalis | Some recent advances in the instabilities occurring in long solid rocket motors[END_REF][START_REF] Genot | A numerical analysis of aluminum droplet combustion driven instabilities in solid rocket motors[END_REF][START_REF] Genot | Thermo-acoustic instabilities driven by fuel droplet lifetime oscillations[END_REF]. In this subsection, both expressions α v.c. and α b.c. are simplified by the radial integration. To do this, some assumptions are proposed.

For the volume contribution α v.c. , the mean flow will be simplified as following:

X 0 (r, x) ∼ X 0 (x) (27) 
In other words, its radial variation is assumed negligible compared to the radial variation of the velocity fluctuations (because aluminum combustion takes place in the acoustic boundary layer [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF][START_REF] Flandro | Effects of vorticity on rocket combustion stability[END_REF]). For the mean diameter D 0 , as the droplet diameter is following the D 2 -law, its mean value in the r-direction is:

D 0 = D(r = R) 2 + D(r = r c ) 2 2 = D 2 i + D 2 r 2 (28) 
with D i the injection diameter and D r the residue diameter.

For the boundary contribution α b.c. , as it is located to the boundary position r = r c , the mean quantities will be considered at this position. For the mean diameter, this assumption gives:

D 0 (r = r c ) = D r (29) 
Reductions of the contributions (α v.c. , α b.c. ) to the thermoacoustic source are proposed below.

Volume contribution

The growth rate of the volume contribution to the thermoacoustic source is defined (Eq. ( 25)):

α v.c. = 2(γ -1) R 2 L 0 ψ 2 dx L 0 ψ R 0 qv.c. η (R e ) rdrdx (30) 
Considering a solid rocket motor like a tube with closedclosed acoustic boundaries, the acoustic longitudinal mode ψ can be modeled [START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF]:

ψ = cos(kx) (31) 
with k = ω/a 0 , a 0 the sound speed, ω = 2π f the angular frequency and f the acoustic frequency. After many steps to calculate the radial integral of the previous expression, one founds:

α v.c. = 2(γ -1) L 0 ψ 2 dx L 0 q0 (-δu p,0 ) |δu p | 2 0 cos(kx) sin(kx) a 0 ρ S tk (S tk 2 + 1)S r 2         A v.c. + e -S tk S c B v.c. + e Sh 0 +2 4Sh 0 D 2 i -D 2 r D 2 0 C v.c. + e -S c /S tk D v.c.         dx (32)
where D 0 is the mean droplet diameter given by Eq. ( 28), Sh 0 the Sherwood number (which represents the ratio between the convective mass transfer and the diffusive mass transport from the droplet), S tk is the Stokes number (ratio between the acoustic and droplet drag characteristic times) and S c the combustion Strouhal (ratio between the acoustic and droplet combustion characteristic times):

S tk = ωτ d,0 , S c = ωt c,0 , Sh 0 = 2 + 0.6Re p,0 1/2 Pr 1/3 (33) with Pr the Prandtl number. The functions A v.c. , B v.c. , C v.c. and D v.c. are dependent on these three dimensionless numbers and on another one, the flow Strouhal number S r (ratio between the radial flow and acoustic characteristic times):

S r = ωR v i (34) 
with v i the gas and droplet injection velocity

(u(r = R) • e r = v(r = R) = -v i ).
The functions A v.c. , B v.c. and C v.c. are defined as fol-lows: 

A v.c. = Sh 0 -2 2Sh 0 S c 2 (2S r -S c ) - 1 S tk 2 + 1 + 1 + Sh 0 -2 2Sh 0 S r Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 + 1       S c S tk 2 (2S r -S c ) + Sh 0 + 2 4Sh 0 S c D 2 i -D 2 r D 2 0               S c S tk 2 (2S r -S c ) + 2S tk + Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 -1 1 + Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 - S r Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 + S tk 1 + Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 1 + Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2                 + S r 1 + Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 1 -S tk Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 1 + Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 + S tk Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 -1 -2 1 + Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2                 + 1 + Sh 0 -2 2Sh 0 S r Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 + 1 S tk S r S tk (S tk 2 -1) -S tk 2 -1 (1 + S tk 2 ) 2 + S r 1 + Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 + S tk Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 + 1 2 + Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 -1 + Sh 0 +2 2Sh 0 S c D 2 i -D 2 r D 2 0 S tk Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 + 1 2                   (35) B v.c. = Sh 0 -2 2Sh 0 (1 + S tk 2 ) 2 cos(S c )(1 -S tk )(1 + S 2 tk ) + sin(S c ) (S c -S r )(1 -S tk 2 ) 2 + S 3 tk + (1 -S tk ) 2 (36) C v.c. = - 1 + Sh 0 -2 2Sh 0 S r Sh 0 +2 4Sh 0 S c D 2 i -D 2
a Cvc = Sh 0 -2 2Sh 0 Sh 0 +2 2Sh 0 2 1 + (S r -S c ) Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 -1 1 + Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 + Sh 0 +2 2Sh 0 2 S c -S r S c D 2 i -D 2 r D 2 0 + Sh 0 +2 2Sh 0 2 -1 (S r -S c ) 1 + Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 + 1 + (S r -S c ) D 2 i -D 2 r D 2 0 Sh 0 +2 4Sh 0 S c 1 -Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 + 1 S tk (38) b Cvc = Sh 0 +2 4Sh 0 2 (3Sh 0 -2) + (S c -S r ) Sh 0 +2 2Sh 0 2 3Sh 0 -2 4Sh 0 S c D 2 i -D 2 r D 2 0 -Sh 0 -2 2Sh 0 Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 + 1 + (S c -S r ) 1 -Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 + 1 Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 + 1 + Sh 0 +2 2Sh 0 S c D 2 i -D 2 r D 2 0 -(S c -S r ) Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 2 + 1 1 S tk + Sh 0 +2 4Sh 0 S c D 2 i -D 2 r D 2 0 ( 39 
)
And the function D v.c. :

D v.c. = S tk S r (1 + S tk 2 ) 2 (Sh 0 +2) 4Sh 0 S c D 2 i -D 2 r D 2 0 + 1 S tk -sin(S c )S tk 2 + cos(S c ) (1 + S tk )(1 + S tk 2 )(S r -S c ) 1 + Sh 0 -2 2Sh 0 -S tk (40) 
The very complex expression of α v.c. (Eq. (32-40)) is still easier to use than doing many numerical simulations. It shows a dependency on the acoustic mode ψ = cos(kx) (and its derivative sin(kx)), the mean heat released during the droplet life (see the assumption Eq. ( 27)):

q0 (x) ≡ 2 R r c,0 q0 (r, x)rdr R 2 -r 2 c,0 (41) 
and four dimensionless numbers (a Stokes number S tk , a combustion Strouhal number S c , a flow Strouhal number S r and the Sherwood number Sh 0 ). These theoretical results will be useful for the next section (section 3).

Similar developments are proposed in the next subsubsection for the boudary contribution to the thermoacoustic source.

Boundary contribution

The growth rate for the boundary contribution can be defined as (Eq. ( 26)):

α b.c. = 2(γ -1) R 2 L 0 ψ 2 dx L 0 ψ n R 0 qb.c. η (R e ) rdrdx (42) 
By substitution with Eq. ( 21), it gives:

α b.c. = -2(γ -1) R 2 L 0 ψ 2 dx L 0 ψ n R 0 qD 2 ,0 2 1 - r-r c,0 |r c | 2 1/2 (r c /η) (R e )
π|r c | rdrdx (43) The flapping boundary zone (see [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF][START_REF] Genot | Thermo-acoustic instabilities driven by fuel droplet lifetime oscillations[END_REF], illustrated in the right subfigure of Fig. 2 

2 π| rc | r c,0 +|r c | r c,0 -|r c |        1 - r -r c,0 |r c | 2        1/2 rdr = r c,0 (44) 
The expression Eq. ( 43) can be simplified as:

α b.c. = -(γ -1) R 2 L 0 ψ 2 dx L 0 qD 2 ,0 ψr c,0 rc η (R e ) dx (45) 
with rc given by Eq. ( 22). After some theoretical developments, Equation (45) gives:

α b.c. = 2(γ -1) L 0 ψ 2 dx L 0 qD 2 ,0 (-δu p,0 ) |δu p | 2 0 cos(kx) sin(kx) a 0 ρ S tk (S tk 2 + 1)S r 2 2S c (S c -S r ) S r         A b.c. + e Sh 0 +2 4Sh 0 D 2 i -D 2 r D 2 0 C b.c. + e -S c /S tk D b.c.         dx (46) 
with D 0 the mean droplet diameter given by Eq. (29), qD 2 ,0 the heat released by the combustion of the droplets just before their extinction, A b.c. , C b.c. and D b.c. defined as follows: is also dependent on the heat release rate just before the extinction qD 2 ,0 (r = r c ) and not on the mean heat release rate during the droplet life q0 . As the diameter droplet decreases during its combustion and q ∝ D (Eq. ( 1)), the following relationship can be derived (considering Eqs. (28-29)):

A b.c. = Sh 0 + 2 4Sh 0 S c D 2 i -D 2 r D 2 0 -S tk (47) C b.c. = cos(S c )       Sh 0 + 2 4Sh 0 S c D 2 i -D 2 r D 2 0 + S tk -1       + sin(S c )       1 + S tk - Sh 0 + 2 4Sh 0 S c D 2 i -D 2 r D 2 0 S tk       ( 
q0 qD 2 ,0 ∼ (D i /D r ) 2 + 1 2 > 1 (50) 
In the following section, the thermoacoustic source is analyzed considering the expressions of the growth rates (from the volume contribution Eqs. (32-40) and the boundary contribution Eqs. (46-49)) as functions of the dimensionless numbers. Also, both contributions will be compared between them. Finally, the origin of the instability is explained.

Analysis of the thermoacoustic source

The volume contribution of the thermoacoustic source was expressed in the previous section as:

α v.c. = 2(γ -1) L 0 ψ 2 dx L 0 q0 (-δu p,0 ) |δu p | 2 0 cos(kx) sin(kx) a 0 ρ S tk (S tk 2 + 1)S r 2         A v.c. + e -S tk S c B v.c. + e Sh 0 +2 4Sh 0 D 2 i -D 2 r D 2 0 C v.c. + e -S c /S tk D v.c.         dx (51)
and the boundary contribution as:

α b.c. = 2(γ -1) L 0 ψ 2 dx L 0 qD 2 ,0 (-δu p,0 ) |δu p | 2 0 cos(kx) sin(kx) a 0 ρ S tk (S tk 2 + 1)S r 2 2S c (S c -S r ) S r         A b.c. + e Sh 0 +2 4Sh 0 D 2 i -D 2 r D 2 0 C b.c. + e -S c /S tk D b.c.         dx (52)
Two functions are introduced for the following study in this section, such as:

F v.c. = S tk         A v.c. + e -S tk S c B v.c. + e Sh 0 +2 4Sh 0 D 2 i -D 2 r D 2 0 C v.c. + e -S c /S tk D v.c.         (S tk 2 + 1)S r 2 (53) F b.c. = 2S c (S c -S r )S tk S r         A b.c. + e Sh 0 +2 4Sh 0 D 2 i -D 2 r D 2 0 C b.c. + e -S c /S tk D b.c.         (S tk 2 + 1)S r 2 
(54) which give:

α v.c. = 2(γ -1) L 0 ψ 2 dx L 0 q0 (-δu p,0 ) |δu p | 2 0 cos(kx) sin(kx) a 0 ρ F v.c. dx (55) α b.c. = 2(γ -1) L 0 ψ 2 dx L 0 qD 2 ,0 (-δu p,0 ) |δu p | 2 0 cos(kx) sin(kx) a 0 ρ F b.c. dx
(56) and for the thermoacoustic growth rate α alu = α v.c. + α b.c. :

α alu = 2(γ -1) L 0 ψ 2 dx L 0 (-δu p,0 ) |δu p | 2 0 cos(kx) sin(kx) a 0 ρ ( q0 F v.c. + qD 2 ,0 F b.c. )dx
(57) The dependency of the functions F v.c. and F b.c. on the dimensionless numbers (S r , S c , Sh 0 and S tk ) is further analyzed. Then, both contributions q0 F v.c. and qD 2 ,0 F b.c. are compared. Finally, some aspects of the longitudinal variation of the mean flow are taken in account in the analysis of the thermoacoustic source to explain the instability triggering.

Dependency on the dimensionless numbers

Casalis et al. [START_REF] Casalis | Some recent advances in the instabilities occurring in long solid rocket motors[END_REF] proposed the following ranges for the dimensionless numbers: [START_REF] Ranz | Evaporation from drops[END_REF], S r = [80; 100; 150; 300] (58) Also, for a computation case very close to that of Genot et al. [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF], Casalis et al. [START_REF] Casalis | Some recent advances in the instabilities occurring in long solid rocket motors[END_REF] proposed an expression for the Sherwood number based on numerical simulations of solid rocket motors:

S c ∈ [0, 20], S tk ∈ [0,
Sh 0 = 2.82 + 0.34x (59) 
This longitudinal variation of the Sherwood number is due to the acceleration of the mean flow all along the tube [START_REF] Culick | Unsteady motions in combustion chambers for propulsion systems[END_REF][START_REF] Kuentzmann | Introduction to Solid Rocket Propulsion[END_REF]. The Sherwood number Sh 0 allows to model the external convection around the droplet, accelerating the evaporation [START_REF] Ranz | Evaporation from drops[END_REF]. As the chemistry is assumed infinitely fast [START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF][START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF], an increase of the Sherwood number corresponds to an increase of the flame surface around the droplets. Knowing that 0 < x < L = 7 m in the combustion chamber (Fig. 1), Equation (59) gives:

2.82 < Sh 0 < 5.20 (60) 
And, at the first quarter (x = L/4) and at the third quarter (x = 3L/4), the Sherwood number equals to:

Sh 0 (L/4) = 3.415, Sh 0 (3L/4) = 4.605 (61) 
This means that the mean flame surface around the individual burning droplets is smaller at the first quarter of the chamber than at the third quarter as illustrated in In following, volume contribution F v.c. and boundary contribution F b.c. are compared for S r = 100. Equation (57) gives an expression for the thermoa-coustic growth rate:

α alu = 2(γ -1) L 0 ψ 2 dx L 0 (-δu p,0 ) |δu p | 2 0 cos(kx) sin(kx) a 0 ρ ( q0 F v.c. + qD 2 ,0 F b.c. )dx
(62) To compare boundary and volume contribution, the function G is introduced:

G = qD 2 ,0 F b.c. q0 F v.c. ( 63 
)
in such way that:

α alu = 2(γ -1) L 0 ψ 2 dx L 0 (-δu p,0 ) |δu p | 2 0 cos(kx) sin(kx) a 0 ρ q0 F v.c. (1+G)dx (64) If |G| > 1,
it means that the boundary contribution is higher than the volume contribution. If -1 < G < 0, it means that the boundary of the droplet cloud can damp pressure oscillations but it is maybe not sufficiently powerful to avoid the instability. If G < -1, the thermoacoustic instability is avoided (in the absence of other acoustic sources). For 0 < G, the boundary contribution can drive thermoacoustic instabilities. The ratio between the heat release rates Eq. (50) allows to rewrite the expression of G (Eq. ( 63):

G = qD 2 ,0 F b.c. q0 F v.c. ≈ F b.c. F v.c. (D i /D r ) 2 +1 2 (65) 
Figure 14 illustrates the variable G as a function of the Stokes number S tk and the combustion Strouhal number S c . The flow Strouhal number is imposed to S r = 100 and the ratio betwen the injection diameter D i and the residue diameter D r is fixed arbitrary to D i /D r = 2 [START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF][START_REF] Genot | A numerical analysis of aluminum droplet combustion driven instabilities in solid rocket motors[END_REF]. For S r = 100, D i /D r = 2 and most of (S r , S c ), G > -1, so the thermoacoustic instability may appear. Therefore, its triggering basically depends on the equilibrium between the acoustic losses and the thermoacoustic source. Note that lim S tk →0 G = 0 which means that the boundary contribution can be neglected for low S tk . Finally, the alternative behavior of G (positive or negative) shows that, for some values of S c , the thermoacoustic instability can be easier controlled.

In the following subsection, the acoustic mode and the mean flow inside the x-integral of Eq. (57) will be considered. By this way, new explanations on the thermoacoustic instability triggering will be proposed.

Origin of the thermoacoustic instability

In Genot et al. [START_REF] Genot | A numerical analysis of aluminum droplet combustion driven instabilities in solid rocket motors[END_REF], Gallier and Godfroy [START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF] or Orlandi et al. [START_REF] Orlandi | Aluminium droplets combustion and SRM instabilities[END_REF], the first mode is usually excited which corresponds to a wave length k = π/L. The first longitudinal mode ψ = cos(kx) is illustrated in Figure 15. From Eq. (57), the product of cos(kx) with sin(kx) can be identified. This product is also plotted in Figure 15 all along the combustion chamber. It is maximum at the first quarter and minimum at the third quarter and the following equality can be observed: sin(3kL/4) cos(3kL/4) =sin(kL/4) cos(kL/4) (66)

The first quarter and the third quarter correspond to the extrema of the thermoacoustic coupling for the first longitudinal mode and the first half of the motor is destabilizing (positive coupling) and the second half is stabilizing (negative coupling) [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF][START_REF] Genot | A numerical analysis of aluminum droplet combustion driven instabilities in solid rocket motors[END_REF]. To observe an instability, the first half (or the first quarter) is more destabilizing than the second half (or the third quarter) stabilizes. Moreover, the function cos(kx) sin(kx) at the first quarter and the third quarter strictly compensate each other (see Figure 15 and Eq. ( 66)). So this function cos(kx) sin(kx) cannot explain how the thermoacoustic coupling can drive thermoacoustic instabilities. Also, the results of the functions F v.c. , F b.c. or G show quite similar results between the first quarter and the third quarter (Figs. [START_REF] Hirschberg | Vortex nozzle interaction in solid rocket motors: A scaling law for upstream acoustic response[END_REF][START_REF] Hirschberg | Influence of nozzle cavity on indirect vortex-and entropy-sound production[END_REF][START_REF] Orlandi | Aluminium droplets combustion and SRM instabilities[END_REF][START_REF] Dupays | Propagation of an acoustic wave in a twophase reactive medium[END_REF][START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF][START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF][START_REF] Genot | Instabilités thermoacoustiques dans les moteurs à propergol solide[END_REF][START_REF] Beckstead | A summary of aluminum combustion[END_REF][START_REF] Fabignon | Recent advances in research on solid rocket propulsion[END_REF] of the chamber which means that this imbalance between first quarter and third quarter is induced by other terms of Eq. (62).

To better undestand how the thermoacoustic coupling can trigger an instability, Eq. (62) needs to be integrated in the x-direction. The heat release rate q0 has been integrated radially (Eq. ( 41)). As the droplet trajectory can be assumed quasi-radial [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF] and the aluminum mass injected is assumed uniform along the chamber [START_REF] Genot | Model for acoustic induced aluminum combustion fluctuations in solid rocket motors[END_REF], the growth rate α alu can be rewritten as following (Eq. ( 62)):

α alu = 2(γ -1) q0 L 0 ψ 2 dx L 0 (-δu p,0 ) |δu p | 2 0 cos(kx) sin(kx) a 0 ρ F v.c. (1+G)dx
(67) The thermoacoustic growth rate α alu (Eq. ( 67)) is simplified to the following expression (considering Eq. ( 66)):

α alu ∝        -δu p,0 |δu p | 2 0 a 0 ρ F v.c. (1 + G)        x=L/4 -        -δu p,0 |δu p | 2 0 a 0 ρ F v.c. (1 + G)        x=3L/4 (68) 
To estimate the mean flow variation along the chamber (in Eq. ( 68)), an expression of the Sherwood number Sh 0 was proposed (Eq. ( 59)). Moreover, the Sherwood number Sh 0 is given by the Ranz-Marshall correlation [START_REF] Ranz | Evaporation from drops[END_REF]: Sh 0 = 2.82+0.34x, Sh 0 = 2+0.6Re p,0 1/2 Pr 1/3 , Re p,0 = ρ|δu p | 0 D µ (69) With Eq. ( 69), the equation Eq. ( 68) can be numerically computed. To do this, some physical quantities should be estimated. Gallier and Godfroy [START_REF] Gallier | Aluminum combustion driven instabilities in solid rocket motors[END_REF] proposed the following values: Pr = 0.4, µ = 9.1×10 -5 Pa.s, a 0 = 1073 m/s, D 0 ∼ 100 µm (70) In addition, the droplets drag in the gas and knowing that they are injected radially at equilibrium with the gas, another assumption can be made:

|δu p | 0 ∼ -δu p,0 (71) 
which gives:

- δu p,0 |δu p | 2 0 a 0 ρ ∼ - 1 δu p,0 a 0 ρ (72) 
and finally, with Eq. ( 69):

- δu p,0 |δu p | 2 0 a 0 ρ ≈ 1 3.46 × 10 3 + 2.86 × 10 3 x + 1.54 × 10 3 x 2
(73) At the first quarter and at the third quarter, it is equal to:

       - δu p,0 |δu p | 2 0 a 0 ρ        x=L/4 = 0.076×10 -3 ,        - δu p,0 |δu p | 2 0 a 0 ρ        x=3L/4 = 0.016×10 -3
(74) In the following, the effect of the mean flow acceleration on the source along the tube on the thermoacoustic source (quantified by Eq. ( 68)) is highlighted. Note that the combustion Strouhal number is proportional to the inverse of the Sherwood number (Eq. ( 8) and Eq. ( 33)):

S c ∝ 1 Sh 0 , S c (3L/4) = S c (L/4) Sh 0 (L/4) Sh 0 (3L/4) (75) 
So, the results are plotted as functions of the combustion Strouhal number at the first quarter and the xposition is considered in the computation of the combustion Strouhal number. Figure 16 illustrates the following quantities which correspond to the thermoacoustic source (see Eq. ( 68)):

Left subfigure:        -δu p,0 |δu p | 2 0 a 0 ρ        x=L/4 {F v.c. (1 + G)} x=L/4 -{F v.c. (1 + G)} x=3L/4 (76) 
Right subfigure:

       -δu p,0 |δu p | 2 0 a 0 ρ F v.c. (1 + G)        x=L/4 -        -δu p,0 |δu p | 2 0 a 0 ρ F v.c. (1 + G)        x=3L/4 (77) 
In other words, in the left subfigure of Figure 16, the longitudinal variation of the mean flow is neglected for the thermoacoustic source and assumed equal to the mean flow at the first quarter of the tube. For the right subfigure, the mean flow acceleration is considered. The flow Strouhal number is fixed to S r = 100 and the residue droplet diameter is equal to D r = D i /2. The left subfigure highlights an alternative behavior of the thermoacoustic source α alu with negative and positive values for different combustion Strouhal numbers S c . This means that, for a uniform mean flow in the xdirection, the thermoacoustic coupling can be a source (red zone) or an acoustic loss (blue zone) and the thermoacoustic instability can be easily avoided just changing the combustion Strouhal number S c . For a mean flow accelerating along the x-direction (which is typical of a solid rocket motor [START_REF] Culick | Unsteady motions in combustion chambers for propulsion systems[END_REF]), positive zones (in red) are larger than the negative ones (in blue). The probability of observing thermoacoustic instability is therefore higher. Negative values are related to the contribution of the boundary (see section 3.1 and Fig. 14). Therefore, it shows that the acceleration of the mean flow (which drives the mean flame surface) along the chamber is the origin of the thermoacoustic instability triggering. Note that the thermoacoustic coupling α alu is highly dependent on the combustion Strouhal number S c . So, to avoid a thermoacoustic instability with an accelerating mean flow, the combustion Strouhal number needs to be chosen with caution to minimize α alu (white and blue zones in the right subfigure of Fig. 16).

Conclusion

This paper is fully focused on theoretical developments and model reductions to study the aluminum combustion instability for any Stokes number, flow Strouhal number, combustion Strouhal number, Sherwood number, global heat release or ratio between the initial diameter and the residue diameter. A new model for the heat release rate fluctuations, induced by the aluminum combustion response to acoustic oscillations, was proposed. This model was compared with a more complex model and a numerical simulation published in a previous article. It opens up new perspectives to express analytically the growth rate related to the thermoacoustic coupling which quantifies the thermoacoustic source. Two contributions to the thermoacoustic source were considered: a volume contribution corresponding to the way the droplets are burnt during their life and a boundary contribution linked to the end-combustion dynamics. After that, a dependency of the thermoacoustic source on parameters was identified: (i) a flow Strouhal number, (ii) a Stokes number, (iii) a combustion Strouhal number, (iv) the ratio between the initial droplet diameter and the droplet diameter after combustion, (v) the excited mode and (vi) the acceleration of the mean flow. Then, some analyses were provided. The thermoacoustic source decreases with the flow Strouhal number. It is weakly dependent on the Stokes number and highly dependent on the combustion Strouhal number. It has been shown that the ratio between the diameters controls the ratio between the volume and the boundary contributions. Finally, considering a stationary half-wave (first longitudinal mode usually observed in a solid rocket motor), it was clearly shown that the thermoacoustic coupling is a source of pressure oscillations due the acceleration of the mean flow along the combustion chamber. Knowing that the mean flow controls the flame surfaces around the individual burning droplets, it leads to say that a lower mean flame surface in the positive thermoacoustic coupling zone can drive a thermoacoustic instability. In perspective to this work, it should be nice to further analyze the dependency of the thermoacoustic source on the aluminum combustion model, to compare the source to the acoustic losses, to develop a low-order tool to optimize a solid rocket motor, to consider a droplet size distribution and to analyze the non-linear effects of the aluminum combustion dynamics. 

  Re p = ρ p D|δu p |/µ the droplet Reynolds number, ρ p the droplet density. The droplet diameter fluctuations are defined as: D = -

µ

  ln(1 + B)(Sh 0 -2) v p Prρ p D 0 |δu p | 2 0 /δu p,0 (û p -û)e

  Cvc -S tk b Cvc ) cos(S c ) + (b Cvc + S tk a Cvc ) sin(S c )] (37) with a Cvc and b Cvc :

  ) is radially located in r ∈ [r c,0 -|r c |, r c,0 + |r c |] (r c,0 is its mean position and |r c | the amplitude of the flapping motion of the boundary). As this flapping boundary zone is thin (linear dynamics implies low-amplitude fluctuations |r c | r c,0 ) in comparison with the reactive cloud thickness, qD 2 ,0 (the heat released just before the extinction of the droplet), |r c | and (r c / η) (R e ) are assumed invariant in this zone (r ∈ [r c,0 -|r c |, r c,0 + |r c |]). Moreover, seeing that:

  48) D b.c. = cos(S c ) -S tk sin(S c ) (49) This new expression for the growth rate of the boundary contribution Eqs. (46-49) has been derived as the growth rate of the volume contribution Eqs. (32-40) to compare them. As the volume contribution, the boundary contribution is dependent on the acoustic mode cos(kx) (and its derivative sin(kx)) and four dimensionless numbers (a Stokes number S tk , a combustion Strouhal number S c , a flow Strouhal number S r and the Sherwood number Sh 0 ). However, α b.c.
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 5 The functions F v.c. and F b.c. are illustrated Figures 6-13 as functions of the Stokes number S tk and the combustion Strouhal number S c for different flow Strouhal numbers S r = [80; 100; 150; 300]. Each figure has two subfigures: the left one corresponds to the behavior of the function F at the first quarter of the chamber (for Sh 0 = 3.415 and x = L/4) and the right one to the behavior of the function F at the third quarter (for Sh 0 = 4.605 and x = 3L/4). The volume contribution F v.c. is plotted in Figures 6-9 and the boundary contribution F b.c. in Figures 10-13. To control the instability, the norm of the functions |F v.c. | and |F b.c. | should be minimized. Figures 6-9 show that F v.c. is strictly positive whatever the combustion Strouhal numbers S c , the Stokes number S tk , the flow Strouhal number S r or the xposition (first quarter or third quarter of the chamber). To minimize the function F v.c. = |F v.c. |, the combustion Strouhal numbers S c must be low, the Stokes number S tk close to 1 and the flow Strouhal number S r high. Moreover, the values of F v.c. seems very similar at the first quarter or the third quarter of the chamber. Figures 10-13 highlight the alternative (positive and negative) behavior of the boundary contribution F b.c. as a function of the combustion Strouhal number S c . When F b.c. is negative, it means that the boundary contribution may damp the volume contribution which is strictly positive. Moreover, the boundary contribution is very weekly dependent on the Stokes number S tk but it seems better to minimize its value to minimize the boundary contribution |F b.c. |. The boundary contribution |F b.c. | decreases with the Strouhal number S r as the volume contribution.
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 1 Figure 1: Geometry sketch of a generic solid rocket motor with aluminum combustion location (red zone) and streamlines of the steady gas flow.

Figure 2 :

 2 Figure 2: Models of the heat release rate fluctuations in the aluminum combustion zone: model of Gallier and Godfroy on the left, model of Genot et al. on the right

Figure 3 :

 3 Figure 3: Modulus (figure left) and phase angle (figure right) of the heat release rate fluctuations q at the first quarter of the chamber x/L = 1/4, in the aluminum combustion zone

Figure 4 :

 4 Figure 4: Modulus (figure left) and phase angle (figure right) of the heat release rate fluctuations q at the third quarter of the chamber x/L = 3/4, in the aluminum combustion zone
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 5678910201112221314 Figure 5: Acceleration of the mean flow which controls the mean flame surface around the burning droplet along the motor

Figure 15 :Figure 16 :

 1516 Figure 15: Acoustic mode (cos(kx) with k = π/L for the first longitudinal mode) and the longitudinal distribution of the thermoacoustic coupling (sin(kx) cos(kx)) along the combustion chamber (0 < x < L)
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