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We consider a possibly degenerate Kolmogorov-Ornstein-Uhlenbeck operator of the form L = Tr(BD 2 ) + Az, D , where A, B are N × N matrices, z ∈ R N , N ≥ 1, which satisfy the Kalman condition which is equivalent to the hypoellipticity condition. We prove the following stability result: the Schauder and Sobolev estimates associated with the corresponding parabolic Cauchy problem remain valid, with the same constant, for the parabolic Cauchy problem associated with a second order perturbation of L, namely for L + Tr(S(t)D 2 ) where S(t) is a non-negative definite N × N matrix depending continuously on t ∈ [0, T ]. Our approach relies on the perturbative technique based on the Poisson process introduced in [15].

Introduction

Let us first consider the following parabolic Cauchy problem:    ∂ t u(t, x, y) = ∆ x u(t, x, y) + x • ∇ y u(t, x, y) + f (t, x, y), u(0, x, y) = 0, (1.1) where (t, x, y) is in (0, T )×R 2d , for an integer d ≥ 1. The underlying differential operator

L K = ∆ x + x • ∇ y = d i=1 ∂ 2 x i x i + d i=1 x i ∂ y i
is the so-called Kolmogorov operator whose fundamental solution was derived in the seminal paper [START_REF] Kolmogorov | Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)[END_REF]. This particular operator was also mentioned by Hörmander as the starting point for his theory of hypoelliptic operators [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]. Let us write z = (x, y) ∈ R 2d and by ∂ z j and ∂ 2 z i z j we denote respectively the first and the second partial derivatives with i, j = 1, . . . , 2d.

We are interested in studying the influence of a second order perturbation on equation (1.1). Precisely, for a time-dependent matrix {S(t) : t ∈ [0, T ]} in R 2d ⊗ R 2d such that t → S(t) is continuous and S(t) is symmetric and non-negative definite for any fixed t, we consider the perturbed Cauchy problem:

       ∂ t u S (t, z) = L K u S (t, z) + 2d
i,j=1 S ij (t) ∂ 2 z i z j u S (t, z) + f (t, z) =: L K,S u S (t, z) + f (t, z), u S (0, z) = 0, z ∈ R 2d .

(1.2)

In particular, we will show that Sobolev (and Schauder) estimates which hold for solutions u of the Cauchy Problem (1.1) are also true, with the same constants, for solutions u S to (1.2). Clearly, the operator L K,S can be seen as a perturbation of L K involving second order partial derivatives with continuous time-dependent coefficients.

For now, let us explain our main results in a special form for equation (1.1) in the case of L p -estimates (or Sobolev estimates). For a statement of our results in the whole generality, we instead refer to Section 2. For a fixed final time T > 0 and a source f in C ∞ 0 ((0, T ) × R 2d ), it is known from the work of Bramanti et al. [START_REF] Bramanti | L p -estimates for some ultraparabolic operators with discontinuous coefficients[END_REF], Theorem 3.1 (see also Section 2.3 below), that equation (1.1) admits a unique classical bounded solution u which satisfies for p in (1, +∞) the following estimates: ∆ x u L p ((0,T )×R 2d ) ≤ C p f L p ((0,T )×R 2d ) = C p ∂ t u -L K u L p ((0,T )×R 2d ) . (1.3) Note that in this case C p = C p (d) > 0. We will actually manage to prove that the unique classical bounded solution u S to (1.2) satisfies the estimate ∆ x u S L p ((0,T )×R 2d ) ≤ C p f L p ((0,T )×R 2d ) = C p ∂ t u S -L K,S u S L p ((0,T )×R 2d ) , (1.4) with the same previous constant C p as in (1.3). This result seems to be new even in dimension 2d = 2 and even if we only consider S(t) = S, t ∈ [0, T ], where S is a 2 × 2 symmetric non-negative definite matrix. For a uniformly elliptic second order perturbation S(t) = S, t ∈ [0, T ], where S is positive definite, we could also have appealed to [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF] to derive estimates like in (1.4). For related estimates in the uniformly elliptic case, see also Section 4 in Metafune et al. [START_REF] Metafune | The domain of the Ornstein-Uhlenbeck operator on an L p -space with invariant measure Ann[END_REF]. However, note that from [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF] and [START_REF] Metafune | The domain of the Ornstein-Uhlenbeck operator on an L p -space with invariant measure Ann[END_REF] we could only deduce that the constant C p depends on the ellipticity constant of the perturbation (this is the first eigenvalue λ S of S) and on the maximum eigenvalue of S (on this respect, see also [START_REF] Krylov | Parabolic equations in L p -spaces with mixed norms[END_REF] and [START_REF] Priola | L p -parabolic regularity and non-degenerate Ornstein-Uhlenbeck type operators[END_REF]).

The remarkable point in (1.4) is that the L p -estimates are stable under second order perturbations, which can be possibly degenerate. Namely, the fact that S(t) might be degenerate for some t in (0, T ), or even in some non-empty sub-intervals of (0, T ), does not affect the estimates in (1.4).

To prove (1.4), we combine the results of [START_REF] Bramanti | L p -estimates for some ultraparabolic operators with discontinuous coefficients[END_REF] with a probabilistic perturbative approach based on the Poisson process inspired by [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF]. There, it was established in particular that the L p -estimates for non-degenerate parabolic heat equations with space homogeneous coefficients are valid with constants that are independent of the dimension.

Remark 1.1. Importantly, the approach of [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF] turns out to be sufficiently robust to handle the estimates in the degenerate directions as well. We recall that the associated maximal L p -regularity was studied e.g. in [START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF], [START_REF] Huang | L p estimates for degenerate non-local Kolmogorov operators[END_REF] or [START_REF] Chen | Propagation of regularity in L p -spaces for Kolmogorov-type hypoelliptic operators[END_REF]. Let p in (1, +∞), there exists Cp > 0 such that for f in C ∞ 0 ((0, T ) × R 2d ) the unique classical bounded solution u of (1.1) verifies

(∆ y ) 1 3 u L p ((0,T )×R 2d ) ≤ Cp f L p ((0,T )×R 2d ) = Cp ∂ t u -L K u L p ((0,T )×R 2d ) ,
(1.5) where (∆ y ) 1 3 denotes the fractional Laplacian with respect to the degenerate variables y in R d . It turns out that this estimate is also stable for the previously described second order perturbation. Namely, for u S solving (1.2), (∆ y )

1 3 u S L p ((0,T )×R 2d ) ≤ Cp f L p ((0,T )×R 2d ) = Cp ∂ t u S -L K,S u S L p ((0,T )×R 2d ) ,
(1.6) where again Cp is the same as in (1.5).

Remark 1.2. The same type of stability results will also hold for the corresponding global Schauder estimates, first established in the framework of anisotropic Hölder spaces for the solution of (1.1) by Lunardi [START_REF] Lunardi | Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in R n[END_REF] (see also [START_REF] Marino | Schauder estimates for degenerate stable Kolmogorov equations[END_REF], [START_REF] Marino | Schauder estimates for degenerate Lévy Ornstein-Uhlenbeck operators[END_REF] and the references therein). We refer to estimate (4.17).

We point out that our results in Section 3 could also possibly be obtained by using the general theorems of Section 4 in [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF]. This section in [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF] introduces a more general probabilistic approach and provides unexpected regularity results. However checking in our case all the assumptions given in that section is quite involved. On the other hand, we provide self-contained proofs inspired by Sections 2 and 3 of [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF].

It remains a challenging open problem to have a purely analytic proof of our regularity results.

L p -estimates for degenerate Ornstein-Uhlenbeck operators. Let us now describe the more general framework we are going to consider here.

Let R N = R d 0 × R d 1 where d 0 , d 1 are two non-negative integers such that d 0 + d 1 = N and d 0 ≥ 1. let us introduce the non-negative, symmetric matrix B in R N ⊗ R N given by B = B 0 0 0 0 , where B 0 is a symmetric, positive definite matrix in R d 0 ⊗ R d 0 such that ν d 0 i=1 ξ 2 i ≤ d 0 i,j=1 (B 0 ) ij ξ i ξ j ≤ 1 ν d 0 i=1 ξ 2 i ,
for all ξ ∈ R d 0 , for some ν > 0. We will use, as underlying proxy operators, the family of degenerate Ornstein-Uhlenbeck generators of the form

L ou f (z) = Tr(BD 2 f (z)) + Az, Df (z) , z = (x, y) ∈ R d 0 +d 1 = R N , (1.7)
for a matrix A in R N ⊗ R N , where •, • denotes the usual inner product in R N . Moreover, we assume the Kalman condition:

[K] There exists a non-negative integer k, such that

Rank[B, AB, . . . , A k B] = N, ( 1.8) 
where [B, AB, ..., A k B] is the R N ⊗ R N (k+1) matrix whose blocks are B, AB, . . . , A k B. From the non-degeneracy of B 0 , the above condition amounts to say that the vectors

{e 1 , . . . , e d 0 , Ae 1 , . . . , Ae d 0 , . . . , A k e 1 , . . . , A k e d 0 } generate R N , ( 1.9) 
where {e i } i∈{1,••• ,d 0 } are the first d 0 vectors of the canonical basis for R N . Assumption [K] (which also often appears in control theory; see e.g. [START_REF] Zabczyk | Mathematical control theory: an introduction[END_REF]) is equivalent to the Hörmander condition on the commutators (c.f. [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]) ensuring the hypoellipticity of the operator ∂ t -L ou . In particular, it implies the existence and the smoothness of a distributional solution for the following equation:

   ∂ t u(t, z) = L ou u(t, z) + f (t, z), on (0, T ) × R N ; u(0, z) = 0, on R N , (1.10)
where

f is a function in C ∞ 0 ((0, T ) × R N ).
Similarly to [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF], we will prove below the existence and uniqueness of bounded regular solutions to (1.10) assuming that the source f belongs to the space B b 0, T ; C ∞ 0 (R N ) , which contains C ∞ 0 ((0, T ) × R N ), and that can be roughly described as the family of functions which are bounded measurable in time and compactly supported in space uniformly in time (see Section 1.2 for a precise definition). Equation (1.10) will be understood in an integral form (cf. formula (1.25)).

By Theorem 3 in [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF] and exploiting some explicit properties of the underlying heat kernel (see Section 2.3 below), it can be derived that for any fixed p in (1, +∞), there exists

C p = C p (ν, A, d 0 , d 1 , T ) such that D 2 x u L p ((0,T )×R N ) ≤ C p ∂ t u -L ou u L p ((0,T )×R N ) = C p f L p ((0,T )×R N ) , (1.11) where for any z in R N , t ∈ [0, T ], D 2
x u(t, z) stands for the Hessian matrix in R d 0 ⊗ R d 0 with respect to the variable x. We set

B I = I d 0 ,d 0 0 d 0 ,d 1 0 d 1 ,d 0 0 d 1 ,d 1
and note, in particular, that (1.11) can be rewritten in the following, equivalent way:

B I D 2 u B I L p ((0,T )×R N ) = D 2 x u L p ((0,T )×R N ) ≤ C p ∂ t u -L ou u L p ((0,T )×R N ) = C p f L p ((0,T )×R N ) ,
(1.12)

where D 2 u = D 2 z u represents instead the full Hessian matrix in R N ⊗ R N with respect to z.

Fixed a continuous mapping t → S(t) such that S(t) is a symmetric and non-negative definite matrix in R N ⊗ R N , t ∈ [0, T ], we consider again the following perturbation of L ou :

L ou,S t f (z) := Tr(BD 2 f (z)) + Tr(S(t)D 2 f (z)) + Az, Df (z) = L ou f (z) + Tr(S(t)D 2 f (z)), (1.13) 
where

z = (x, y) is in R d 0 +d 1 = R N .
For the solution u S of the related Cauchy problem

   ∂ t u S (t, z) = L ou,S t u S (t, z) + f (t, z), on (0, T ) × R N ; u S (0, z) = 0, on R N , (1.14)
we will prove the following main theorem:

Theorem 1.1. Let us consider (1.14) with f ∈ B b 0, T ; C ∞ 0 (R N ) .
Then, there exists a unique solution u S of Cauchy Problem (1.14) which verifies, with the same constant C p as in (1.12),

D 2 x u S L p ((0,T )×R N ) = B I D 2 u S B I L p ((0,T )×R N ) (1.15) ≤ C p ∂ t u S -L ou,S t u S L p ((0,T )×R N ) = C p f L p ((0,T )×R N ) .
We point out that for time-homogeneous non-negative definite matrices S, the corresponding elliptic L p -estimates as in formula (5) of [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF] (replacing A in [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF] with L ou,S := Tr(BD 2 •)+Tr(SD 2 •)+ Az, D• ) with a constant independent of S, could also be derived from (1.15) using an argument given in [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF].

For more information on the OU operator L ou we also refer to the recent work by Fornaro et al. [START_REF] Fornaro | L p -spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators[END_REF] about full description of the spectrum of degenerate OU operators in L p -spaces.

Independently from the constant preservation, we also emphasize that the L p -estimates in (1.15) for the perturbed operator seem, to the best of our knowledge, to be new and have some interest by their own.

Let us eventually mention that our stability results could turn out to be useful to investigate the well-posedness of some related stochastic differential equations through the corresponding martingale problem.

We could actually derive more general estimates, possibly involving the degenerate directions as well, dependingly on the structure of A. Some results in that direction are gathered in Section 4. Anyhow, to illustrate our approach we now briefly present the various steps to derive (1.15).

Strategy of the proof for estimate (1.15).

Fixed a classical bounded solution u to Cauchy Problem (1.10), let us introduce v(t, z) := u(t, e -tA z). This well-known transformation (cf. [START_REF] Da Prato | On the Ornstein-Uhlenbeck operator in spaces of continuous functions[END_REF]) precisely allows to get rid of the drift term in the PDE satisfied by v. Indeed, we have that u(t, z) = v(t, e tA z) and since u solves (1.10), it holds for any (t, z) in (0, T ) × R N , that: 

f (t, z) = ∂ t u(t, z)-L ou u(t, z) = v t (
   ∂ t v(t, z) = Tr e tA Be tA * D 2 v(t, z) + f (t, z) on (0, T ) × R N ; v(0, z) = 0 on R N . (1.17)
In terms of the function v, the known estimates in (1.12) rewrites as:

B I e tA * D 2 v(t, e tA •) e tA B I L p ((0,T )×R N ) ≤ C p f (t, e tA •) L p ((0,T )×R N ) , (1.18)
where we used the notation B I e -tA * D 2 v(t, e tA •) e tA B I L p ((0,T )×R N ) to stress the dependence on t instead of the more precise formulation

B I e • A * D 2 v(•, e • A •) e • A B I L p ((0,T )×R N ) .
By changing variable in the integrals, control (1.18) is equivalent to

B I e tA * D 2 v(t, •) e tA B I L p ((0,T )×R N ,m) ≤ C p f L p ((0,T )×R N ,m) , (1.19)
where L p ((0, T )×R N , m) denotes the L p -norms w.r.t. the measure m(dt, dx) = det(e -At )dtdx.

Considering now the following more general Cauchy problem on

[0, T ] × R N    ∂ t w(t, z) = Tr e tA Be tA * D 2 w(t, z) + Tr e tA S(t)e tA * D 2 w(t, z) + f (t, z); w(0, z) = 0, ( 1 
.20) we can establish the well-posedness of the Cauchy problem (1.20), exploting, for instance, probabilistic arguments, using the underlying Gaussian process. Now the crucial step consists in adapting some arguments from [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF] based on the use of the Poisson process to derive that the same L p -estimates in (1.19) still hold for w, independently from the non-negative definite, symmetric matrices S(t). Precisely,

B I e tA * D 2 w(t, •) e tA B I L p ((0,T )×R N ,m) ≤ C p f (t, •) L p ((0,T )×R N ,m) , (1.21)
with the same constant C p appearing in (1.19).

The last step then consists in coming back to the Ornstein-Uhlenbeck operators framework. Namely, we introduce ũ(t, z) := w(t, e tA z) which solves, by definition, the following equation:

   ∂ t ũ(t, z) = L ou,S t ũ(t, z) + f (t, z), (t, z) ∈ (0, T ) × R N , ũ(0, z) = 0, z ∈ R N . Thus ũ = u S . Noticing that D 2 w(t, •) = D 2 [ũ(t, e -tA •)] = e -tA * D 2 ũ(t, e -tA •)e -tA
we thus get from (1.21) that the following estimates hold:

B I D 2 ũ B I L p ((0,T )×R N ) ≤ C p f L p ((0,T )×R N ) . (1.22)
Through the previous steps we have then constructed a solution ũ of Cauchy Problem (1.14) which indeed satisfies the estimates in (1.15) with the same C p , associated with the unperturbed or proxy operator. The maximum principle will eventually provide uniqueness for the solution ũ.

Remark 1.3. i)

We point out that we could also consider more general time-dependent Ornstein-Uhlenbeck operators like:

M = Tr(B(t)D 2 •) + Az, D• .
Arguing as before starting from L p -estimates (or Schauder estimates) for M we can derive the same L p -estimates (or Schauder estimates) for a perturbation of M like (1.13).

ii) We could extend the L p -estimates (or the Schauder estimates) related to L ou to more general operators like

L ou,S t f (z) + b(t), Df (z)
where b : R + → R N is continuous. We can even add to L t a possibly degenerate non-local perturbation (cf. Section 7 of [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF]). The L p -estimates (or Schauder estimates) are still preserved with the same constant. For the sake of simplicity in the sequel we will only consider b(t) = 0 and we will not deal with non-local perturbations of L ou,S t .

Organization of the paper. The article is organized as follows. At the end of the current section, we first fix some useful notations. In Section 2 we will then focus on driftless second order Cauchy problems associated with a nonnegative definite, possibly degenerate, diffusion matrix. We will also consider its relation to the Ornstein-Uhlenbeck dynamics. We will establish through the probabilistic perturbation approach of [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF] that if some L p -estimate holds for a particular diffusion matrix so does it, with the same associated constant as explained before, for a non-negative perturbation of the diffusion matrix (see Section 3). Finally, by the arguments of Section 1.1 we will obtain (1.22). Stability results in anisotropic Sobolev space and Schauder estimates are given in Section 4.

Definition of solution and useful notations

Let us consider the following Cauchy problem:

   ∂ t v(t, z) = tr (Q(t)D 2 v(t, z)) + b(t, z), Dv(t, z) + f (t, z), on (0, T ) × R N ; v(0, z) = 0, on R N ; (1.23) where Q : [0, T ] → R N ⊗ R N is a continuous symmetric non-negative definite matrix and b : [0, T ] × R N → R N is a continuous function such that |b(t, z)| ≤ K T (1 + |z|), (t, z) ∈ [0, T ] × R N , for some constant K T > 0. The function f belongs to B b 0, T ; C ∞ 0 (R N ) , the space of all Borel bounded functions φ : [0, T ] × R N → R such that φ(t, •) is smooth and com- pactly supported for any t in [0, T ]; for any n in N the C n (R N )-norms of φ(t, •)
are bounded in time and the supports of the functions φ(t, •) are contained in the same ball. Moreover, we require that, for any z ∈ R N , the mapping:

t → φ(t, z) (1.24)
is a piece-wise continuous function on [0, T ], i.e. it is continuous except for a finite number of points.

Remark 1.4. Note that to perform the technique used in [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF] and based on the Poisson process we need to consider equations like (1.23) with a source f which is possibly discontinuous in time (cf. the proof in Section 2 of [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF] and Section 3.2 below).

We interpret Cauchy Problem (1.23) in an integral form:

v(t, z) = t 0 f (s, z) + Tr(Q(s)D 2 v(s, z)) + b(s, z), Dv(s, z) ds. (1.25)
In particular, we say that a continuous and bounded function v

: [0, T ]×R N → R is a solution to equation (1.23) if v(t, •) belongs to C 2 (R N ), for any t ∈ [0, T ],
and (1.25) holds as well, for any (t, z) ∈ [0, T ] × R N . We finally note that, for any

z ∈ R N , the function t → v(t, z) is a C 1 -piece- wise function on [0, T ].
By Theorem 4.1 in [START_REF] Krylov | Elliptic and parabolic second-order PDEs with growing coefficients[END_REF] we deduce in a quite standard way that if a solution v exists then it is unique and the following maximum principle holds:

sup (t,z)∈[0,T ]×R N |v(t, z)| ≤ T sup (t,z)∈[0,T ]×R N |f (t, z)|. (1.26)
About the proof of (1.26) we only make some remarks. By considering v and -v we see that it is enough to prove that v(t, z)

≤ T f ∞ , for all (t, z) ∈ [0, T ] × R N . Moreover, setting ṽ = v -t f ∞ , we note that ṽ verifies (1.25) with f replaced by f -f ∞ ≤ 0.
Finally, by considering the equation verified by e -t ṽ, we can apply Theorem 4.1 in [START_REF] Krylov | Elliptic and parabolic second-order PDEs with growing coefficients[END_REF] to obtain the result.

Estimates for driftess second order operators and related perturbation

Throughout this section, we consider the following Cauchy problem:

   ∂ t v(t, z) = Tr (Q(t)D 2 v(t, z)) + f (t, z) on (0, T ) × R N ; v(0, z) = 0 on R N , ( 2.1) 
which can be seen as a special case of (1.23) when b = 0. Moreover, we assume that Q is not identically zero.

Well-posedness

Proposition 2.1 (Well-posedness in integral form for the driftless Cauchy problem). Let f be in B b 0, T ; C ∞ 0 (R N ) . Then, there exists a unique solution v to Cauchy problem (2.1) in an integral sense, i.e., it solves for

(t, z) ∈ [0, T ] × R N : v(t, z) = t 0 f (s, z) + Tr(Q(s)D 2 v(s, z) ds.
(2.2)

We will denote in short v = P DE(Q, f ).

Proof. By the maximum principle (cf. equation (1.26)) uniqueness holds for Cauchy Problem (2.1). We can then focus on proving the existence of a solution. Let us introduce now

v(t, z) := t 0 E[f (s, z + I s,t )] ds
with the following notation:

I s,u := √ 2 u s Q(r) 1/2 dW r ,
where W is an Ndimensional Brownian motion on some probability space (Ω, F, (F t ) t≥0 , P) and

Q(r) 1/2 stands for a square root of Q(r), i.e. Q(r) = Q(r) 1/2 (Q(r) 1/2 ) * .
Applying the Itô formula in space to f (s, z + I s,u ) u∈[s,t] , we get that

Ef (s, z + I s,t ) = f (s, z) + E t s Tr(Q(u)D 2 f (s, z + I s,u ))du .
Hence,

v(t, z) = t 0 f (s, z) + E[ t s Tr(Q(u)D 2 f (s, z + I s,u ))du] ds,
from which it readily follows that

∂ t v(t, z) = f (t, z) + t 0 E[Tr(Q(t)D 2 f (s, z + I s,t ))]ds = f (t, z) + Tr Q(t)D 2 t 0 E[f (s, z + I s,t )]ds = f (t, z) + Tr Q(t)D 2 v(t, z) .
for almost every t ∈ [0, T ] and any z ∈ R N . 

Relation to the Ornstein-Uhlenbeck dynamics

   ∂ t u(t, z) = L ou u(t, z) + f (t, z), on (0, T ) × R N ; u(0, z) = 0, on R N ; (2.3) with L ou as in (1.7), f (t, z) = f (t, e tA z). Precisely, for all (t, z) ∈ [0, T ] × R N , u(t, z) = t 0 f (s, z) + L ou v(s, z) ds. (2.4)
We have that u is a solution to (2.3). Let us also point out that the well-posedness of (2.3) could also have been obtained directly from Gaussian type calculations, similar to those in the proof of Proposition 2.1, introducing u ou (t, z) := t 0 E[ f (s, e (t-s)A z + I ou s,t )]ds where

I ou s,u := √ 2 u s e (u-v)A BdW v .

About the L p -estimate (1.11) for the OU operator

The aim of this section is to fully justify the estimates in (1.11). This is a consequence of the previous probabilistic representation and of Theorem 3 in [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF]. For u solving (1.10) it holds that for all (t, z)

∈ [0, T ] × R N , u(t, z) = t 0 E[f (s, e A(t-s) z + I ou s,t )]ds = t 0 R N f (s, z )p ou (t -s, z, z )dz ds,
(2.5) where for v > 0, p ou (v, z, •) stands for the density at time v of the stochastic process

X ou u := e Au z + √ 2 u 0 e A(u-w) BdW w = z + u 0 AX ou w dw + √ 2BW u , u ≥ 0.
We recall from [START_REF] Lanconelli | On a class of hypoelliptic evolution operators[END_REF] that assumption [K] is equivalent to the fact that there exists k ∈ N and positive integers (

d i ) i∈{1,••• ,k} s.t. k i=1 d i = d 1
and for all i ∈ {1, • • • , k}, setting d 0 = d 0 and -1 m=0 = 0, the matrixes 

A i := (A j, ) (j, )∈{ i-1 m=0 dm+1,••• , i m=0 dm}×{ i-1 m=1 dm+1,••• , i m=1 dm} , have rank d i . The matrix A writes: A =         
0 d k ,d 0 . . . 0 d k ,d k-1 A k *           . (2.6)
Following the proof of Lemma 5.5 in [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF], where the case

d 0 = d, d i = d, k = n -1 is addressed, it can be derived that there exists C ≥ 1 s.t. for all (v, z, z ) ∈ (0, T ] × (R N ) 2 , |D 2 x p ou (v, z, z )| ≤ C v k-1 i=0 d i (i+ 1 2 )+1 exp -C -1 v|T -1 v (e Av z -z )| 2 , (2.7)
where d 0 = d 0 and

T v := diag(vI d 0 ×d 0 , v 2 I d 1 ×d 1 , . . . , v k+1 I d k ×d k ), v ≥ 0,
reflects the various scales of the system. For a given function f ∈ B b 0, T ; C ∞ 0 (R N ) , it is then clear from (2.5) and (2.7) that for all (t, z) ∈ (0, T ] × R N :

D 2 x u(t, z) = p.v. t 0 R N f (s, z )D 2 x p ou (t -s, z, z )dz ds. (2.8)
It indeed suffices to observe that:

|p.v. t 0 R N f (s, z )D 2 x p ou (t -s, z, z )dz ds| = |p.v. t 0 R N [f (s, z ) -f (s, e A(t-s) z)]D 2 x p ou (t -s, z, z )dz ds| ≤ (2.7) sup s∈[0,T ] Df (s, •) ∞ × t 0 R N C (t -s) k-1 i=0 d i (i+ 1 2 )+ 1 2 exp -C -1 (t -s)|T -1 t-s (e A(t-s) z -z )| 2 dz ds ≤ C sup s∈[0,T ] Df (s, •) ∞ T 1 2 .
The estimates in (1.11) now follows from the proof of Theorem 3 in [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF], starting from (2.8) instead of ( 16) therein. The strategy is clear. It is necessary to introduce a cut-off function which separates the points (s, z ) which do not induce any singularity in (2.8) for the derivatives of the density, namely such that t -s ≥ c 0 or |e A(t-s) z -z | ≥ c 0 , for some fixed constant c 0 > 0, from those who are close to the singularity. For the non-singular part of the integral the expected L p -control readily follows from (2.7) and the Young inequality (see also Proposition 5 in [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF]), whereas the derivation of the bound for the singular part requires some involved harmonic analysis, see Section 4 on the same reference. We can also refer to Theorem 11 and its proof in [START_REF] Priola | On weak uniqueness for some degenerate SDEs by global L p estimates[END_REF] for similar issues linked with the corresponding L p -estimates for degenerate Ornstein-Uhlenbeck operators in an elliptic setting.

The main result for equation (2.1): perturbation of second order driftless PDE

Let us fix p in (1, +∞) and assume that there exists R(t) ∈ R N ⊗ R N depending continuously on t ≥ 0 and a constant C p > 0, such that for any f in

B b 0, T ; C ∞ 0 (R N ) , the unique solution v = P DE(Q, f ) to equation (2.1) satisfies R(t) * D 2 v R(t) L p ((0,T )×R N ,m) ≤ C p f L p ((0,T )×R N ,m) , ( 2.9) 
for some absolutely continuous measure m w.r.t. the Lebesgue measure on [0, T ] × R N such that m(dt, dx) = g(t)dtdx for some Borel bounded function g (note that in (1. [START_REF] Marino | Schauder estimates for degenerate Lévy Ornstein-Uhlenbeck operators[END_REF] we have R(t) = e tA B I , m(dt, dx) = g(t)dtdx = det(e -At )dtdx).

We would like to exhibit that a control like (2.9) also holds for the solution w to the following Cauchy Problem: 

   ∂ t w(t, z) = tr (Q(t)D 2 w(t, z)) + tr (Q (t)D 2 w(t, z)) + f (t, z), on (0, T ) × R N ; w(0, z) = 0, on R N , ( 2 
⊗ R N and f ∈ B b 0, T ; C ∞ 0 (R N )
. Assume that estimate (2.9) holds as explained above. Then the solution w to (2.10) verifies

R(t) * D 2 w R(t) L p ((0,T )×R N ,m) ≤ C p f L p ((0,T )×R N ,m) ,
(2.11) p ∈ (1, ∞) with the same constant C p as in (2.9).

From Theorem 2.2 using the argument of Section 1.1 we can easily derive Theorem 1.1.

A perturbation argument for proving Theorem 2.2

We aim here at applying the probabilistic perturbative approach considered in [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF]. The key idea in that work was, for a well-posed PDE which enjoys some quantitative given estimates, to introduce a small random perturbation in the source f through a suitable Poisson type process and to investigate the properties of the associated PDE involving an unknown function v. After considering a small random perturbation of v, we arrive at the useful integral formula (3.8). Taking the expectation the contributions associated with the jumps yield, for an appropriate intensity of the underlying Poisson process, a finite difference operator. For the PDE satisfied by the expectation, involving the finite difference operator, the initial estimates are preserved. Repeating the previous argument we can obtain a PDE involving the composition of two finite difference operators. Compactness arguments then allow to derive that, the initial estimates still hold at the limit with the composition of two finite difference operators replaced by the corresponding differential operator of order two. Iterating this procedure we can obtain the result.

Below, we start recalling basic properties of Poisson type processes and corresponding stochastic integrals, which are needed for our approach.

Poisson stochastic integrals

We briefly recall here the very definition of the stochastic integral driven by a Poisson process. We start reminding the construction of such processes. Given a probability space (Ω, F, P) to be fixed from this point further, we start considering a sequence of independent real-valued random variables {τ n } n∈N on Ω whose distribution is exponential of parameter λ > 0:

P(τ n > r) = e -rλ , r ≥ 0.
We can then define the partial sums sequence {σ n } n∈N as follows:

σ 0 = 0; σ n = n i=1 τ i , n = 1, 2, . . .
For any fixed t ≥ 0, π t now denotes the number of consecutive sums of τ i which lie on [0, t], i.e.

π t = ∞ n=0 1 σn≤t , ( 3.1) 
where 1 σn≤t represents the indicator function of the event {σ n ≤ t}. The process {π t } t≥0 we have just constructed is usually known in the literature as a Poisson process with intensity λ (see, for instance, [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF]). Now, let c : [0, T ] → R N be a continuous function. We can define the Poisson stochastic integral as

b t := t 0 c(s)dπ s = σ k ≤t, k≥1 c(σ k ) = 0<s≤t c(s)(π s -π s-), t ∈ [0, T ], (3.2)
b 0 = 0 (as usual π s-(ω) denotes the left limit at s, for any ω, P-a.s.). We now recall the following formula for the expectation of the stochastic integral:

E[ t 0 c(s)dπ s ] = λ t 0 c(s)ds ∈ R N .
(3.3) (cf. Lemma 2.1 in [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF] for a direct proof; see also Theorem 16 in [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF] and Theorem 5.3 in [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF] for a more general formula involving stochastic integrals of predictable processes against the Poisson process). We also recall the following more general result. 

Proof of Theorem 2.2

According to the notations in Proposition 2.1, let v = P DE(Q, f ) and w = P DE(Q + Q , f ) be the unique solutions of equations (2.1) and (2.10), respectively. The proof of Theorem 2.2 will be obtained adapting the method developed in [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF] (see in particular Section 3, therein). Let e 1 be the first unit vector in R N . We define

X t = t 0 Q (r) e 1 dπ r
where Q (t) is the unique N × N symmetric non-negative definite square root of Q (t) and {π t } t≥0 is a Poisson Process of intensity λ (cf. (3.2)). The parameter λ will be chosen appropriately later on.

Recall that the solution v to (2.1) is given by

v(t, z) = t 0 ds R N [f (s, z + z )µ s,t (dz ) (3.5)
where µ s,t is the Gaussian law of the stochastic integral I s,t := √ 2 t s Q(r) dW r (see the proof of Proposition 2.1).

Let us fix > 0. We notice that the shifted source f (t, z) := f (t, z -X t ) (which also depends on ω; we have omitted to write such dependence on ω) is again in B b 0, T ; C ∞ 0 (R N ) . This is the reason why we have considered such a function space for the source. It precisely allows to take into account the time discontinuities coming from the jumps of the Poisson process.

For any fixed ω in Ω, Proposition 2.1 readily gives that there exists a unique solution v = PDE(Q, f (t, z -X t )), depending on and ω as parameters, such that sup

(t,z)∈[0,T ]×R N |v (t, z)| ≤ T sup (t,z)∈[0,T ]×R N |f (t, z)|. (3.6)
Moreover, thanks to the invariance for translations of the L p -norms, it follows from (2.9) that

R(t) * D 2 v R(t) L p ((0,T )×R N ,m) ≤ C p f L p ((0,T )×R N ,m) = C p f L p ((0,T )×R N ,m) .
(3.7) By Equation (3.5), we know that v is given by

v (t, z) = t 0 ds R N [f (s, z -X s + z )µ s,t (dz ).
For each z ∈ R N , the stochastic process (v (t, z)) t∈[0,T ] has continuous paths (P-a.s.) and it is F t -adapted where F t is the completed σ-algebra generated by the random variables π s , 0 ≤ s ≤ t.

For fixed z ∈ R N , > 0, let us introduce the process (v (t, z + X t )) t∈[0,T ] which is given by

v (t, z + X t ) = t 0 ds R N [f (s, z + X t -X s + z )µ s,t (dz ).
It is not difficut to check that it is F t -adapted and it has càdlàg paths.

Applying (2.2) on each interval [σ n , σ n+1 ∧ t), n ∈ {0, • • • , π t ] on which X s is constant, one then derives that:

v (t, z + X t ) = t 0 tr(Q(s)D 2 v (s, z + X s )) + f (s, z) ds + t 0 g (s, z) dπ s , (3.8) where g (s, z) = v (s, z + Q (s) e 1 + X s-) -v (s, z + X s-
) is precisely the contribution associated with the jump times. It is clear that g (s, z) = 0 if and only if π s has a jump at time s. We then have by Lemma 3.1:

E t 0 g (s, z) dπ s = λ t 0 v (s, z + Q (s) e 1 ) -v (s, z) ds, (3.9) where v (s, z) = E[v (s, z + X s )]. Let us denote l(t) := Q (t) e 1 .
Taking the expectation on both sides of equation (3.8), we find out that v is an integral solution of the following PDE:

∂ t v (t, z) = tr(Q(t)D 2 v (t, z)) + λ (v (t, z + l(t)) -v (t, z)) + f (t, z), (3.10)
with zero initial condition. Remark that uniqueness of bounded continuous solutions to (3.10) follows by the maximum principle, arguing as in the proof of Lemma 2.2 in [START_REF] Krylov | Poisson stochastic process and basic Schauder and Sobolev estimates in the theory of parabolic equations[END_REF] (first one considers the case λT ≤ 1/4 and then one iterates the procedure by steps of size 1/(4λ)).

Moreover by (3.7) we obtain (using also the Jensen inequality and the Fubini theorem)

R(t) * D 2 v R(t) p L p ((0,T )×R N ,m) = (0,T )×R N |R(t) * D 2 v (t, z) R(t)| p m(dt, dz) = (0,T )×R N |E[R(t) * D 2 v (t, z + X t )R(t)] | p dzg(t)dt ≤ [0,T ]×R N E[|R(t) * D 2 v (t, z + X t )R(t) | p ]dzg(t)dt = E [0,T ]×R N |R(t) * D 2 v (t, z + X t )R(t) | p dzg(t)dt = E [0,T ]×R N |R(t) * D 2 v (t, z)R(t) | p dzg(t)dt ≤ C p p f p L p ((0,T )×R N ,m) ,
using (3.7) for the last inequality (L p -estimate for the PDE with random source). Choosing λ = -2 we have from (3.10)

∂ t v (t, z) = tr(Q(t)D 2 v (t, z)) + -2 (v(t, z + l(t)) -v (t, z)) + f (t, z), ( 3 

.11) with zero initial condition and moreover

R(t) * D 2 v R(t) p L p ((0,T )×R N ,m) ≤ C p p f p L p ((0,T )×R N ,m) . (3.12)
Now the idea is to apply again the same reasoning above to the equation (3.11) with respect to v , using f (t, z + X t ) again with λ = -2 . We obtain first a solution p to (3.11) corresponding to f (t, z + X t ) and then derive that

w (t, z) = E[p (t, z -X t )]
is the unique bounded continuous (integral) solution w of the following problem:

       ∂ t w (t, z) = tr(Q(t)D 2 w (t, z)) + -2 (w (t, z + l(t)) -2w (t, z) + w (t, z -l(t))) + f (t, z), w (0, z) = 0. (3.13) 
The previous estimates still hold with w instead of v , i.e., sup

(t,z)∈[0,T ]×R N |w (t, z)| ≤ T sup (t,z)∈[0,T ]×R N |f (t, z)|; (3.14) R(t) * D 2 w R(t) L p ((0,T )×R N ,m) ≤ C p f L p ((0,T )×R N ,m) . ( 3.15) 
We would like now to let goes to zero, possibly passing to a subsequence n → 0, and prove that the associated limit w solves To do so we will proceed by compactness. Namely, we are going to prove that the family of solutions w solving (3.13), indexed by the parameter , is equi-Lipschitz on any compact subset of [0, T ] × R N and the same holds for any derivative in space of w . Indeed, one can apply the finite difference operators with respect to z at any order in (3.13). We recall that for a smooth function φ : R N → R, the first finite difference δ h,i φ, i ∈ {1, • • • , N } of step h > 0 in the direction e i (i th basis vector) is given by

   ∂ t w(t, z) = tr(Q(t)D 2 w(t, z)) + D 2 w(t, z) Q (t)e 1 , Q (t)e 1 + f (t, z), w(0, z) = 0 (3.
δ h,i φ(z) = φ(z + he i ) -φ(z) h , z ∈ R N .
For a given multi-index γ ∈ N N , the γ-th order finite difference operator δ h,γ , is then defined, for any h > 0, through composition. Namely,

δ h,γ φ(z) = δ γ 1 h,1 δ γ 2 h,2 . . . δ γ N h,N φ(z),
where δ γ i h,i denotes the γ i -th times composition of δ h,i with itself. Since any spatial derivative of f belongs to B b 0, T ; C ∞ 0 (R N ) , using (3.14) we deduce first that any finite difference of any order of w is bounded. Consequently, w is infinitely differentiable in space with bounded derivatives on [0, T ] × R N . Equation (3.13), to be understood in its integral form similarly to (2.2), then gives that those derivatives are themselves Lipschitz continuous in time (uniformly in the space variable). This precisely gives the equi-Lipschitz on any compact subset of [0, T ] × R N of the family w and of any spatial derivative of w . We can now apply the Arzelà-Ascoli theorem to w showing the existence of a sub-sequence {w n } n∈N which converges uniformly on any compact set to a function w : [0, T ] × R N → R. Similarly, any derivative in space of w n tends to the respective derivatives of w, uniformly on the compact sets. Passing to the limit as n → ∞ along the sequence ( n ) n in equation (3.13) (written in the integral form), we can then conclude that w solves (3.16).

Moreover, estimates (3.14) and (3.15) holds with w replaced by w. Iterating the previous argument in N steps we finally prove that the unique solution w to

   ∂ t w(t, z) = tr(Q(t)D 2 w(t, z)) + N k=1 D 2 w(t, z) Q (t)e k , Q (t)e k + f (t, z), w(0, z) = 0
(3.17) verifies estimates (3.14) and (3.15) with w replaced by w. The proof is complete.

Additional stability results in anisotropic Sobolev space and Schauder estimates

In this section we extend the previous approach to derive the stability with respect to a second order perturbation of the OU operator in (1.7) under the Kalman condition [K]. Here we consider also L p -estimates involving the degenerate components of the OU operator and some associated Schauder estimates.

Anisotropic Sobolev spaces and maximal L p regularity

With the notations of Section 2.

3 we write z ∈ R N as z = (x, y) = (x, y 1 , • • • , y k ) with x ∈ R d 0 , y i ∈ R d i , i ∈ {1, • • • , k}, k i=1 d i = d 1 .
Given β in (0, 1) and i in 1, k , we want to introduce the β-fractional Laplacian ∆ β y i along the component y i . To do so, we follow [START_REF] Huang | L p estimates for degenerate non-local Kolmogorov operators[END_REF] by considering the orthogonal projection p i : R N → R d i such that p i (z) = p i (x, y) = y i and denoting its adjoint by E i : R d i → R N . We can now define the β-fractional Laplacian ∆ β y i as:

∆ β y i φ(z) := p.v. R d i [φ(z + E i w) -φ(z)] dw |w| d i +2β , z ∈ R N ,
for any sufficiently regular function φ : R N → R. Let p in (1, +∞), we recall that we have denoted by L p ((0, T ) × R N ) the standard L p -space with respect to the Lebesgue measure. We can now define the appropriate anisotropic Sobolev space to state our results. For notational simplicity, let us denote

α i := 1 1 + 2i . (4.1) Set now α := (α 1 , • • • , α k ) ∈ R k . The homogeneous space Ẇ 2,p α ([0, T ] × R N ) is composed by all the functions ϕ : [0, T ] × R N → R in L p ([0, T ] × R N ) such that (t, z) ∈ [0, T ] × R N → ∆ x ϕ(t, z) ∈ L p ([0, T ] × R N )
, where ∆ x ϕ is intended in distributional sense, and for any i in 1, k , ∆ α i y i ϕ(t, z) is well defined for almost every (t, z) and

∆ α i y i ϕ(t, z) := ∆ α i y i ϕ(t, •)(z) belongs to L p ([0, T ] × R N ).
It is endowed with the natural semi-norm ϕ Ẇ 2,p α where

ϕ p Ẇ 2,p α = ∆ x ϕ p L p + k i=1 ∆ α i y i ϕ p L p . (4.2)
The thresholds in (4.1) might seem awkward at first sight. They actually correspond to the indexes needed to get stability of the harmonic functions associated with the principal part of (1.7), that is considering A 0 consisting in the subdiagonal part of A only (i.e., considering (2.6) when the diagonal elements and the strictly upper diagonal elements are equal to zero) along an associated dilation operator. Namely, setting

L ou 0 f (z) = Tr(BD 2 f (z)) + A 0 z, Df (z) , z = (x, y) ∈ R d 0 +d 1 = R N , ( 4.3) 
so that A 0 , B satisfy [K], if (∂ t -L ou 0 )u(t, z) = 0 then for all λ > 0 (∂ t -L ou 0 )u δ λ (t, z) = 0 where the dilation operator

δ λ (t, z) = (λ 1/2 t, λx, λ 1/3 y 1 , • • • , λ 1/(1+2k) y k ).
precisely exhibits the exponents in (4.1) for the degenerate components. In [START_REF] Huang | L p estimates for degenerate non-local Kolmogorov operators[END_REF], see also [START_REF] Chen | Propagation of regularity in L p -spaces for Kolmogorov-type hypoelliptic operators[END_REF] and [START_REF] Menozzi | Martingale problems for some degenerate Kolmogorov equations[END_REF] where time inhomogeneous coefficients are considered as well, it has been proven that if A, B satisfy [K] and the diagonal and the strictly upper diagonal elements of A in (2.6) are equal to zero (i.e., A = A 0 ) then the following Sobolev estimates hold:

u Ẇ 2,p α ≤ C p f L p , ( 4.4) 
with

C p = C p (ν, A, d 0 , d 1 )
, where again u is the unique bounded solution to the corresponding Cauchy problem (1.10). In particular we get also the maximal smoothing effects w.r.t. the degenerate directions. Note that the solution u to (1.1) verifies (4.4). The specific structure assumed on A is actually due to the fact that for such matrices there is an underlying homogeneous space structure which makes easier to establish maximal regularity estimates (see e.g. [START_REF] Coifman | Analyse Harmonique non-commutative sur certains espaces homogènes[END_REF] in this general setting).

If A, B satisfy [K] with a general A as in (2.6), having non zero strictly upper diagonal entries (non zero entries in the diagonal should not create difficulties) we believe that the approach in [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF] could extend to show that (4.4) still holds in this general setting. However such estimates have not been, up to our best knowledge, proven yet.

L p -estimates for the degenerate directions of special OU operators. Setting, as in Section 1.1, u(t, z) = v(t, e tA z) and since u solves (1.10) we have that v in turn solves (1.17). From the previous computations, setting

B I = I d 0 ,d 0 0 d 0 ,d 1 0 d 1 ,d 0 0 d 1 ,d 1
and considering A as in [START_REF] Huang | L p estimates for degenerate non-local Kolmogorov operators[END_REF], with the diagonal and the strictly upper diagonal elements of A equal to zero in (2.6), we derive

D 2 x u L p ((0,T )×R N ) = B I e tA * D 2 v(t, e tA •) e tA B I L p ((0,T )×R N ) ≤C p f (t, e tA •) L p ((0,T )×R N ) .
On the other hand, for all i ∈ {1, • • • , k} and with α i as in (4.1), we get from the definition (4.2) that the estimate (4.4) rewrites in term of v as:

∆ α i y i u p L p ((0,T )×R N ) = T 0 dt R N dz p.v. R d i [u(t, z + E i w) -u(t, z)] dw |w| d i +2α i p = T 0 dt R N dz p.v. R d i [v(t, e tA (z + E i w)) -v(t, e tA z)] dw |w| d i +2α i p = T 0 dt R N dz p.v. R d i [v(t, z + e tA E i w)) -v(t, z)] dw |w| d i +2α i p =: ∆ α i ,i,A v p L p ((0,T )×R N ) ,
v p Ẇ 2,p,A α := k i=0 ∆ α i ,i,A v p L p ((0,T )×R N ) ≤ Cp f p L p ((0,T )×R N ) (4.5) 
with Cp = C p p . We now want to prove that for w solving (1.20), namely

       ∂ t w(t, z) = Tr e tA Be tA * D 2 w(t, z) + Tr e tA S(t)e tA * D 2 w(t, z) + f (t, z), (t, z) ∈ (0, T ) × R N , w(0, z) = 0, z ∈ R N , it also holds that w p Ẇ 2,p,A α := k i=0 ∆ α i ,i,A w p L p ((0,T )×R N ) ≤ Cp f p L p ((0,T )×R N ) , ( 4.6) 
with the same constants Cp as in (4.5). This can be done through the previous perturbative approach of Section 3.2 employed to prove Theorem 2.2, which actually gives the expected control for the second order derivatives contribution of the semi-norm • Ẇ 2,p,A α . For the other contributions and with the notations of Section 3.2, with Q (s) = e sA S(s)e sA * and with m which is the Lebesgue measure on [0, T ] × R N (indeed in the present case g(t) = det(e -At ) = 1, for all t) we would get

v p Ẇ 2,p,A α = k i=0 ∆ α i ,i,A v p L p ((0,T )×R N ) = k i=0 (0,T )×R N |∆ α i ,i,A v (t, z)| p dzdt = k i=0 (0,T )×R N |E[∆ α i ,i,A v (t, z + X t )] | p dzdt ≤ k i=0 [0,T ]×R N E[|∆ α i ,i,A v (t, z + X t ) | p ]dzdt = k i=0 E [0,T ]×R N |∆ α i ,i,A v (t, z + X t ) | p dzdt = k i=0 E [0,T ]×R N |∆ α i ,i,A v (t, z) | p dzdt ≤ Cp f p L p ((0,T )×R N ) ,
using for the last inequality that v also satisfies (4.5) (similarly to what had been established in (3.7)). The same previous procedure and the final compactness argument then yields (4.6). Setting eventually ũ(t, z) := w(t, e tA z), which is the unique integral solution (smooth in space) of

   ∂ t u S (t, z) = L ou,S t u S (t, z) + f (t, z), (t, z) ∈ (0, T ) × R N , u S (0, z) = 0, z ∈ R N ,
where L ou,S t introduced in (1.13) is the Ornstein-Uhlenbeck operator perturbed at second order, we derive that

u S Ẇ 2,p α ≤ C p f L p , ( 4.7) 
with C p as in (4.4). We have thus extended the results of Theorem 1.1 with the anisotropic Sobolev semi-norm in (4.2). The estimate (4.4) is stable for a continuous, non-negative second order perturbation of the underlying degenerate Ornstein-Uhlenbeck operator.

Anisotropic Schauder estimates

Following Krylov [START_REF] Krylov | Lectures on elliptic and parabolic equations in Hölder spaces[END_REF], for some fixed in N 0 := N ∪ {0} and β in (0, 1], we introduce for a function φ : R N → R the Zygmund-Hölder semi-norm as

[φ] C +β :=      sup |ϑ|= sup x =y |D ϑ φ(x)-D ϑ φ(y)| |x-y| β , if β = 1; sup |ϑ|= sup x =y D ϑ φ(x)+D ϑ φ(y)-2D ϑ φ( x+y 2 ) |x-y| , if β = 1
(we are using usual multi-indices ϑ for the partial derivatives). Consequently, the Zygmund-Hölder space C +β b (R N ) is the family of bounded functions φ : R N → R such that φ and its derivatives up to order are continuous and the norm

φ C +β b := i=0 sup |ϑ|=i D ϑ φ ∞ + [φ] C +β is finite.
We can now define the anisotropic Zygmund-Hölder spaces associated with the current setting and which again reflect the various scales already introduced in (4.1). Let γ ∈ (0, 3), the space C γ b,d (R N ) is the family of functions φ : R N → R such that for any i in 0, k and any z 0 in R N , the real function

w ∈ R d i → φ(z 0 + E i (w)) belongs to C γ/(1+2i) b R d i ,
with a norm bounded by a constant independent from z 0 . In the above expression, we recall that the (E i ) i∈{1,••• ,k} have been defined in the previous paragraph, d 0 = d 0 and E 0 is the embedding matrix from with the same constant C β as in (4.11). We proceed through the previous perturbative approach of Section 3.2. With the notations employed therein, we deduce that there exists a unique solution v = PDE(Q, f (t, z -X t )), depending also on and ω as parameters such that sup By the translation invariance of the Hölder-norms, using also that X t = e tA e -tA X t , it is not difficult to prove that, for any ω, P-a.s., ].

R d 0 into R N . It is endowed with the norm φ C γ b,d := sup z 0 ∈R N φ z 0 + E 0 (•) C γ b (R d 0 ) + k i=1 sup z 0 ∈R N φ z 0 + E i (•) C γ/(1+2i) b (R d i ) . ( 4 
We would get, similarly, using (4.15) for the last inequality. Now, continuing as in Section 3.2, using also a compactness argument, one would derive that (4.12) indeed holds. Going backwards, setting ũ(t, z) := w(t, e tA z), we find that ũ is the unique (integral) solution u S to (1.14); we finally derive that where C β is the same constant as in (4.9). Estimate (4.17) provides the extension of Theorem 1.1 for the anisotropic Schauder estimates.

Remark 4.1. Let us mention that for the perturbative method to work, roughly speaking, few properties were actually needed on the underlying norm. Namely, we used the translation invariance and some kind of commutation between the norm (or a function of the norm in the L p -case) and expectation. Hence, this approach could possibly be applied to a much wider class of estimates in other function spaces (like e.g. Besov spaces). This will concern further research.

  [START_REF] Lanconelli | On a class of hypoelliptic evolution operators[END_REF]) and estimates (3.14) and (3.15) hold with w replaced by w.

  using that T r(A) = 0. Hence, setting ∆ α 0 ,0,A v p L p ((0,T )×R N ) := Tr B I e tA * D 2 v(t, e tA •) e tA B I p L p ((0,T )×R N ) = Tr B I e tA * D 2 v e tA B I p L p ((0,T )×R N ) ,

. 8 ) 10 )

 810 We denote by C γ b,d this function space because the regularity exponents reflect again the multi-scale features of the system; the norm could equivalently be defined through the corresponding spatial parabolic distance d defined as follows. For all z = (x, y), z = (x , y ) ∈ R N :d(z, z ) := |x -x | + k i=1 |y i -y i | 1 1+2i ,where the exponents are again those who appeared in (4.1).Let f ∈ B b 0, T ; C ∞ 0 (R N ) . Under [K],by the results of Lunardi[START_REF] Lunardi | Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in R n[END_REF] it follows that the unique bounded solution of the Cauchy Problem (1.10) (written in integral form) verifies the following anisotropic Schauder estimatesu L ∞ ((0,T ),C 2+β b,d ) ≤ C β f L ∞ ((0,T ),C β b,d ) ,(4.9)for some constant C β independent from f , i.e.,We again set as in the previous paragraph u(t, z) = v(t, e tA z)u L ∞ ((0,T ),C 2+β b,d ) = v(t, e tA •) L ∞ ((0,T ),C 2+β b,d ) =: v L ∞ ((0,T ),C 2+β b,d,A ) ≤ C β f L ∞ ((0,T ),C β b,d ) = C β f (t, e tA •) L ∞ ((0,T ),C β b,d ) =: C β f L ∞ ((0,T ),C β b,d,A ) , (4.11) denoting f (t, z) := f (t, e -tA z). We again want to prove as in Section 1.1 that for w solving (1.20), w L ∞ ((0,T ),C 2+β b,d,A ) ≤ C β f L ∞ ((0,T ),C β b,d,A ) (4.12)

(

  t,z)∈[0,T ]×R N |v (t, z)| ≤ T sup (t,z)∈[0,T ]×R N | f (t, z)|. (4.13) 

fL

  ∞ ((0,T ),C β b,d,A ) = f (•, • -X • ) L ∞ ((0,T ),C β b,d,A ) .

(4. 14 )

 14 Thus it also holds from (4.11)v L ∞ ((0,T ),C 2+β b,d,A ) ≤ C β f L ∞ ((0,T ),C β b,d,A ) .

(4. 15 )

 15 Recalling now that v (s, z) = E[v (s, z + X s )] is an integral solution of ∂ t v (t, z) = tr(Q(t)D

[D 2

 2 x v (t, e At (z 0 + E 0 (•)))] C β ≤E[[D 2 x v (t, e At (z 0 + E 0 (•)))] C β ],and for all k ∈ {1, 2},D k x v (t, e At (z 0 + E 0 (•))) ∞ ≤ E[ D k x v (t, e At (z 0 + E 0 (•))) ∞ ].Summing those contributions, we thus derive from (4.8), (4.11) that:v L ∞ ((0,T ),C 2+β b,d,A ) ≤ sup 0≤t≤T E[ v (t, •) C 2+β b,d,A ) ] ≤ C β f L ∞ ((0,T ),C β b,d,A) , (4.16)

u

  S L ∞ ((0,T ),C 2+β b,d ) ≤ C β f L ∞ ((0,T ),C β b,d ) ,(4.17

  )

t, e tA z) + Dv(t, e tA z), Ae tA z -Tr e tA Be tA * D 2 v(t, e tA z) -Dv(t, e tA z), Ae tA z

  = v t (t, e tA z)-Tr e tA Be tA * D 2 v(t, e tA z) .

	(1.16)
	Denoting f (t, z) := f (t, e -tA z), it now follows that v satisfies the PDE:

  .10) Namely we have to prove the following result. Let us consider equations (2.1) and (2.10) where Q(t), Q (t) are two continuous in time, non-negative definite matrices in R N

	Theorem 2.2.

  At (z 0 + E i (w )) + e At e -At X t )|] ≤E[[v (t, e At (z 0 + E i (•)))] At (z 0 + E i (•)))] At (z 0 + E i (•)))]

			C	2+β 1+2i	] |w -w |	2+β 1+2i .
	Hence,			
	[v (t, e C	2+β 1+2i	≤E[[v (t, e C	2+β 1+2i

2 z v (t, z)) + λ (v (t, z + l(t)) -v (t, z)) + f (t, z),

with zero initial condition, we write that for

i ∈ {1, • • • , k}, w, w ∈ R d i , (t, z 0 ) ∈ [0, T ] × R N , |v (t, e At (z 0 + E i (w)) -v (t, e At (z 0 + E i (w ))| ≤E[|v (t, e At (z 0 + E i (w)) + e At e -At X t ) -v (t, e
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