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Abstract In the present work, an optimization method

is proposed in order to produce innovative stiffening lay-

outs for large stiffened cylindrical shell structures, as

they appear in the aerospace industry. A component-

based logic is applied on a ground mesh of structural el-

ements (shells and beams), which was inspired by tech-

niques of explicit topology optimization on solid ele-

ments (plane or tridimensional massive models). Geo-

metric components, representing the layout of the stiff-

eners (i.e. location, shape and size), are projected onto

the ground mesh, resulting in controlled sets of active

beam elements. These sets constitute the structural rep-

resentation of the stiffeners’ layout in the optimization

model, which is then used to evaluate the objective

and constraint functions of the optimization problem as

well as their semi-analytical sensitivities. By applying
the optimization method to compliance minimization

problems, we show the efficiency and accuracy of the
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proposed method and its capability to handle a typical

aerospace structure, such as a space-launcher part: a

stiffened cylindrical shell in presence of an access hatch.

Keywords Stiffener layout optimization · component-

based method · stiffened shell structure · ground

structure · explicit topology optimization

1 Introduction

Competition in the space industry has drastically in-

creased in the past few years. Industrials are aiming at a

massive cost reduction in the design, fabrication and op-

eration of their future generations of launchers. One of

the available levers to reduce the costs is to lighten the

primary structures of the launchers. On the other hand,

these structures withstand massive efforts in compres-

sion, locally introduced by the boosters. These efforts

can generate stress concentrations which can propagate

and damage the structure. To prevent this, the load dis-

tribution must be spread within a short distance from

the load introduction points. Rib-stiffened structures

appear to be a natural solution to these competing mass

and structural objectives. However, the most conven-

tional layouts, in rings and stringers or in grid patterns,

do not seem optimal when dealing with such localized

phenomena. As such, the present work aims at devel-

oping an optimization method able to find innovative

stiffening layouts when pre-sizing large cylindrical shell

structures.

A typical example of the parts that will be dealt

with is shown in Figure 1. These stiffened metallic cylin-

drical parts have a diameter of 5 to 6 m and a height

of 3 to 4 m. They are stiffened by rings and stringers

of 100 to 300 mm high by 1 to 10 mm thick. Note

the great difference in the order of magnitude of the
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Fig. 1 Intertank Structure (ITS) of the Lower Liquide

Prorpulsion Module (LLPM) on the Ariane 6 launcher

(Merino et al. 2017).

structural element sizes. This difference leads to mod-

eling the structures using structural elements, i.e. shell

elements for the skin of the cylinder and beam ele-

ments for the stiffeners. This kind of model has a good

performance-to-accuracy ratio and is widely spread in

aerospace industry (see Maes et al. (2019) as an exam-

ple case of launcher structure). Therefore, the proposed

optimization method is developed based on the use of

structural elements instead of solid elements, which are

widely present in the literature when dealing with the

optimization of stiffeners’ non-regular patterns.

As a matter of fact, the design of stiffened structures

has been widely addressed in the literature. One of the

main concerns is finding the optimal layout of the stiff-

eners. Two main strategies can be distinguished. The

first strategy consists in parameterizing an initial lay-

out and deforming it through the optimization process,

similarly to a sizing optimization. Such a strategy is of-

ten applied to grid-stiffened structures as reviewed by

Bedair (2009). The variables are usually the spacing

between stiffeners disposed in triangular or square pat-

terns. These initial layouts were found to restrict the de-

sign domain too much when using composite materials.

New initial layouts were introduced like the geodesic

(Gurdal and Gendron 1993) or anisogrid (Jaunky 1995;

Vasiliev et al. 2001) patterns. Shi et al. (2013) studied

the optimization of grid-stiffened structures for conical

shells. To better adapt the grid patterns to localized

stiffening needs, Wang et al. (2017, 2018) developed

a methodology to generate curved grid-stiffened struc-

tures. The Finite-Element (FE) models are usually built

by smearing the stiffening elements into a plate model

with a similar global stiffness by a homogenization pro-

cess.

Other authors have privileged models with explicit

representation of the stiffeners using structural elements.

This allows to consider layouts that are not grid-like.

Kapania et al. (2005) were able to model curvilinear

stiffeners defined by a spline and moving freely on the

surface. This method was then further developed in (Li

et al. 2017c; Mulani et al. 2013; Szczepanik and Bur-

czyński 2012) and made compatible with grid-like pat-

terns (Mulani et al. 2011). Unfortunately, this method

necessitates a full remeshing of the structure for each

new location of the stiffeners. This is a costly process,

especially in the context of very large parts. Mesh-tie

techniques (Zhao et al. 2019) can be used to avoid

remeshing. Nevertheless, these methods can be intru-

sive in the finite element code, especially for the deriva-

tion of sensitivities. Hirschler et al. (2019) propose an

optimization method which solves many of the afore-

mentioned issues in the isogeometric framework.

The second strategy to find the optimal layout of

the stiffeners is to deduce the stiffening scheme from a

shape or topology optimization result. Using topology

optimization, Niemann et al. (2013) optimized a com-

plete fuselage section and proposed an innovative stiff-

ener layout issued from the resulting skin thickness dis-

tribution. However, topology optimization results are

usually difficult to interpret as realistic stiffening struc-

tures and a secondary optimization step is often con-

ducted in order to get a structure that is feasible with

respect to manufacturing processes. In any cases, re-

trieving a consistent CAD from a topological optimiza-

tion result is a difficult task. Dugré (2014) interprets

each discernible member to better constrain a second

topology optimization. Other methods (Afonso et al.

2005; Lam and Santhikumar 2003; Liu et al. 2016) con-

sist in placing stiffening ribs on the high density zones

and running a sizing optimization on them. Luo and

Gea (1998) used a second optimization step to find the

optimal material orientations. Finally, Liu et al. (2015)

manage to obtain a stiffener-like topological shape by

doing the topology optimization with 3D elements and

casting process constraints. To facilitate the post-pro-

cessing phase, methods using explicitly defined compo-

nents have been developed, as reviewed by Wein et al.

(2020). Two research groups (Guo et al. 2014; Zhang

et al. 2018, 2017) and (Norato et al. 2015; Zhang and

Norato 2017) have extensively developed component-

based methods applied to topology optimization, re-

spectively the Moving Morphable Components (MMC)

and the Geometry Projection (GP). These methods

were generalized into a Generalized Geometry Projec-

tion (GGP) tool by Coniglio et al. (2020). Hollow struc-

tures, which can be considered as stiffeners with more

complex cross-sections, were also considered (Bai and

Zuo 2020) using the MMC. Finally a Moving Morphable

Voids (MMV) method (Zhang et al. 2020b,c) adapts the
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component-based logic to optimize void regions para-

metrized by B-spline curves. The drawback of these

methods is that a very refined mesh of 3D solid elements

is required in order to accurately represent the stiff-

eners. Hence, the computation cost soars when these

methods are applied to large structures, as we consider

in the present work. To reduce these computation costs,

Zhang et al. (2020a) have developed an adaptive mesh

refinement technique. To avoid using 3D solid elements

to mesh the stiffeners, Sun et al. (2020) propose to

smear the stiffeners defined as components in the MMC

approach.

Alternative methods (Ding and Yamazaki 2005; Li

et al. 2013; Xue et al. 2012) propose to make the stiff-

ening network grow within a ground structure made of

beam elements. The beam elements, placed in between

every nodes of each shell element, initially have a negli-

gible cross section. From user defined sprouting points,

beam elements are added to the stiffening structure

by increasing their cross-sections. However, the ground

structure constrains the directions of the stiffeners to

a limited set of directions. Hence, Li et al. (2017a,b,

2019) developed a stiffness-transformation operation in

order to free the stiffening structure from the ground

mesh, based on a method which is similar to the stiff-

ness spreading method developed for truss structures

(Wei et al. 2014; Cao et al. 2018): akin to smeared

methods, the stiffness matrix of the stiffeners, defined

as shell elements, are assembled to the stiffness matrix

of the surrounding shell elements of the panel.

In the present paper, we propose to apply the logic

of the component-based methods to a ground mesh of

structural elements. The novelty of the method is to

represent the stiffeners as components that are pro-

jected on a controlled set of beam elements from the

ground structure in order to build the FE model over

which the optimization functions, objective and con-

straints, are evaluated. This method hence benefits from

the ease of interpretation of the component method in

terms of stiffening patterns, associated to the cost ef-

ficiency of using structural FE elements for both the

skin and stiffeners. By updating the set of beam ele-

ments for each new stiffener location, the stiffener is

allowed to freely move over the entire surface without

need for remeshing. Furthermore, semi-analytical sen-

sitivities can be derived which enables gradient-based

optimization.

The bulk of the paper is organized as follows. In

Section 2 the method used to project the stiffener com-

ponent into a set of beam elements is explained. The

optimization process and the derivation of the sensitiv-

ities are presented in Section 3. Section 4 details the

calibration of the projection functions to ensure the ac-

curacy of the projected model. In Section 5 we apply

the proposed method to a cantilever plate and two large

cylindrical structures with and without an access hatch.

Finally, some conclusions on the method are drawn in

Section 6.

2 Component-based representation and

projection onto the FE model

The method presented in this paper is inspired by feature-

mapping methods: a geometrical representation of the

stiffeners (position, layout, size) is projected onto a FE

mesh of the ground structure to build a structural rep-

resentation of the stiffeners for analysis. This section

describes in details both the geometrical and the struc-

tural representation, as well as the projection method

used to build the FE model of the stiffener from the

geometrical description of the components. In the fol-

lowing, for sake of simplicity, the method is illustrated

considering the case of a single stiffener on a flat panel.

2.1 Geometrical representation of the stiffener: a

component

The geometrical representation of the stiffener can be

viewed as a simplified CAD representation, where a

stiffener is represented by a component. The component

is visualized as a line segment and has associated mate-

rial and cross-sectional properties. The location of the

component is parametrized by the coordinates of the

two extremities P1 and P2 of the line segment: x1, y1,

x2 and y2, measured with respect to the global reference

frame of the structure. A component has also specified

cross-sectional properties: the area Ac, the second mo-

ment inertias Iyc and Izc, the torsional constant Jc and

the section offset hc (see Figure 2). These properties

can advantageously be derived from any stiffener cross-

section geometry (blade, hat, Z, etc.). We consider that

the stiffener is made of a homogeneous isotropic linear

elastic material, thus the material properties associated

to a component are the Young’s modulus E, the Poisson

ratio ν and the material density φ.

2.2 FE representation of the ground structure

The structural representation of the stiffener is obtained

by a projection of the component over the FE mesh of

the ground structure, which is composed of shell and

beam elements. In order to build the FE mesh of the

ground structure, one has to start from the support
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panel: its reference surface (mid-surface) is meshed us-

ing quadrangular shell elements. Then, beam elements

are placed in between every adjacent shell nodes, diago-

nals included (see Figure 2), and have inertia properties

aligned with their respective axis. However, this grid of

beam elements must not affect the effective response of

the panel: their cross-sectional properties are initially

set to very low values, so that their contribution to the

overall stiffness of the structure is negligible. Ideally,

the shell elements are square, leading to only four pos-

sible beam orientations : 0
◦
, 90

◦
, 45

◦
and −45

◦
. The FE

mesh of the ground structure is built once and for all,

based on the geometrical domain occupied by the panel

to be stiffened: thus, our method needs no remeshing

step and only the cross-sectional properties of the beam

elements are updated in order to represent the layout

of the stiffeners over the structure. This is obtained by

properly tuning projection functions, which are intro-

duced in the next paragraph.

Panel Surface
Component 
(Stiffener)

Ground structure 
mesh

x

y

Fig. 2 Superposition of the component model and of

the ground structure mesh with {Ac, Iyc, Izc, Jc, hc}
and {A, Iy, Iz, J, h} the cross-sectional properties of a

component and of a beam element respectively.

2.3 Structural representation of the stiffener:

projection functions

The major idea of this paper is to approximate the stiff-

ener, defined at the component level by its length and

cross-sectional properties, by a set of beam elements

from the ground structure. Figure 3 shows a component

and the corresponding set of beam elements. When-

ever the position of the component changes, the set is

updated accordingly by modifying the cross-sectional

properties of the beam elements. The principle is that

beam elements which are close and well aligned to the

component have assigned higher values of cross-sectional

properties, whilst the cross-sectional properties decrease

when getting far from the component. Hence, the mesh

remains fixed while the component may move and ro-

tate freely on the surface.

In order to select the set of beam elements from the

ground structure for the structural representation of the

stiffener, “projection functions” are used, which estab-

lish the updated values of the cross-sectional properties

of the beam elements as a fraction of the cross-sectional

properties of the component presented in Figure 2. The

result of the projection is an updated structural model

ready for finite element analysis (see Figure 3). The

projections functions φ(P ) establish the cross-sectional

properties P = {A, Iy, Iz, J, h} (area, inertia, etc. ) of

the beam elements with respect to the corresponding

cross-sectional properties Pc of the component as fol-

lows :

P = φ(P ) · Pc (1)

Each projection function φ(P ) is tailored for each prop-

erty P but they all share the same general form. Their

values ranging between 0 and 1 are determined by the

product of three filters :

φ(P ) = fa · f (P )
d · fl (2)

where fa is an angle filter, f
(P )
d is a distance filter and fl

a location filter, written in the form of Gaussian func-

tions. Whilst the angle filter fa and the location filter fl
are the same for all cross-sectional properties, the dis-

tance filter f
(P )
d is adapted specifically for each property

P , as we will explain in the following. In order to build

the FE structural model illustrated in Figure 3, filter

functions are evaluated for each beam element from the

ground structure model as well as the resulting projec-

tion function Eq.(2), so that the cross-sectional proper-

ties of every beam element are set according to expres-

sion Eq.(1).

Panel Surface
Component 
(Stiffener)

x

y

Fig. 3 Structural model of the projected component

model of Figure 2. The beam elements are colored ac-

cording to their projected cross-sectional area φA.
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2.3.1 Angle filter fa

The angle filter fa cancels out the elements that are not

closely aligned with the component. It is defined as :

fa(γi) = exp

(
−γ2i ln(2)

(π/8)2

)
(3)

where γi is the angle between the i-th beam element

and the component (see Figure 4). As such, function fa
is maximum and equals one when γi = 0, and decreases

when the beam element orientation deviates. The pa-

rameters of the angle filter are chosen so that when the

component is the bisector of elements at 0
◦

and 45
◦
, i.e.

γi = 22.5
◦
, the angle filter will have a value fa = 0.5.

Beam elements forming an angle |γi| > 45
◦

with the

component will have a filter value fa < 0.06, and will

thus be filtered out.

-th FE Beam

Component

Fig. 4 Definition of the angle γi in the angle filter fa.

2.3.2 Distance filter f
(P )
d

The distance filter f
(P )
d cancels out the elements that

are distant from the stiffener, where the distance is mea-

sured at the end-nodes of each beam element. For the

generic i-th element of the ground structure, if we call

Qi and Ri its end-nodes, the distance filter f
(P )
d applied

to any cross-sectional property P is defined as:

f
(P )
d =

√
f
(P )
dnode

(d⊥(Qi), θ) · f
(P )
dnode

(d⊥(Ri), θ) (4)

where the function d⊥ is the orthogonal distance be-

tween the considered node and the component, and θ is

the angle between the component and a reference axis

defining θ = 0◦, commonly chosen as the x-axis, as il-

lustrated in Figure 5a. The function f
(P )
dnode

is a nodal

distance filter defined as :

f
(P )
dnode

(d⊥, θ) = φ(P )
max · exp

(
−d2⊥ · ln(2)

(a δ(P )(θ))2

)
(5)

a is the side length of the square shell element, the pa-

rameter φ
(P )
max controls the amplitude of the filter and

-th FE Beam

Component

Reference Axis :

(a)

Panel Surface

(b)

Fig. 5 (a) Variables of the nodal distance filter f
(P )
dnode

.

(b) Shape and contour lines of the nodal distance filter

f
(P )
dnode

over the panel surface.

the function δ(P )(θ) controls its bandwidth, defined as

4a δ(P )(θ). These two latter terms, φ
(P )
max and δ(P )(θ),

are specific to each cross-sectional property P . They

are the product of a calibration of the filters which is

itself based on the resolution of an optimization prob-

lem, detailed in Section 4.

From Eq.(5), if the node falls exactly over the com-

ponent line (i.e. d⊥ = 0), the corresponding value of

its nodal filter function is f
(P )
dnode

= φ
(P )
max as shown in

Figure 5b. For nodes at a distance d⊥ > 2a δ(P )(θ), the

nodal distance filter decreases to f
(P )
dnode

< 0.06φ
(P )
max.

According to Eq.(4), beam elements that have at least

one of their nodes at a distance d⊥ > 2a δ(P )(θ) will

be filtered out by the distance filter (f
(P )
d < 0.16φ

(P )
max).

Hence, the only beam elements left by the distance fil-

ter f
(P )
d defined in Eq.(4) are the ones closest to the

component.

The dependency of the function δ(P ) to θ was chosen

to account for the fact that beam elements at ±45◦ are

closer to one another than elements at 0◦ or 90◦. This

implies that for θ = ±45◦, the bandwidth of the filter

must be reduced compared to θ = 0◦, otherwise the

model would be too stiff.
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2.3.3 Location filter fl

The location filter fl cancels out elements that are not

located within the two extremities of the component.

Similarly to the distance filter, it depends on nodal filter

functions that are evaluated at the end-nodes of each

beam element. The expression of the location filter fl
is as follows:

fl =
√
flnode

(d‖(Qi)) · flnode
(d‖(Ri)) (6)

where d‖ is the distance between each end-node of the

i-th beam element and the perpendicular bisector B of

the component, as illustrated in Figure 6a. The nodal

location filter is defined as :

flnode(d‖) = exp

(
−dp‖ · ln(2)(
ka + 1

2Lc
)p
)

(7)

where Lc is the length of the component, a the side

of the square shell element, whilst k and p are nu-

merical parameters (respectively, a coefficient defining

the distance ka proportionally to the element size and

an exponent) that are specifically tuned for the filter

to be effective. Exponent p is chosen in the interval

20 < p < 100. This ensures that flnode
≈ 1 for any

end-node that falls in-between the extremities of the

component and flnode
= 0 outside. Consequently, the

location filter does not interfere with the other filters.

The transition from flnode
= 1 to flnode

= 0 is centered

at a distance ka from the extremities of the component,

recommending 0 < k < 2.5, as shown in Figure 6b.

2.4 Multiple Components

We have described so far the definition of the projection

function φ(P ) for any beam element in the ground finite

element mesh, in the case of the presence of a single

component in the geometrical representation (i.e. one

single straight stiffener). In order to accommodate more

than one component on the surface, intersections and

overlaps of components must be handled: for each com-

ponent c (c ∈ {1, ..., Nc}, where Nc is the overall num-

ber of components in the geometrical representation),

one can evaluate the resulting projection functions φ
(P )
c

for all beam elements in the ground FE mesh, accord-

ing to the procedure described in the previous section.

Then, one has to fix a rule for the definition of the final

value of the projection function φ(P ) for each beam el-

ement in order to build the structural representation of

the stiffeners. In the literature, the value of φ(P ) of each

beam element is determined either by summing the Nc
components’ contributions φ

(P )
c (Norato et al. 2015) or

by conserving the maximum components’ contributions

-th FE Beam

Component

(a)

Panel Surface

(b)

Fig. 6 (a) Variables of the nodal distance filter flnode .

(b) Shape and contour lines of the nodal distance filter

flnode over the panel surface.

as in Zhang et al. (2016b) and Zhang et al. (2016a). In

this paper, the latter formulation is used :

φ(P ) = max
c∈{1,...,Nc}

φ(P )
c (8)

In the case of gradient-based optimization, the max
function cannot be used directly as it is not differen-

tiable. Consequently, it is approximated in this work

by a p-norm :

φ(P ) =

[
φpmin + (1− φpmin)

Nc∑
c = 1

(
φ(P )
c

)p] 1
p

(9)

where φmin is introduced as a small positive lower bound

to avoid an ill-posed analysis, as done in Zhang et al.

(2016a). This prevents the beam elements from having

null cross-sectional properties which cannot be handled

by the FEA.

3 Optimization Process

The general form of the optimization problem solved in

this article can be stated as:

min
{X}

F (X) subject to:

{
X ∈ D
gi(X) ≤ 0, i = {1, . . . , n}
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Component model

Projection functions

FE Analysis

Finite Element Model MMA algorithm

Stop criterion

New variable values

Objective, constraints, sensitivities

Yes

Stop

Iteration

Initial variable values

No
Iteration

Fig. 7 Schematic overview of the stiffener location op-

timization process.

(10)

where F is the objective function, X the vector of vari-

ables, which take values in the domain D, and gi are

constraint functions.

The objective F and the constraints gi can be chosen

among the available responses, either calculated analyt-

ically (e.g. mass) or output by a linear FE analysis (e.g.

compliance, maximum displacements, critical buckling

load, etc.). The optimization variables are the coordi-

nates (x11, y11 , x12, y12 , . . . , xNc
1 , yNc

1 , xNc
2 , yNc

2 ) of the

two extremities of the Nc components in the model.

Their domain of variation D is bounded by the sides of

the surface. The material and cross-sectional properties

are identical for all components, and remain constant

during the optimization, thus the object of the opti-

mization is specifically the stiffening path.

The optimization process is illustrated in Figure 7.

The design variables define the geometry of the com-

ponent model. At each iteration j, the components are

projected on the structural model via the projection

functions detailed in Section 2. A structural analysis

outputs the values of the objective and constraint func-

tions. The Method of Moving Asymptotes (MMA) (Svan-

berg 1987) is used to calculate the values of the design

variables for the iteration j + 1. The optimization pro-

cess stops when either a maximum number of iterations

jmax is attained, or a stagnation criterion on the max-

imum change of the design variables values from itera-

tions j − 1 to j is fulfilled :

{
max(|Xj −Xj−1|) ≤ ε
j ≤ jmax

(11)

where ε is a small positive real value.

In order to use a gradient-based algorithm like the

MMA, the sensitivities of the responses (both objec-

tive and constraints) with respect to the variables must

be derived. This operation is usually expensive when

it is done by finite differences. The advantage of the

proposed method is that sensitivities are derived semi-

analytically, thus yielding lower computation costs. The

process is similar to the one described in Deklerck and

Abdalla (2016). The analytical part of the sensitivities

is obtained by deriving the projection function (Eqs. (1)

to (7)) and the stiffener assembly function (Eq.(9)). The

output is the sensitivity of the cross-sectional proper-

ties of the beam elements with respect to the variables,

i.e. ∂P/∂X. In the present work, the sensitivity of the

response R (i.e. compliance, in the present case) with

respect to the cross-sectional properties of the beam el-

ements is obtained using Altair optistruct. Details

on the computation of the sensitivities in the software

can be found in Altair Engineering (2019). Finally, by

composition of functions, the full sensitivity can be ob-

tained by :

∂R

∂X
=
∂R

∂A
· ∂A
∂X

+
∂R

∂Iy
· ∂Iy
∂X

+
∂R

∂Iz
· ∂Iz
∂X

+
∂R

∂J
· ∂J
∂X

+
∂R

∂h
· ∂h
∂X

(12)

where P = {A, Iy, Iz, J, h} are the properties of the

beam elements belonging the ground structure, as de-

fined in Eq.(1) Section 2.3, and X is the vector of the

variables, which refer to the components representing

the stiffeners to be optimised over the base panel.

4 Numerical Calibration

The objective of the calibration procedure is to tune

the parameters of the projection functions defined in

Section 2, in order to obtain a good agreement between

the structural FE model or structural representation of

the stiffener that is used for the optimization, and a

reference FE model. The reference FE model is based

on a fine conformal mesh of the skin and the com-

ponents. Figure 8 shows a thickness-rendered view of

the representation of the stiffener in the reference FE

model and its structural representation based on the

ground FE mesh, as used in the optimization process.

In the reference FE model, the stiffener is represented

as a single line of beam elements along the path defined

by each component in the geometrical representation.

The optimization model corresponds to the structural

representation of the stiffener, i.e. an equivalent lattice

structure based on the ground FE mesh, that is built

as explained in the previous sections. The agreement

between these two models is judged acceptable if the

following requirements are satisfied:

i. the errors on the response values are limited: this is

particularly necessary when the responses are used

as constraints of the optimization;
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ii. the variations of the responses have the same mono-

tonicity: this ensures that the search is driven to-

wards areas of interest of the design space that are

relevant in order to find the expected optimum;

iii. the localized nature of the component is conserved

in the structural model.

The parameters φ
(P )
max and functions δ(P ) are intro-

duced in Eq.(5). Their values are specific to each cross-

sectional property P = {A, Iy, Iz, J, h}. The parame-

ter φ
(P )
max controls the maximum amplitude of the dis-

tributed cross-sectional property P , whilst the function

δ(P ) controls the number of beam elements over which

the cross-sectional property P is distributed in the com-

ponent width. Note that φ
(P )
max and δ(P ) are not inde-

pendent. For a given value of compliance, at a fixed

angle θ, if φ
(P )
max is increased, the bandwidth of the filter

must be reduced in order to maintain the same overall

compliance value (i.e. δ(P )(θ) must be reduced), and

vice versa. Using Eq.(5), the cross sectional proper-

ties are distributed on a total width of 4a δ(P ), cen-

tered on the axis of the component. To simplify the

calibration procedure, we chose to use the same pro-

jection functions for all the inertias Iy, Iz and J , i.e.

φIy = φIz = φJ = φI ; separately, functions φI and φh

are calibrated following the same procedure as for φA.

The same associations are made on the function δ(P ).

The reference cases are built using a square plate

with a single stiffener. The plate is clamped along one

edge and a uniaxial loading is applied to the opposite

edge: two load cases are considered, a membrane (in-

plane uniform tension) and a bending (transversal uni-

form force) load, so that φA and φI can be calibrated

separately. Two parametric studies are conducted by

sweeping a stiffener over the plate: a parallel sweeping

of a longitudinal stiffener (θ = 0◦) over 5 positions sep-

arated by a/4 (see Figure 9a), and an angular sweeping

of a single stiffener, passing through the center of the

plate, from θ = 0◦ to θ = 45◦ by steps of 5◦ (see Fig-

ure 9b). In order to obtain smooth variations of the

structural response, a reference FE model of the stiff-

ened plate is built in coincidence with each position

of the stiffener in the sweeping parametric studies. The

calibration is based on the comparison of global compli-

ance between the optimization and reference FE mod-

els. Note that the cross-section of the stiffener used for

the calibration must be the same as the one used for the

optimization: changing the cross-sections will require a

new calibration.

The calibration procedure of the area and inertia

projection functions φA and φI can be stated as an

optimization problem :

min{
φ
(P )
max,{δ(P )}

}
√√√√ K∑
k=1

(Ck − Cref
k )2

K

subject to: ∂{C}
∂Z � ∂{Cref}

∂Z > 0

(13)

where {C} and {Cref} are vectors respectively con-

taining the compliance values of the structural and ref-

erence FE models, for all the K sweeping positions (po-

sition index k, k ∈ {1, ...,K}). {δ(P )} are the discrete

values of the function δ(P ) at each calibration angle θ,

� is the element-wise product, Z is the position of the

stiffener in the parallel sweeping case. The objective

function corresponds to the minimization of the Root

Mean Square Error (RMSE) between the reference re-

sponse and the response of the optimization model. The

constraint imposes that both responses share the same

monotonicity. The local nature of the stiffener is en-

forced by choosing the highest feasible value of φ
(P )
max,

which corresponds to minimizing the bandwidth of the

distance filter f
(P )
d . This satisfies the requirements (i-

iii) introduced at the beginning of the section.

The effects of the discrete nature of the ground

structure on the monotonicity of the response is best

observed by doing the parallel sweeping. If the band-

width 4a δ(P )(θ) is too thin, the value of the compliance

shows significant rises whenever the stiffener overlaps a

beam element, followed by a drop-off at the next step,

when the stiffener sits in-between two beam elements.

This leads to oscillations in the value of the compliance,

creating spurious local optima. On the other hand, if

the bandwidth is too wide, the localized nature of the

stiffener is compromised.

The optimization problem (13) is solved using a hi-

erarchical approach: the first step of the calibration con-

sists in finding the highest φ
(P )
max, associated with the

thinnest bandwidth, that prevents oscillations from oc-

curring in the parallel sweeping case. This is an itera-

tive process, starting with φ
(P )
max = 1. The value δ(P )(0◦)

that minimizes the RMSE in the θ = 0◦ configuration of

the angular sweeping is found using a Newton-Raphson

method. The constraint of the optimization problem

(13) is then evaluated using the parallel sweeping. This

process is repeated by gradually decreasing φ
(P )
max until

the constraint is satisfied. Once φ
(P )
max is set, the Newton-

Raphson method is applied to find the best value of δ(P )

for each θ value of the angular sweep.

Finally, the discrete set {δ(P )} is interpolated to de-

fine the continuous and derivable function δ(P )(θ) for

θ ∈ [0◦, 45◦] (see Figure 10). By construction of the

distance filter f
(P )
d , the function δ(P )(θ) is pair and

periodic with a period π. In the following, a polyno-
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(a) (b)

Fig. 8 Thickness-rendered view of the
reference FE model of a stiffener (a) and
its associated structural model based on
the ground FE mesh (b).

(a)

5°

(b)

(c) (d)

Fig. 9 Parallel sweep (a) and angular sweep (b) refer-

ence cases submitted either to a pure uniform tension

(c) or a pure uniform bending (d) load case.

mial interpolation is used to define δ(P )(θ). Results of

the calibration will be shown in the following section,

which describes the considered cases of application for

the optimization method.

-90 -45 0 45 90
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curve          .      

Fig. 10 Construction of the function δA(θ) by a polyno-

mial interpolation of the optimal values {δA} deduced

from the angular sweeping.

It is noteworthy that the obtained set of parame-

ters {φ(P ), δ(P )} is specific to the cross-section property

calibrated, and remains constant during the optimiza-

tion. Nevertheless, using both a tension and a bending

load case for the calibration procedure allows to reduce

the problem dependency. Furthermore, a mesh-size de-

pendent parameter a is introduced in the distance filter

f
(P )
d (Section 2). This allows some flexibility if the mesh

size of the optimized panel is not the same as the mesh

size of the calibration model.

Contrary to what is usually done in feature mapping

methods which typically apply the projection on to the

stiffness matrix, the parameters of the beam section

(area, inertia) are projected independently. This allows

to differentiate longitudinal tension compression behav-

ior from bending behavior. Indeed, the corresponding

terms in the stiffness matrix of the element do not

present the same regularity with respect the cross-sec-

tional properties. Tests were performed by projecting

the stiffness matrix with either the projection function

φA or φI and in this case, either the tension compres-

sion behavior or the bending behavior is accurate but

not both at the same time. On the contrary, in the pro-

posed method both behaviors are simultaneously accu-

rate.

5 Applications

The proposed optimization method is first tested and

validated on basic cases of plates with a clamped edge.

It is then applied to cylindrical structures. The pro-

posed optimization process is implemented in Matlab

and the FE analyses are performed using Altair OP-

TISTRUCT. The optimization algorithm used is Svan-

berg’s 2007 implementation of the MMA algorithm.

The material properties, the stiffener cross-sections, the

projection function calibration and the mesh size are

identical for all the applications shown in this paper.

The skin panels and the stiffeners are made of steel

(E = 210 GPa, ν = 0.3, ρ = 7845 kg/m3). The cross-

sectional properties of the stiffeners are derived from

a 6 × 40 mm rectangular section with no section off-

set (h = 0 mm). The results of the calibration of the

projection functions (see Section 4) are presented in Ta-

ble 1. The table presents the values of φAmax and φImax.

Here, δA(θ) and δI(θ) are defined as 12-th order sparse

polynomials of the form δ(P )(θ) =
∑6
k=0 c2kθ

2k, where

P = A or P = I and θ in radians. The non-zero coeffi-

cients and monomials are given in Table 1. The p-norm
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as in Eq.(9) is used with p = 8 and its lower bound

parameter set to φmin = 1× 10−8. Finally, all the mod-

els of the following applications are meshed with square

elements with an approximate size a = 20 mm.

5.1 Applications on planar surfaces

The applications of this section focus on the minimiza-

tion of the global compliance of stiffened plates. Af-

ter considering two unconstrained optimizations with

only two stiffeners, a mass constraint and component

removal strategy are formulated enabling optimizations

with a greater number of stiffeners.

5.1.1 Unconstrained optimization

The first application considered is a 1 m × 1 m × 1 mm

thick square plate (the plate occupies the domain

[x, y] ∈ [0, 1]× [0, 1] in the x-y plane, see Figure 11).

The ground structure is made up of 50 × 50 shell el-

ements and 10100 beam elements connecting all adja-

cent nodes, corresponding to an overall number of 15300

degrees of freedom. The plate is clamped at one edge

(x = 0) and submitted to either an in-plane punctual

load of Fy = 20 kN or an out-of-plane punctual load of

Fz = 200 N on the middle of its opposite side (x = 1

and y = 0.5). The load is linearly distributed over five

nodes to smooth the load introduction. The initializa-

tion of the stiffeners’ distribution corresponds to two

straight stiffeners forming a cross, centered on the plate

(see Figure 11). The maximum number of iterations is

set to jmax = 50 and the parameter of the stagnation

criterion is set to ε = 0.006. In order to use the MMA

for solving this unconstrained problem, a dummy con-

straint is introduced, which is always satisfied (MMA

only can handle constrained problems).

The results of the optimizations are shown in Fig-

ure 11. For the in-plane load case, the optimization con-

verges in 23 iterations. The stiffest design is obtained

at the final iteration and has a compliance of 4.67 J

(66 % of the initial compliance). For the out-of-plane

load case, the optimization converges in 34 iterations.

The stiffest design is obtained at iteration 14 and has a

compliance of 2.12 J (1.1 % of the initial compliance).

The average iteration time is 30 s with 75 % of the

time occupied by the FE analysis : the optimization is

performed on a standard laptop and the linear finite

element analysis is run on a dedicated work station.

This time may seem large relatively to the simplicity

of the FE model, but this is due to the FEA sensitiv-

ity calculation done by optistruct (4 CPU, 800 MB

RAM).

The resulting optimal positions of the stiffeners are

consistent with the geometry and loading of the cases

at study. The convergence towards the stiffest design

is fast, and slows down over the last iterations during

which the positions and lengths of the stiffeners do not

evolve much. Note that the compliance values in the fi-

nal iterations of the out-of-plane load case are less than

1 % higher than the compliance of the stiffest design.

5.1.2 Mass constrained optimization

The second application aims at dealing with a greater

number of stiffeners in the initial design, and possibly

removing some of them during the course of the opti-

mization. To create an incentive to removing stiffeners,

the available quantity of material used to form stiff-

eners must be constrained. In the present study, this

constraint is formulated as a maximum total mass of

stiffeners. In the present study, a constraint g(X) is ap-

plied on the total allowable mass of stiffeners M̄ , such

that:

g(X) = M − M̄ (14)

M being the total mass of the stiffeners expressed as:

M = ρ

Nc∑
c = 1

Ac ∗ Lc (15)

In Eq.(15),Ac and Lc are respectively the cross-sectional

area and the length of the cth stiffener, and ρ the density

of the considered material. The advantage of this for-

mulation is that the mass of the stiffeners corresponds

exactly to the mass of a conformly meshed model. It

also ensures a smoother variation of the mass with re-
spect to changes in the stiffener’s length and/or posi-

tion, compared to the mass calculated from the struc-

tural model (overall mass of the projection of the stiff-

ener over beams elements in the ground structure). Fi-

nally, the formulation of the mass in Eq.(15) implies

that if two stiffeners are superimposed, the model will

have a mass equal to that of two stiffeners but a global

compliance of only one (this is the consequence of us-

ing the maximum function to assemble the stiffeners,

see Section 2.4): this drives the optimizer to avoid over-

lapping stiffeners. Hence, in the present study, the only

possibility for the optimizer to remove components is

by shortening, i.e. reducing their size down to a very

low value or eventually to zero. In order to stabilize

the optimization, a stiffener removal condition is intro-

duced : if the length of a stiffener is smaller than three

times the mesh size for three consecutive iterations, the

stiffener is canceled by simply deleting its variables.

The application considered is a 1.5 m × 1 m plate

(the plate occupies the domain [x, y] ∈ [0, 1.5] × [0, 1]
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Section property φ
(P )
max c12 c10 c8 c6 c4 c2 c0

Area (P = A) 0.4 -146.43 314.15 -259.38 108.12 -27.502 3.5499 1.1016
Inertia (P = I) 0.16 258.32 -461.54 295.52 -67.497 -7.1133 4.1854 0.79449

Table 1 Results of the calibration of the projection functions for the cross sectional area (P = A) and the inertia

(P = I). Values of φ
(P )
max and coefficients of the polynomial functions δ(P )(θ).

0 5 10 15 20 25 30 35100

10

10

2

1

Compliance

0 5 10 15 20 25 30 35
Iteration

0
0.05

0.1

Stagnation criterion

x

y

z

0.4

0.3

0.2

0.1

0

Stiffest Designs Structural Models

x

y

z

Initial Designs

0.4

0.3

0.2

0.1

0

0 5 10 15 20 25

5
6
7

Compliance

0 5 10 15 20 25
Iteration

0
0.05

0.1

Stagnation criterion

Fig. 11 Clamped plate unconstrained optimization with in-plane loading (top) and out-of-plane loading (bottom).

From left to right: initial designs, stiffest designs (iteration 23 and 14 respectively), detailed views of the equivalent

structural models, history of the compliance (stiffest design marked by yellow dot) and stagnation criteria.

in the x-y plane, see Figure 12), inspired by the well

known cantilever problem on truss structures, as solved

by Cao et al. (2018). In order to simulate a truss struc-

ture case, the thickness of the plate is set to 0.01 mm,

so that the plate stiffness is negligible with respect to

the component stiffness. The plate is clamped at one

edge (x = 0) and submitted to an in-plane punctual

load of Fy = 10 kN on the middle of its opposite side

(x = 1.5 and y = 0.5). The load is linearly distributed

over three nodes to smooth the load introduction. The

initialization of the stiffener distribution is made up of

16 components distributed in two lines of 4 crosses (see

Figure 12). The mass constraint is set to M < 12 kg,

the normalized stagnation criterion is set to ε̄ = 1 % of

the variation domain of the variables and the maximum

number of iterations is set to jmax = 100.

The results are presented in Figure 12. The opti-

mization converges in 71 iterations. The stiffest feasible

design is obtained at the final iteration of the optimiza-

tion and has a compliance of 5.6 J for a stiffener mass

of M = 11.99 kg. Only 10 components remain out of

the initial 16.

The resulting optimal component placements are co-

herent with the final topology of the cantilever beam

obtained in Cao et al. (2018), even though the results

differ slightly due to the limitation to a fixed compo-

nent cross-section in the present case. Regarding the

interpretation of the results, it seems that the final

and stiffest design still contains components that are

too short to have a significant mechanical contribution

(two very short components are hidden at the very left

corners, and two short components are visible on the

right side of the structure). These components have

not satisfied the component removal condition, never-

theless they should be ignored when interpreting the

results. It can also be noted that the top and bottom

components are slightly longer than expected as they

extend beyond the intersections of components found

near x = 1. By zooming on the structural model, it can

be seen that beam elements from the ground structure

actually participate in a mechanical connection between

the respective components after the joints (x > 1). This

contributes to lowering the compliance of the structural

model, however, these links would not exist in a con-
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formly meshed model. One can imagine that the parts

of the components extending beyond the intersections

could thus be removed in the interpretation.

5.2 Applications on cylindrical surfaces

The following applications consider cylindrical parts,

closer to what can be found in space launcher struc-

tures. The projection method is adapted to deal with

cylindrical surfaces and an unconstrained global com-

pliance minimization is conducted on a cylinder with

and without an access hatch. A mass-constrained op-

timization is then considered on the cylinder with an

access hatch and compared to results obtained with a

commercial implementation of the SIMP optimization.

5.2.1 Parametrization of the components: from plates

to cylinders

Section 2 describes the parametrization of the compo-

nents for a flat rectangular plate. The rectangular plate

can be seen as an isoparametric representation of the

surface of the structure into a Cartesian grid, which al-

lows any developable structure to be represented in this

way. In particular, the parametrization of the stiffener

trajectory (position and length) at component-level can

be extended to a cylinder with minor addition to the

method, by projecting the surface of the cylinder onto

the isoparametric rectangular plate. The projection of

the surface of the cylinder in the isoparametric plane

is a rectangular surface. The FE mesh is transformed

accordingly.

However, one peculiar aspect of cylindrical struc-

tures is their periodicity (angle ψ ∈ [0, 2π], see Fig-

ure 13), which must be accounted for in the parametriza-

tion. A stiffener can cross the cutting line ψ = 0, from

which the cylinder is developed, where ψ is the radial

component of the cylindrical coordinate system associ-

ated to the structure, and ψ = 0 corresponds equally to

x = 0 and x = 1 in the isoparametric plane. Thus, one

single stiffener that crosses the cutting line ψ = 0 on the

cylinder must be split between the left (x = 0) and right

(x = 1) sides of the isoparametric projection, resulting

into two components represented over the rectangular

domain. Moreover, we built the parametrization in or-

der to account for the fact that a stiffener can extend

over several turns on the cylinder. Since the rectangular

projection corresponds to a single period of that gyra-

tion, then the rectangular surface is replicated Nr times

along the x-direction of the isogeometric plane and the

boundaries for the x-coordinate of the components are

increased accordingly. The projections of the compo-

nents on the isoparametric mesh can be computed using

the method described in Section 2. Then, the compo-

nents can be brought back onto the initial rectangular

mesh by considering for each beam element the maxi-

mal value of φ(P ) over its replicas:

φ(P ) = max
r∈{1,...,Nr}

φ(P )
r (16)

where φ
(P )
r is the projection factor of the cross-sectional

property P of the r-th replica of the element. The max

function is here also approximated by a p-norm, with

p = 8 (see Eq.(9)).

5.2.2 Unconstrained optimizations

The proposed optimization method is now applied to

a cylindrical structure, either with a stiffened access

hatch or without (referred hereafter as regular cylin-

der). The cylinder has a perimeter of pcyl = 2 m, a

height of hcyl = 1 m and a skin thickness of 1 mm. The

hatch itself is modeled by deleting shell and beam ele-

ments from the ground structure. However, a contour of

beam elements is kept to form the frame of the hatch,

which is fixed during the optimization. The correspond-

ing beam elements have the same cross-sectional prop-

erties as the stiffeners. The hatch has a width of 160 mm,

a height of 320 mm and is placed −90◦ away from

the direction of the load F (see Figure 14). Regard-

ing boundary conditions, the nodes of the bottom edge

are clamped. The nodes of the top edge of the cylinder

are rigidly linked by RBE2 elements to a central mas-

ter node on the top of the cylinder, where a shearing

load Fx = 100 kN is applied. To initialize the optimiza-

tion process, four stiffeners are placed in two cross-like

patterns. The maximum number of iterations is set to

jmax = 50 and the parameter of the stagnation criterion

is set to ε = 0.036.

The results of the optimizations are shown in Fig-

ure 14. The optimization on the regular cylinder con-

verges in 18 iterations and the stiffest design is ob-

tained at iteration 15. The optimization on the cylinder

with an access hatch converges in 18 iterations and the

stiffest design is obtained at iteration 14. The conver-

gence profiles are similar to the ones presented in Fig-

ure 11, and the designs tend to oscillate between closely

similar solutions over the last iterations. In the figure,

the minimal compliance solutions found are marked

with a yellow point on the compliance curve. For both

optimizations, it does not coincide with the final itera-

tion. However, the compliance values after the minimal

compliance points vary by a magnitude inferior to 2%.

These variations are sufficiently small to consider that

all the positions attained after the minimal compliance

points are equivalent.
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Fig. 12 Mass constrained compliance minimization of a cantilever plate of negligible thickness, similar to a truss

structure. Top, from left to right: geometrical model of the initial design with boundary conditions and stiffest

feasible design with its corresponding structural model. Bottom: history of compliance (stiffest feasible design

marked by yellow dot), total stiffener mass M , normalized stagnation criteria ε̄ and number of components.
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Fig. 13 Projecting a stiffener onto a three-dimensional cylindrical surface.

To evaluate the accuracy of the compliance values

computed using the optimization model, a reference

conformal FE model is built for the regular cylinder

in the stiffening configurations of iterations 15 and 18,

using the same modeling principles as in Section 4. In

the stiffening configuration of iteration 15, the compli-

ance computed with the optimization model (103.5 J)

is 0.78% higher than the compliance of the reference

model (102.7 J). In the stiffening configuration of itera-

tion 18, the optimization value (103.6 J) is 1.17% higher

than the reference (102.4 J). Note that the compliance

of the reference models differ by less than 0.3% between

the two stiffening configurations at iterations 15 and 18,

which can thus be considered equivalent, similarly to

the results on the optimization model. The same com-

parisons are made on the cylinder with an access hatch

in the stiffening configuration of iteration 14. The com-

pliance computed with the reference model (123.9 J) is
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Fig. 14 Unconstrained compliance minimization of a cylinder submitted to a shearing load. Top: CAD views of the

stiffener layouts on the initial and stiffest designs for a regular cylinder (left, iteration 15) and for a cylinder with

an access hatch (right, iteration 14). Bottom: corresponding histories of the compliance (stiffest designs marked

by yellow dot) and stagnation criteria.

4.6 % higher than the compliance of the optimization

model in the same stiffening configuration (118.2 J).

These comparative elements globally confirm a good

agreement between the geometrical (component) and

the structural (equivalent FE model) representations,

thanks to the calibration phase.

Nonetheless, these results highlight the fact that the

method is capable of finding the optimal placement of

the stiffeners, with a relatively small tolerance on the

stiffener positions. The precision of the optimization

can be limited by several factors, namely the quality

of the projection functions, the ground structure mesh

and the settings of the optimization algorithms. Whilst

the latter point is out of the scope of the paper, the

quality of the projection functions is intimately related

to the ground mesh and it is driven by the ratio between

the finite element size and the bandwidth of the filter

fd. As long as the aspect ratio of the shell elements is

kept close to one, the calibration procedure detailed in

Section 4 proves to be effective at minimizing the bias

introduced by the projection step for a given FE mesh.

5.2.3 Mass constrained optimization

In this last application, the global compliance of the

cylinder with an access hatch (see previous section)

is minimized under a constraint on the maximum al-

lowable mass of the stiffeners (not including the access

hatch stiffening members). The stiffener mass is derived

in the same way as in section 5.1.2, and the proposed

stiffener removal strategy is applied. The mass con-

straint is set to M < 10 kg in the first run and M < 20

kg in the second one. The geometries and boundary

condition on the cylinder are the same as those of the

previous section. The initial design is made of 24 com-

ponents, disposed in four columns of 3 crosses (see Fig-

ure 15). However, only the 12 stiffeners on the positive

x values are optimized, the rest of the components be-

ing obtained by symmetry. The normalized stagnation

criteria are set to ε̄ = 1 % of the variables’ variation

domain and the maximum number of iterations are set

to jmax = 100.

Figure 15 illustrates the results of these two opti-

mizations. The optimization with the 10 kg mass con-

straint converges in 65 iterations. The stiffest feasible

design, indicated by the yellow points in the compliance

graph, is achieved at iteration 64 with a compliance of

102.9 J (28 % compliance reduction from the initial

design), a total stiffener mass of 9.99 kg and with 16

stiffeners left out of the 24 initial. The optimization

with the 20 kg mass constraint converges in 77 itera-

tions. The stiffest feasible design is achieved at itera-

tion 76 with a compliance of 80.2 J (44 % compliance

reduction from the initial design), a total stiffener mass

of 19.98 kg and 20 stiffeners left. The equivalent con-

formal FE model of this iteration has a compliance of
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86.4 J and a stiffener mass of 19.98 kg. In both cases,

the optimization demonstrates a good convergence pro-

file on the compliance and stiffener mass values. The

effectiveness of the mass constraint and of the compo-

nent removal strategy is also demonstrated. Finally, the

optimization model here also demonstrates a good ac-

curacy in the evaluation of the compliance and mass

values of its equivalent conformal FE model (-8 % error

on compliance, 0 % error on mass).

5.2.4 SIMP optimizations of the cylinder with access

hatch

In the latter case of the cylinder with an access hatch,

the positions of the stiffeners minimizing the compli-

ance of the structure can not be easily inferred by com-

mon sense, as opposed to the previous applications. In

order to assess the relevance of the stiffest feasible stiff-

ening structures obtained (see Figure 15), the latter will

be compared to solutions obtained via SIMP topologi-

cal optimizations carried out using optistruct.

The first topological optimization was conducted us-

ing the same ground structure (made of beam and shell

elements) as the structural FE model of the cylinder

with access hatch. The load case and boundary condi-

tions are also the same. The variables are defined as the

material densities of the beam elements. These beam

elements have the same material and cross-sectional

properties as the components in the above examples.

The objective is to minimize the compliance for a max-

imum allowed total mass of 25 kg, chosen close to the

total mass of our optimal solution (27 kg). The result of

this optimization, presented in Figure 16a, does not al-

low to determine a straightforward stiffening path. Fur-

thermore the compliance of the model (520 J) is only

slightly reduced compared to the un-stiffened cylinder

(677 J). This behavior is caused by the low volume frac-

tion of beam elements allowed: the mass of the allowed

design domain (8 kg of beam elements) represents only

0.9% of the total mass of the design domain (889 kg if

all the densities of the beam elements are set to 1). Such

a low constraint on the volume fraction usually makes

the convergence of the SIMP method to an acceptable
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solution very difficult. By relaxing the constraint on the

maximum total mass to 100 kg, the design domain is

widened, and the solution obtained makes use of much

more beam elements (see Figure 16b). Consequently,

the compliance (240 J) is better reduced compared to

the previous model, however, the solution remains dif-

ficult to interpret in terms of stiffening paths. Nonethe-

less, the areas reinforced in Figures 15 and 16 seem

consistent (upper and lower vertices of the rectangu-

lar hatch and areas located at ±90◦ of the hatch along

the circumference of the cylinder). These observations

highlight the advantages of the proposed component

method: by controlling the set of beam elements, ef-

ficient designs (102.9 J, 27 kg or 80.2 J, 37 kg) with

clearly defined stiffeners are obtained directly, even if

a very low volume fraction is used. Moreover, the com-

pliance and mass of the engineered final design (i.e. the

reference FE model) are accurately predicted.

To gain further insight on the relevance of our op-

timal solutions, a topological optimization using shell

elements as ground structure was used, with the aim

of identifying potential stiffening paths. The variables

are here the material density in each element, treated

by the SIMP method. The shell elements of the ground

structure are defined with a thickness of 12 mm, which

multiplied by their side length of a = 20 mm, equals

the cross-sectional area of our components. By impos-

ing a maximum mass constraint of 80 kg, the result in

Figure 17 is obtained (similarly to the SIMP on beam

elements, a mass constraint set too low does not allow

to infer stiffening paths). In this figure, clear regions

of high material densities can be identified as poten-

tial stiffening paths, even though medium density zones

persist, where the stiffening path is not evident. Simi-

larities can be observed between this solution and our

optimal solutions. Regarding the area around the hatch,

the main stiffening path is accurately found using the

component method proposed in this paper and a simi-

lar density distribution can be inferred from the topol-

ogy optimization results. A thinner secondary stiffening

path to the sides of the hatch can be identified from

Figure 17 which seems to be common to the stiffening

paths obtained with our method and the 20 kg mass

constraint. Concerning the area diametrically opposite

of the hatch the topology optimization suggests curved

stiffeners with bigger dimensions at the bottom of the

cylinder. Large regions of intermediate density values

remain, making it difficult to infer discrete stiffening

paths from this result. Comparing the model obtained

with the SIMP to the ones obtained with our method,

it can be seen that the base of the cylinder are simi-

larly reinforced at a location ±90◦ away from the hatch

(which is consistent with both models of Figures 15).

The model obtained with our method and the 10 kg

constraint has very few stiffeners on the rear side of

the cylinder but seems to adequately reproduce the

bottom of these main stiffening paths. However, the

stiffeners do not extend to the top of the cylinder be-

cause of the mass constraint. On the other hand, the

model obtained with the 20 kg mass constraint is over-

all in better agreement with the SIMP optimization,

as shown by the curvature and by the length of the

stiffeners, extending from bottom to top. However, the

top parts of the stiffening structures are slightly differ-

ent: with our proposed method, the resulting stiffening

paths cross at the top part of the cylinder contrary to

the SIMP result. Noticing that the proposed method

has also determined clear stiffening paths in the region

where the SIMP method converged to intermediate den-

sities, this could justify the slight differences observed

in the stiffening paths. From these comparisons, the op-

timal stiffening structure found with our method seems

to be relevant when compared to stiffening structures

deduced from SIMP optimizations. Furthermore, it al-

lows a straightforward interpretation of the stiffening

structure in terms of a feasible engineering design, espe-

cially in zones where the SIMP optimization converges

to intermediate densities.

6 Conclusions

This paper presents a method to optimize the layout of

stiffeners on large shell structures. The proposed method

can be seen as an extension of the component-based

methods (Guo et al. 2014; Zhang et al. 2018, 2017;

Norato et al. 2015; Zhang and Norato 2017; Coniglio
et al. 2020; Bai and Zuo 2020): stiffeners, assimilated to

components, are projected as sets of beam elements on

a ground structure meshed using structural elements,

i.e. shells and beams. By doing so, the stiffener, which

is intrinsically a beam, is represented as an equiva-

lent lattice in the optimization process. The projec-

tion method allows the components to move freely over

the surface, without any remeshing operation. Further-

more, semi-analytical sensitivities can be derived by us-

ing a gradient-based cost-effective optimizer. A calibra-

tion procedure is proposed for the projection functions,

which enables to minimize the discrepancy between the

optimization model and a reference FE model. Three

compliance minimization examples are given, showing

the efficiency and accuracy of the method. The appli-

cations also show that the method is adapted to large

cylindrical parts that may contain holes.

From the aforementioned elements, this method is

adapted for the pre-sizing in compliance of large cylin-

drical shell structures, giving results that can be in-
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Fig. 17 SIMP topology optimization of a cylin-
der with access hatch with a given maximum
total mass of 80 kg: optimization of the material
density on a mesh of shell elements.

terpreted as feasible engineering designs. Further work

should allow to extend the method to other structural

responses, such as buckling loads, by verifying the ac-

curacy of the responses of the optimization model. A

further axis of development would be to consider other

stiffener cross-sectional sizes and shapes, as well as curvi-

linear stiffening paths, and eventually integrate them as

variables of the optimization.
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