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Introduction

Even though photons are still the most frequently used tool in radiotherapy, the therapeutic advantages of irradiations with ions have been increasingly recognized [START_REF] Malouff | C arbon ion therapy: a modern review of an emerging technology[END_REF]). Due to their different physical characteristics, photon and ion beams, such as protons and carbon ions, differ in their energy transfer profiles. Protons and carbon ions display a specific, highly concentrated dose distribution in depth known as the Bragg peak which allows for radiation to be precisely delivered to the tumor. In addition, rather low levels of energy are deposited in tissues proximal and distal to the tumor, thus minimizing the damage to the adjacent, healthy tissue (Liu and killing abilities than low LET radiation. In contrast to photons, ion irradiation is characterized by higher LET because it deposits high density of energy along the particle track, increasing toward the end of the range [START_REF] Hagiwara | Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation[END_REF]).

The relative biological effectiveness (RBE), which represents the ratio of the biological effect between reference (photon) radiation and tested radiation, is considered in therapeutic practice to be slightly higher than unity for protons [START_REF] Durante | Charged-particle therapy in cancer: clinical uses and future perspectives[END_REF]) but increases for heavier particles. Thus, carbon ions demonstrate 2 to 3, or even more, fold greater RBE than photons (Choi and Kang 2012). However, there is an increased concern that the fixed proton RBE value of 1.1 is an oversimplification because LET increases toward the end of the Bragg-peak which potentially exposes the neighboring healthy tissue to risk (Paganetti et Currently, radiotherapy faces limited biological personalization. Even though the radiosensitivity of normal tissues as well as cancer cells varies considerably, the uniform radiation sensitivity over the entire population has been anticipated [START_REF] Cooke | Intra-tumour genetic heterogeneity and poor chemoradiotherapy response in cervical cancer[END_REF][START_REF] Mcmahon | A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation[END_REF]. Due to RBE dependence on physical and biological parameters and significant uncertainties resulting from complex RBE-LET relationship, biophysical models are important for the estimation of clinically relevant RBE values [START_REF] Paganetti | Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer[END_REF][START_REF] Paganetti | Proton relative biological effectiveness -uncertainties and opportunities[END_REF][START_REF] Mein | Biophysical modeling and experimental validation of relative biological effectiveness (RBE) for 4He ion beam therapy[END_REF]). To make predictions about response of cells to irradiation, cell-specific data such as dose response information is needed, because RBE depends on the underlying intrinsic radiosensitivity of cells. By improving our basic knowledge about DNA damage repair, as it is the major determinant of cellular radiosensitivity, a better predictive capability with lower uncertainties can be obtained [START_REF] Mcmahon | A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation[END_REF]. Nevertheless, the exact mechanisms that lie at the basis of radiation-induced single-strand breaks (SSB), double-strand breaks (DSB) and clustered/complex DNA lesions as well as the great variation of pathways that are involved in response to DNA damage have not yet been fully elucidated ( In the present work, we aimed to gain more insight into variations of DNA damage, through DSB formation, induced by therapeutic protons. Followed alterations are examined as a function of LET and time. For this purpose, human radioresistant cancer cells of different origins, that is, HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells are used. Irradiation of cell samples is performed along the 62 MeV therapeutic proton spread out Bragg peak (SOBP), thus obtaining various LET values. For the one being in the middle of the SOBP, the time course of γ-H2AX foci formation and degradation is followed. To better position the results of DNA damage that arises after exposure to proton irradiation, conventional γ-rays and carbon ions, as a high LET specie, are also included. The selection of cell lines regarding the size and shape of their nuclei, as well as the level of their radiosensitivity will be an important step toward the improvement and validation of the Geant4-DNA numerical simulation toolkit.

Materials and methods

Cell culture

Human HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells that are used in this study, were purchased from ATCC (Rockville, MD, USA). Cells were cultured in RPMI 1640 cell culture medium supplemented by 10% fetal bovine serum, penicillin/streptomycin and L-glutamine (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) and kept in a humidified incubator (Heraeus, Hanau, Germany) at 37 °C and 5% CO2.

In the performed experiments, prior to irradiations, cell lines were seeded in slide flasks, in a suitable number to provide exponential growth of cells at the time of irradiation. Throughout irradiations, flasks were fully loaded with precooled culture medium (∼4 °C), and positioned upright in a specific device to meet horizontal ion beams. Equal settings were maintained for the control samples as for those that were irradiated. In order to provide correct comparison of obtained data, in all experiments carried out either with γrays, protons or carbon ions, for each cell line, even experimental conditions were precisely followed.

Cell cycle analysis

Before irradiation the analysis of cell cycle distribution of cell lines was performed. Samples were trypsinized, centrifuged and washed with PBS. After fixation in 70% icecold ethanol, cells were washed in PBS and incubated with RNAse A (Serva Electrophoresis GmbH, Heidelberg, Germany) in PBS (1 mg/ml) for 20 min at 37 °C. DNA staining was performed by incubation with propidium iodide solution in PBS (50 µg/ml) for 10 min at room temperature in the dark. Cell cycle analysis was performed on CyFlow® cytometer (Partec, GmbH, Münster, Germany) using FloMax® software.

For each sample, 10 000 cells were analyzed.

Irradiation conditions

Irradiations with γ-rays issued by 60 Co source (CIRUS-Cis Biointernational, Gif-sur-Yvette, France) were performed at the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. Cells were irradiated with the dose of 1 Gy at the rate of ∼1 Gy/min, in air at ∼4 °C since the inhibition of repair processes is required. Table 1. Irradiation parameters along the 62 MeV therapeutic proton SOBP. Considering that the carbon ion Bragg peak is very narrow, to avoid complicated and not sufficiently precise positioning of the samples at the pristine peak in order to attain the site providing the wanted LET value, the Bragg peak is somewhat broadened, thus providing sufficiently good reproducibility of the irradiation site [START_REF] Petrović | A radiobiological study of carbon ions of different linear energy transfer in resistant human malignant cell lines[END_REF]). This rather widened Bragg peak is achieved by inserting two specially designed ripple filters into the beam transport line (Romano et al. 2014). The wanted irradiation position is found by using PTW Advanced Markus ionizing chamber, as already described, at the PMMA thickness of 5.08 mm, with the relative dose of 99.8 ± 1.6% corresponding to 199.8 ± 3.1 keV/µm. The accuracy of setting the samples before each irradiation is done by GafChromic HS films. Experimentally obtained depth dose distribution of slightly widened beam of carbon ions is presented in Figure 2, including indicated irradiation position. The three cell lines are chosen because of similar size and geometry of their nuclei as well as comparable radiosensitivity levels. This is done to minimize differences from geometrical point of view and meet the needs of potential numerical simulations.

Immunofluorescence staining of γ-H2AX foci

After irradiation, cell samples are incubated according to the experimental protocol from 30 minutes to 24 h under standard conditions. Prior to fixation and permeabilization, the cells are washed in phosphate-buffered saline (PBS). They are fixed with 4% paraformaldehyde (PFA) in PBS for 15 minutes at room temperature while for the permeabilization of cells, 0.2% Triton-X in PBS is used. Further on, the cells are washed with Tris buffer saline (TBS) and blocked with 5% bovine serum albumin (BSA, Fraction V, Sigma-Aldrich Chemie GmbH) for 1 h at room temperature. DNA damage is visualized by staining of γ-H2AX foci with phospho-histone H2AX Serine139 antibody (Alexa Fluor 488, BioLegend Inc. San Diego, California, United States). Specifically, cells are incubated overnight at +4 °C with antibody diluted at 1:500 in 5% BSA-TBST (TBS-Tween 20). Afterwards, samples are rinsed in TBST and dehydrated in 70, 90 and 95% ethanol, and mounted with Vectashield® antifade mounting medium having propidium iodide to stain DNA (Vector Laboratories, USA). Micrographs are acquired using the Leica TCS SP5 II laser confocal microscope (Leica Microsystem CMS GmbH; Wetzlar, Germany). The image processing is done employing the LAS AF Lite software (Leica Microsystem CMS GmbH) while Image J software is employed for the γ-H2AX foci counting.

Statistical analysis

All experiments are performed in duplicate, repeated three times and statistical differences between experimental groups are calculated by Student's t-test.

Experimental data are presented as means ± SEM (standard error of the mean) while the level of significance is set at p < .05.

Results

The principal idea of this study is to follow the loss of γ-H2AX foci in three radioresistant human cancer cell lines, i.e. Since cell cycle progression is closely related to DNA damage response to radiation, quantification of cell populations in different phases for each of the three cell lines is performed before irradiation campaigns. Their distributions are given in Figure 3.

Between the cell lines there are minor differences within each phase of cell cycle. The majority of cells, which is close to 60%, are in G1 phase, while less than 20% are in S phase.

Figure 3. Cell cycle distributions of HTB140, MCF-7 and HTB177 cells before exposure to radiation.
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The number of γ-H2AX foci per cell at 0.5 h after irradiation with 1 Gy of the 62 MeV proton SOBP, in four irradiation positions defined in Table 1, is presented in Figure 4. At this time point, with the increase of LET the sum of γ-H2AX foci rises for the first three irradiation positions, starting with the LET value of 2.2 keV/μm in the plateau, through 4.4 keV/μm in the middle to 11.3 keV/μm at the distal end, and then it decreases at the irradiation position being at the distal declining edge of SOBP having 19.3 keV/μm. This trend in response to radiation is found for all three tested cell lines with small relative difference between them for each LET (Figure 4). Thus, the estimated average number of γ-H2AX foci per cell goes from ∼20, over ∼27 and ∼33 to ∼29, respectively, while in non-irradiated controls it is ∼2. ). As shown in Figure 5, the time dependent changes in the number of DSB per cell nucleus reveal that the maximum number of DSB can be detected at 0.5 h after irradiation, while later on, it gradually drops. Considering that there is a minor relative discrepancy between the values acquired for the three cell lines, for each time point, their distribution goes on the average from ∼4.5, ∼3.3, ∼3.2, ∼2.9 and ∼2.5 DNA DSB for 0.5, 1, 2, 6 and 24 h, respectively. At 24 h post irradiation there is an increase in the difference between values for the three cell lines. Table 2. Number of DNA DSB (Gy -1 Gbp -1 ) at 0.5 h and 24 h after irradiation with 1 Gy of γ-rays, protons and carbon ions, calculated under the assumption that the number of foci per cell is equal to the number of DSB per nucleus.
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At 0.5 h after irradiations with γ-rays, all three cell lines have maximum of ∼3 DSB (Gy -1 Gbp -1 ), while protons and carbon ions induce higher number of foci, giving ∼4.5 DSB (Gy -1 Gbp -1 ). With respect to non-irradiated control, there is a very significant increase in DNA DSB number in the three cell lines after irradiations with γ-ray, protons and carbon ions (p < .001), except for HTB140 cells irradiated with γ-ray where the rise is important (p < .05). Comparing to γ-rays, only for MCF-7 cells there is a significant increase in the number of foci induced by proton irradiation (p < .05). Carbon ions are considerably more efficient than γ-rays for HTB140 and HTB177 cells (p < .05) and not for MCF-7, while with respect to protons the difference for the three cell lines is minor (p > .05).

The appearance of the foci that are detected in cells irradiated with carbon ions differs from those induced by other two types of irradiations. They are more voluminous than those induced by protons and particularly γ-rays, as revealed by representative micrographs of single cell nuclei given in Figure 6. 
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With prolonged incubation from 0.5 to 24 h, the number of DNA DSB declines for all cell lines and all applied irradiation types. In regard to nonirradiated control, quite an important rise of DNA DSB is observed for protons and carbon ions, for all three cell lines (p < .01), while for γ-rays there is a significant growth only for MCF-7 cells (p < .05). The difference in residual foci is important for protons and carbon ions with respect to γrays, with the average number of DSB for γ-rays being ∼1, for protons ∼2.1 and for carbon ions ∼2.6 (Table 2). The lowest number of foci is detected in γ-irradiated cells, with somewhat lower number observed in HTB140 cells than in other two cell lines. In comparison with γ-rays, statistically significant change in the number of DSB after protons is found in HTB140 (p < .01), MCF-7 (p < .05) and HTB177 (p < .01) cells. Carbon ions also induce significantly higher number of DSB compared to γ-rays for HTB140 (p < .01), MCF-7 (p < .05) and HTB177 (p < .01) cells. However, no statistically significant changes are found in the number of DSB between cells irradiated with protons and carbon ions (p > .05, Table 2).

Another way to evaluate the relative level of obtained DSB values is to calculate the isodose effect index for γ-H2AX foci formation, which is the ratio at the dose of 1 Gy, of the DNA DSB number (Gy -1 Gbp -1 ) induced by protons or carbon ions and conventional γ-rays. The calculated values at 0.5 and 24 h after irradiation are given in Table 3. There is a small difference in the index values regarding protons and carbon ions at 0.5 h postirradiation for all cell lines (p > .05), except for the most resistant HTB140 cells, that is largely due to the modest DNA damage capacity of γ-rays [START_REF] Petrović | Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak[END_REF][START_REF] Petrović | A radiobiological study of carbon ions of different linear energy transfer in resistant human malignant cell lines[END_REF]. Still this difference is insignificant (p > .05). In general, for HTB140 and HTB177 cells, this index reveals higher levels at 24 h after irradiation (p < .05, p < .01), with an increased difference between protons and carbon ions, being in favor of carbons, although remaining statistically insignificant (p > 0.05).

Table 3. Index of isodose effect for γ-H2AX foci formation, that is, DNA DSB number (Gy -1 Gbp -1 ) produced by protons or carbon ions with respect to conventional γ-rays, all at the dose level of 1 Gy.
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Discussion

With intention to improve understanding of the effects of LET alterations along the therapeutic proton SOBP, as well as variations with time of these outcomes, consequent differences in DNA DSB induction and resolution are chosen as a specific biological endpoint. To facilitate plausible link of the results obtained in vitro with those found in silico, it is considered in this study that the measured γ-H2AX foci are directly proportional to DNA DSB (Redon et al. 2009). Cancer cells have an intrinsic radiosensitivity driven by their particular tissue of origin and may acquire mutations which affect radiation response [START_REF] Mcmahon | A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation[END_REF]). Thus, three different human cancer cell lines, HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 nonsmall lung cancer cells are exposed to irradiations along the 62 MeV therapeutic proton SOBP. In such a way, four irradiation positions and LET values are defined (Table 1).

There is quite good agreement between depth dose distributions in PMMA that are obtained experimentally and by simulations using the Geant4 toolkit. This is particularly visible in the defined irradiation positions and allows to pick up LET values from the depth dose averaged LET curve that is evaluated by simulations (Figure 1). Accurate numerical simulations of the beam transport are essential for successful experimental campaigns and adequate interpretation of results (Romano et al. 2014).

To position the results of proton irradiations within the outcomes of other irradiation species used in cancer therapy, the cell lines are irradiated with conventional γ-rays and carbon ions having LET of ∼200 keV/μm, the first considered to be less while the second more efficient in cell elimination than protons. The LET value for carbon ions is particularly selected since it is reported to be the most powerful in cell killing 2). This good accordance permits to choose with reasonable reliability the wanted LET value from the depth dose averaged LET curve, thus defining the corresponding irradiation position.

Considering that different repair pathways triggered by irradiation partly depend on cell cycle stage, it is necessary to evaluate cell populations in various phases of cell cycle for the three cell lines under consideration (Figure 3). The majority of cells are irradiated in G1 phase, thus indicating non-homologous end-joining (NHEJ) as an active repair pathway. Accumulation of cells in G1 phase minimizes contribution from homologous recombination (HR) which is active in S and G2 phase [START_REF] Mao | DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells[END_REF]; Vitti and Parsons 2019).

After being irradiated with protons, all three cell lines respond in a similar manner without showing major fluctuations in γ-H2AX foci number within each LET value, that is, irradiation position along the therapeutic SOBP (Figure 4). When moving irradiation position throughout the proton SOBP, with the rise of LET from the SOBP plateau, through mid-position to the distal end, there is an increase of γ-H2AX foci number per cell (Table 1, Figure 4). However, for the highest LET value, which is on the distal fall off part of SOBP, the foci number per cell drops. γ-H2AX foci assay seems to be a surrogate for DNA damage, because it detects not only irradiation induced DSB but also those produced by replication. These types of damage are repaired by different cellular pathways. Certain studies dedicated to processing of clustered DNA damage, have shown that more than 50% of DSB induced by low LET radiation are rejoined within 30 minutes and that additional DSB are formed post-irradiation [START_REF] Gulston | Processing of clustered DNA damage generates additional double-strand breaks in mammalian cells postirradiation[END_REF]). Moreover, it is unclear whether the loss of visible γ-H2AX foci precisely correlates with the final step in the rejoining of DNA strand breaks or it happens with delay. Although γ-H2AX foci analysis is restricted, this does not exclude its usefulness for monitoring the process of DSB repair as long as the imperfections are considered carefully during interpretation of results [START_REF] Löbrich | gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization[END_REF]. Good experience of the use of this analysis is shown for irradiations with protons (Zlobinskaya et al. 2012). Taking into account benefits and limitations of γ-H2AX foci assay, in this study, we consider that the foci are fully formed by ∼0.5 h after irradiations [START_REF] Ivashkevich | γH2AX foci as a measure of DNA damage: a computational approach to automatic analysis[END_REF][START_REF] Lu | DNA-PKcs promotes chromatin decondensation to facilitate initiation of the DNA damage response[END_REF].

Variations in the amount and complexity of DNA lesions produced along the proton Bragg peak are still rather controversial and additional investigations on how particular DNA repair pathways contribute to the formation of clustered DNA damage are needed.

It is suggested that more pronounced lethal effects of protons at the distal edge and particularly distal fall off part of SOBP (irradiation positions C and D in Figures 1 and4) is most probably related to their capability to induce rather complex or clustered DSB. This type of irradiation-induced damage is more difficult to repair and is considered to be consequence of higher LET and truck structure of protons (Calugaru et et al. 2006, 2010). Although there are differences in radiosensitivity for the three cell lines, small variations in foci formation, which are all within the standard error of the mean, are detected for the same LET values. This leads to the presumption that at 0.5 h after irradiation cells having different radiosensitivity levels would produce a rather close number of foci, therefore not expressing their inherent nature, that is, radiosensitivity degree. Such behavior is in favor of performing validation of the results acquired through numerical simulations using Geant4-DNA by those experimentally obtained, since this toolkit does not consider inherent differences between cell lines (Sakata et al. 2020).

Monitoring the phosphorylation of histone H2AX is employed to visualize and quantify the kinetics of DNA DSB evolution due to time-dependent repair events [START_REF] Oeck | Relating linear energy transfer to the formation and resolution of DNA repair foci after irradiation with equal doses of X-ray photons, plateau, or Bragg-peak protons[END_REF]). Rather than examining only the initial rise of DNA DSB, post-irradiation time of 24 h is often used to distinguish lesions that have been repaired from those that are persistent, more difficult for the cell to restore and are therefore considered as probably lethal. Consequently, quantification of γ-H2AX foci is followed over the defined time interval starting from 0.5 h up to 24 h after irradiation. Since the loss of clonogenic capacity after irradiation could be explained by the inability of the affected cell to repair the damage, the number of residual 5).

The presence of DSB at longer time points is due to DSB which are more difficult to repair, but also to late forming DSB issued through processing of complex or clustered DNA damage (Vitti and Parsons 2019). For each time point, there is a small difference between the numbers of DSB obtained for the three cell lines and are within the standard error of the mean. Still there is a rise in the difference between values for the three cell lines at 24-h postirradiation. In addition, HTB140 cells show lower number of residual DSB compared to other two cell lines, pointing out their higher efficacy in repairing damage that arises after proton irradiation. This is reflected in greater survival level of HTB140 cells that explains their higher radioresistance in general [START_REF] Petrović | A radiobiological study of carbon ions of different linear energy transfer in resistant human malignant cell lines[END_REF]. With the prolonged incubation period up to 24 h, the inherent nature of cell lines becomes apparent through increased differences in the number of persisting DNA DSB. Described trend will later increase and result in clonogenic survival that is different among the three cell lines [START_REF] Banáth | Residual gammaH2AX foci as an indication of lethal DNA lesions[END_REF][START_REF] Petrović | A radiobiological study of carbon ions of different linear energy transfer in resistant human malignant cell lines[END_REF]).

Since repair events and cellular destiny after irradiations with higher-LET particles are still quite unclear, we have included carbon ions to compare their effects with those of protons as well as with conventional γ-ray irradiation and thus better understand the radiosensitivity of the tested cell lines (Table 2). At a shorter time interval, which is 0.5 h in this study, carbon ions produce more damage to the tested cell lines than γ-rays, while with regard to protons the difference is small. Irradiations with protons provoked more foci than γ-rays in all cell lines at 0.5 h after irradiations. Counting foci at 24 h after irradiation points out that variation in residual foci is significant for protons and carbon ions with respect to γ-rays, while mutually the difference is minor. Index of the isodose effect for γ-H2AX foci formation is introduced in a similar way as isodose relative biological effectiveness in cell survival studies (Shim et al. 2016). Thus, one can estimate the relative efficiency of DNA DSB production of a chosen radiation specie with respect to conventional one. There is a minor variation in index of isodose effect within protons or carbon ions, as well as when comparing protons to carbon ions, for the three cell lines, at 0.5 h (Table 3). At 24 h after irradiations, the index increases with respect to the time point of 0.5 h, since it is influenced by persistent residual foci that lead to the final outcome -surviving fraction. Larger differences in the index at 24 h are seen within protons or carbon ions, as well as for protons vs. carbon ions, for the three cell lines. This conduct, which is not noticed at 0.5 h, implies that as time goes by up to 24 h inherent individual characteristics of each cell line become visible, having at the origin their specific repair capacities. Major discrepancy is produced for all comparisons with respect to HTB 140 cells, mainly due to low number of DNA DSB produced by γ-rays.

Compared to protons, carbon ions do not produce significantly higher number of γ-H2AX foci, as it might be expected because of their more powerful physical properties that result in higher cell killing capacity. The experiments performed in this study required lower radiation dose of 1 Gy for the quantification of γ-H2AX foci per single-cell nucleus, since higher doses could trigger accumulation and overlapping of fluorescent signal. Still, no major differences in residual foci count are observed after carbon ions compared to protons as it could be assumed according to relevant survival data. In the present work we observe that γ-H2AX foci arising after carbon ion irradiations are larger and with different, more irregular shape compared to those induced by either γrays or protons, which produce foci that are smaller and more rounded (Figure 6). Even though a lower irradiation dose is applied, carbon ions induce DNA lesions that are in closer proximity to one another, causing the overlapping of fluorescent signals. Therefore, the induction of higher amount of DSB may result in underestimation of their number due to limitations of the detection method which is unable to distinguish foci that are too close to each other. Moreover, clustered DNA lesions could also be the reason for the higher number of residual foci after carbon ions compared to protons and especially γ-rays ( 

Conclusion

In the present study HTB140, MCF-7 and HTB177 cell lines are selected because of similar geometries and comparable dimensions of their nuclei as well as comparable radiosensitivity. By visualizing DNA DSB produced in cells after irradiations along the therapeutic proton SOBP, thus obtaining different LET values, we demonstrate that with the rise of LET up to the distal end of SOBP, the number of γ-H2AX foci rises, while passing to the distal declining edge it drops. For each LET used, the number of foci for the three cell lines is very close. Choosing as the irradiation position the one in the middle of the proton SOBP, time dependence of formation and disappearance of DNA DSB is followed revealing that their number gradually decreases with time. While the 'early effects' after irradiation display no significant difference between the three cell lines, those related to the formation of residual foci start to express the inherent nature of tested cells, therefore increasing discrepancy between them. When compared to γrays, protons express higher effectiveness when inducing DSB in all three cell lines. Irradiations with carbon ions show their larger capacity, with respect to other two irradiation species, to induce DNA damage as illustrated by very prominent fluorescent signal. Of note, in terms of DSB number, although not expected, tested cell lines responded similarly to carbon ions and protons. Since carbon ions are more effective in elimination of analyzed cancer cells as previously demonstrated by survival data, this could be explained by their ability to cause more complex DSB which are hard to distinguish due to proximity of ionizing events and consequent foci overlapping. With aim to implement patient-specific DNA damage response into available numerical models, these results would be used for validation of the Geant4-DNA simulation toolkit and thus help to develop personalized cancer therapies.
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 1 Figure 1. Measured and simulated depth dose and depth LETdose distribution in Perspex (PMMA) of the 62 MeV proton SOBP beam. Arrows indicate irradiation positions. The ordinate on the left side is related to experimental and simulated dose distributions, while the right one corresponds to dose averaged LET.
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 1 Figure 1 also comprises the distributions of dose and dose averaged LET (LETdose) as functions of depth in PMMA obtained by the open-source 'Hadrontherapy' application (Cirrone et al. 2005) of the Geant4 Monte Carlo toolkit (Agostinelli et al. 2003; Allison et al. 2006, 2016), and employed to simulate the CATANA facility transport beam line (Cirrone et al. 2004, 2017). The used physical models and data libraries are those that are appropriate for the energy range in radiotherapy. In this figure the ordinate on the left side is related to experimental and simulated dose distributions, while the right one corresponds to dose averaged LET. Detailed description of numerical simulations, conditions and implemented algorithms are given elsewhere (Romano et al. 2014; Petringa et al. 2020). However, the already published results differ slightly from those given in Figure 1 due to minor changes in elements of the transport beam line, such as modulator wheel and range shifter. In numerical simulations, the phantom made of PMMA is split into 10 µm wide slices perpendicular to the axis of the beam. Irradiations with the 62 MeV/u carbon ions were accomplished at the INFN-LNS 0° beam transport line with the dose averaged LET of ∼200 keV/µm, which has the highest effectiveness in cell elimination (Weyrather and Kraft 2004; Ando et al. 2005; Belli et al. 2008).Considering that the carbon ion Bragg peak is very narrow, to avoid complicated and not sufficiently precise positioning of the samples at the pristine peak in order to attain the site providing the wanted LET value, the Bragg peak is somewhat broadened, thus providing sufficiently good reproducibility of the irradiation site[START_REF] Petrović | A radiobiological study of carbon ions of different linear energy transfer in resistant human malignant cell lines[END_REF]). This rather widened Bragg peak is achieved by inserting two specially designed ripple filters into the beam transport line (Romano et al. 2014). The wanted irradiation position is found by using PTW Advanced Markus ionizing chamber, as already described, at the PMMA thickness of 5.08 mm, with the relative dose of
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 2 Figure 2. Measured and simulated depth dose and depth LETdose distribution in Perspex (PMMA) of the 62 MeV/u widened carbon ion beam. Arrow indicates irradiation position. The ordinate on the left side is related to experimental and simulated dose distributions, while the right one corresponds to dose averaged LET.

Figure 4 .

 4 Figure 4. Number of γ-H2AX foci per cell as a function of LET, 0.5 h after irradiation with 1 Gy of 62 MeV protons along the therapeutic SOBP (irradiation positions A, B, C and D). Results are presented as mean ± SEM (standard error of mean).

Figure 5 .

 5 Figure 5. Number of DNA DSB (Gy -1 Gbp -1 ) at 0.5, 1, 2, 6 and 24 h after irradiation with 1 Gy in the middle of the 62 MeV therapeutic proton SOBP. Results are presented as mean ± SEM (standard error of mean). The assumption is that the number of foci per cell is equal to the number of DSB per nucleus.

Figure 6 .

 6 Figure 6. Representative micrographs of single cell nuclei with γ-H2AX foci at 0.5 h after irradiation with 1 Gy of γ-rays, 62 MeV/u mid proton SOBP and carbon ions. Microscope: LeicaTCS SP5 II confocal microscope. Bar: 20 µm.

  

  al. 2002; Durante et al. 2017; Ilicic et al. 2018; Ray et al. 2018; Vitti and Parsons 2019). Higher RBE of particle radiation can be explained by greater complexity of induced DNA damage, which is more difficult for the cell to repair (Ostashevsky 1989; Goodhead et al. 1993; Goodhead 1994; Schipler and Iliakis 2013).

  Selected post irradiation incubation time points are 0.5, 1, 2, 6 and 24 hours and correspond to the interval needed to track γ-H2AX foci formation process, from initial induction to its disappearance. The obtained results with protons are compared with two types of radiation used in cancer therapy, conventional γ-rays being less efficient and carbon ions of 199.8 keV/µm, considered to be more effective than protons. with the Geant4 toolkit, as well as dose averaged LET as a function of depth in PMMA, also obtained by Geant4 simulations. These data are indispensable for designing the experimental setups and are a part of the overall results attained in this study.

	Moreover, this LET value is reported to be in the range of the most efficient one in cell
	killing with carbon ions (Weyrather and Kraft 2004; Ando et al. 2005; Fokas et al. 2009;
	Okayasu 2012). Time points involved in this comparison are 0.5 h, representing the
	maximal response to irradiations (Ivashkevich et al. 2011; Lu et al. 2019) and 24 h,
	corresponding to the expression of residual foci (Banáth et al. 2010; Vitti and

HTB140, MCF-7 and HTB177 cells, as a function of LET and time. To provide different LET values, cells are irradiated at four irradiation positions along the 62 MeV therapeutic proton SOBP, thus obtaining LET of 2.2, 4.4, 11.3 and 19.3 keV/µm (Figure

1

, Table

1

). Irradiation positions belong to characteristic parts of the proton SOBP profile: plateau, middle, distal end and distal declining edge, all being of specific interest in clinical practice. The time dependent variation of the number of γ-H2AX foci is analyzed for the LET of 4.4 keV/µm, which is in the middle of the SOBP. Parsons 2019). In all irradiations, the dose of 1 Gy is applied.

For protons and carbon ions, respectively, Figures

1 and 2

gather data points representing relative dose as a function of depth in PMMA obtained by experiments and numerical simulations

  (Weyrather and Kraft 2004; Ando et al. 2005; Fokas et al. 2009; Okayasu 2012; Petrović et al. 2020). Experimentally obtained depth dose distribution of carbon ions in PMMA matches rather well the one obtained by numerical simulations with Geant4 toolkit (Figure

  al. 2011; Oeck et al. 2018).Our previous observation is that melanoma, breast adenocarcinoma and non-small lung cancer cell lines differ in radiosensitivity showing dissimilar survival levels after irradiation with protons (Petrović et al. 2020; Ristić Fira et al. 2020). It is reported that HTB140 melanoma cells are the most radioresistant to protons when compared to either MCF-7 breast carcinoma or HTB177 non-small lung cancer cells. These findings are supported by other literature data suggesting that HTB140 cells belong to the group of highly radioresistant cancer cell lines[START_REF] Fertil | Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy[END_REF] Petrović 

  Our previous findings indicate higher cell killing ability of carbon ions compared to protons in HTB140, MCF-7 and HTB177 cells that is explained by different track structure and more complex damage produced by carbon ions (Schipler and Iliakis 2013; Lopez Perez et al. 2019; Petrović et al. 2020). In contrast to γ-rays, which induce DSB with mostly random distribution of small foci within the nucleus, data obtained for heavy ion particles demonstrate the existence of clustered DSB (foci) along the particle track (Weber and Kraft 2009; Lopez Perez et al. 2016; Friedland et al. 2017). As shown by Monte Carlo simulations, these complex DNA lesions may comprise DSB, but also SSB and base damages (Hagiwara et al. 2019).

Table 2 )

 2 . Delay in resolution of DNA lesions, as reflected by residual foci, could be due to complexity of DNA damage that is difficult to repair(Suzuki et al. 2000;[START_REF] Oeck | Relating linear energy transfer to the formation and resolution of DNA repair foci after irradiation with equal doses of X-ray photons, plateau, or Bragg-peak protons[END_REF][START_REF] Perez | D NA damage response of clinical carbon ion versus photon radiation in human glioblastoma cells[END_REF]. For high LET heavy ion irradiations, it has been reported that with the rise of LET complex DNA damage increases in irradiated cells. These are mostly unrepairable lesions that provoke either chromosome aberrations or lead cells into senescence[START_REF] Asaithamby | Unrepaired clustered DNA lesions induce chromosome breakage in human cells[END_REF] Zhang et al. 2016). It is necessary to make distinction between unrepairable, highly complex DNA damage produced by heavy ions and complex DNA damage sights created by protons which are probably less complex in itself and in fact repairable (Sage and Shikazono 2017; Vitti and Parsons 2019).A variety of activated biological mechanisms determines cellular response to radiation with DNA repair processes being the most important[START_REF] Barbieri | Predicting DNA damage foci and their experimental readout with 2D microscopy: a unified approach applied to photon and neutron exposures[END_REF]). The final fate of irradiated cell is defined by complex cascades of pathways resulting either in overcoming damage and consequently cell survival or inefficiency of repair mechanisms leading to mutations and cell death[START_REF] Belka | The fate of irradiated tumor cells[END_REF]). DNA damage induced by radiation might arise either as a consequence of direct interaction between irradiation and DNA molecule or be mediated by free radicals generated through radiolysis of water[START_REF] Goodhead | Initial events in the cellular effects of ionizing radiations: clustered damage in DNA[END_REF] Wallace 1998;[START_REF] Mavragani | Key mechanisms involved in ionizing radiation-induced systemic effects. A current review[END_REF]). It has been shown that in contrast to low-LET irradiations which produce predominantly indirect damage to DNA, high-LET irradiations are capable to directly insult DNA molecule (Roots and Okada 1972;[START_REF] Mavragani | Key mechanisms involved in ionizing radiation-induced systemic effects. A current review[END_REF]). The complexity of interplay of different pathways involved in DNA damage response including different types of cell death, i.e. apoptosis, mitotic catastrophe or senescence makes it difficult to predict final outcome of damage caused by irradiation. Considering that cellular destiny after irradiation is likely to be dependent on cell line, it is difficult to make a unique mechanistic model of cellular response to radiation[START_REF] Barbieri | Predicting DNA damage foci and their experimental readout with 2D microscopy: a unified approach applied to photon and neutron exposures[END_REF]. Even though numerical modeling of radiation-induced DNA damage has proven to be successful, in order to improve current models based mostly on physical interactions, further attempts are orientated toward better understanding of the DNA damage response mechanisms. Biological data on irradiation response of different cancer cells are therefore important as they could be compared with simulated results, especially when it comes to the effects of various radiation qualities which result in DNA lesions of diverse complexities (Sakata et al. 2019). Data presented in this study, particularly those belonging to 'early effects' at 0.5 h, with no significant difference between the three cell lines, would be valuable for comparisons with simulation data and contribute to the development of more accurate in silico tools.
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