Analyses à l'aide de PIXE à haute énergie, de pièces d'argent et de matrices de sceaux en cuivre, provenant des collections du musée Dobrée (France, XIIIe – XIXe siècle)

Q. Mouchard¹, G. Pipelier², J. Echinard³, F. Haddad^{1,2}, C. Koumeir^{1,2}, S. Lemoine³, G. Louarn¹, V. Métivier¹, C. Pelé-Meziani³, G. Salaün³, N. Servagent¹, A. Vilain⁵

¹ Laboratoire Subatech, IMT Atlantique, Université de Nantes, CNRS, Nantes, France

² GIP ARRONAX, Nantes, France

³ Laboratoire Arc'Antique, Département de Loire-Atlantique, Nantes, France

⁴ Institut des Matériaux Jean Rouxel (IMN), CNRS, Université de Nantes, Nantes, France

⁵ UFR d'Histoire, Histoire de l'Art et Archéologie, Chemin de la Censive-du-Tertre, Nantes, France

Collections du musée Dobrée (Nantes)

- 10 départements :
 - Archéologie nationale
 - Archéologie méditerranéenne
 - Arts extra-européens
 - Numismatique et sigillographie
 - Beaux-arts et objets d'arts
 - Sculptures
 - Arts graphiques
 - Autographes et archives
 - Manuscrits, incunables et éditions rares
 - Archéologie militaire

Objectifs des analyses :

- Collection sigillographie :
 - Composition globale des matrices de sceaux
 - Afin de permettre le classement et le recoupement avec les corpus nationaux
- Collection numismatique :
 - L'analyse physico-chimique permet :
 - de déterminer les sources d'approvisionnement et les routes d'échanges
 - d'apporter des éléments pour définir la technologie mise en œuvre

06/07/2021

• d'authentifier une œuvre donnée

Méthodologie itérative pour la détermination des fractions massiques

06/07/2021

Méthodologie itérative pour la détermination des fractions massiques

A. Denker, K.H. Maier, Nucl. Instr. And Meth. In Phys. Res. B 161-163 (2000) 704-708

PIXE à haute énergie :

- Parcours des protons : ~mm
- Section efficace d'ionisation constante
- Analyses en profondeur
- Adaptés pour les objets archéologique épais
- Détection des éléments grâce aux raies K plus énergétiques

$$\rho_{Z} = \frac{N_{X}^{Z}}{N_{p} \times \varepsilon \times b \times \omega_{K} \times \overline{\sigma_{i}} \times \frac{\cos \theta}{\cos \phi} \times \frac{1}{\mu_{c}} \times \left(1 - \exp\left(-\mu_{c} \times d_{L} \times \frac{1}{\cos \phi}\right)\right)} \times \frac{M_{Z}}{Na}$$

Validation de la méthode à l'aide de standards

5-7 juillet 2021

• Alliage binaire Argent/Cuivre

Element	ICP-AES (%m)	HE PIXE (%m)
Ag	92.70 ± 0.03	93 ± 2
Cu	7.27 ± 0.04	6.9 ± 0.2

Loire Atlantique

ubatech

06/07/2021

MIN gran

Laiton rouge plombé

Element	ICP-AES (%m)	HE PIXE (%m)
Cu	82.02 ± 0.10	82 ± 2
Zn	9.01 ± 0.06	8.4 ± 0.3
Sn	4.65 ± 0.04	4.7 ± 0.1
Pb	2.99 ± 0.02	3.5 ± 0.1

m	Applications Francophone"
N	DISTANCIEL
_	

Préparation des matrices de sceaux

Jubatech

Montage expérimental

Détecteur SDD

8

ARRONA

Détecteur HPGe + blindage

Ligne faisceau

Détecteur CdTe

UNIVERSITÉ DE NANTES

Stand patrimoine de Loire-Atlantique

ubatech

Détecteur HPGe Spectres RX normalisés par le pic de cuivre

Résultats obtenues après l'analyse (en % de masse)

Elements	968-1-117-T6	N5711-T2	N5869-T5	N7000-T1
Fe	$(0,6 \pm 0,1)\%$	$(0,4 \pm 0,3)\%$	$(0,8 \pm 0,4)\%$	(0,6 ± 0,3)%
Cu	$(73 \pm 3)\%$	$(83\pm4)\%$	$(82\pm3)\%$	$(83\pm4)\%$
Zn	$(5.1\pm0.4)\%$	$(11.5\pm1.0)\%$	$(11.6 \pm 1)\%$	$(11 \pm 1)\%$
Sn	$(3.5 \pm 0.3)\%$	$(2,4 \pm 0,2)\%$	$(2.5 \pm 0,1)\%$	$(2.8 \pm 0.3)\%$
Sb	$(1.7 \pm 0, 1)\%$			
Pb	$(16 \pm 1)\%$	$(3.2 \pm 0.3)\%$	$(3.0 \pm 0,2)\%$	$(2.2 \pm 0,2)\%$

Les routes maritime des métaux précieux au XVIe siècle

- En Europe, l'argent provenait • essentiellement du Mexique, puis de Potosi à partir de 1548 (suite à la découverte des mines en 1545)
- Vers 1570 1575, les arrivages d'argent • Potosien contribuèrent de manière significative à alimenter les ateliers de Nantes et de Rennes. (Entre 1575 et 1604, la Monnaie de Nantes convertit cent tonnes d'argent en pièces de monnaie)
- En 1990, avec le cyclotron du laboratoire CERI (CEMHTI actuel-CNRS d'Orléans), des analyses par activation neutronique ont révélé que l'indium élément rare pouvait être le marqueur spécifique de l'argent Potosien.

Le Roy Ladurie Emmanuel, Barrandon Jean-Noël, Collin Bruno, Guerra Maria, Morrisson Cécile. Sur les traces de l'argent du Potosí. In: Annales. Économies, Sociétés, Civilisations. 45^e année, N. 2, 1990. pp. 483-505.

Faisceau alpha :

- Meilleur section efficace
- Meilleur sensibilité

Eléments traces identifiés Analyse du spectre RX basse énergie

- Les pièces de 1561 et 1575 sont similaires, elles renferment de l'or à environ 0,03 %m (traceurs de l'Ag européen et mexicain)
- Pas de présence d'or dans la pièce de 1599

13

UNIVERSITÉ DE NAM

Eléments traces identifiés Analyse du spectre RX dans la région de l'indium (K_{α})

- L'intensité du pic d'indium est corrélée avec la date de fabrication, le plus intense correspondant à la pièce la plus récente (< 30 μg/g)
- Pas de présence d'indium dans la pièce la plus ancienne fabriquée avant l'arrivage de l'argent potosien à Nantes

UNIVERSITÉ DE NAM

Conclusions & perspectives

- Analyses des matrices de sceaux :
 - Résultats cohérents avec les données historiques
 - Identification d'une matrice présentant une anomalie de concentration élevée de plomb
- Analyses des pièces d'argents :
 - L'indium mesuré dans les pièces de monnaies du XVIe siècle avec PIXE à ARRONAX corrobore les connaissances historiques, liant l'origine du métal à la période de fabrication.
 - Des améliorations du dispositif expérimental sont nécessaires pour diminuer la limite de détection. Cela permettra de réduire le temps d'irradiation et de rechercher d'autres éléments traces.

La technique PIXE est bien adaptée à l'analyse des objets du patrimoine

Merci de votre attention ! 🙂

This work has been in part supported by a grant from the French National Agency for Research called "Investissements d'Avenir", Equipex ArronaxPlus no ANR-11-EQPX-0004 and by the CPER 2007-2013, including European Union funding (FEDER)

06/07/2021

