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Abstract

Monotonicity is a major property of entropy
measures. In this paper, we focus on entropy
measures for intuitionistic fuzzy sets and
interval-valued fuzzy sets. We consider their
polar representation which provides an easy
interpretation of monotonicity for several en-
tropy measures introduced in the literature.
Moreover, this polar representation enables
us to propose two new kinds of monotonicity
for such entropies, that offer a more under-
standable way to explain differences of en-
tropies. Classical measures of entropy for
intuitionistic fuzzy sets are compared with
regard to these new forms of monotonicity.

Keywords: Entropy, Information measure,
Intuionistic fuzzy sets, Interval-valued fuzzy
sets, Monotonicity, Polar representation.

1 Introduction

Monotonicity is a major property of entropy measures
(or entropies for short) [3] that relies on a given order.
It may be a partial order, on the sets on which it applies.
In the literature, it does not exist a unique definition of
a monotonicity property for an entropy measure.

In the fuzzy setting, and in particular, when consid-
ering Atanassov Intuitionistic Fuzzy Sets (IFS) [2] or
Interval-Valued Fuzzy Sets (IVFS) [23], several en-
tropies have been proposed, often defined from a spe-
cific definition of monotonicity [5, 6, 7, 19]. Indeed,
these two models of representation, IFS and IVFS,
are equivalent from a theoretical point of view, even
though they are different in practice [6, 8]. Therefore,
entropies for one of this kind of fuzzy sets are usable
for the other kind. Such entropies are very useful to
measure the information brought out by an IFS or an

IVFS in several kinds of application, such as in deci-
sion support systems [22] or in machine learning [4] to
cite a few examples.

In order to enable a more interpretable study of en-
tropies in the IFS/IVFS setting, we introduced a polar
representation of these kinds of fuzzy sets [13, 15]. In-
deed, it is very promising to manipulate and to study
such bipolar information represented as polar coordi-
nates [13, 15, 20] and we can highlight the gain in in-
terpretability it allows.

In this paper, we propose two definitions of monotonic-
ity in this context. The polar representation allows the
introduction of a monotonicity based on the radius and
another one based on the angle. They prove to be more
easily interpretable as they take into account the two
components of the IFS in a global way and represent a
measure of the disorder in the values. They are closer
to the classic interpretation of entropy than the existing
definitions.

The paper is composed as follows. In Section 2, a re-
call on IFS and IVFS is done and we remind the con-
nections between these two representations. In Sec-
tion 3, the polar representation of IFS is introduced
and the meaning of each of the two components of
this representation are highlighted. In Section 4, after a
quick recall of existing monotonicity properties and of
the three main entropies of IFS, we introduce two new
definitions of monotonicity for an entropy of IFS. Sec-
tion 5 concludes this paper and highlights some future
works.

2 Intuitionistic and Interval-valued
Fuzzy Sets

Let U = {u1, . . . ,un} be a discrete universe and let A be
a subset of U that might be imprecisely defined. The
intuitionistic fuzzy sets and the interval-valued fuzzy
sets are two representations of the imprecision that
point out two different ways of representing the same



knowledge about the membership of an element u ∈U
to the subset A.

As it has already been shown in the literature, these
two models of representation are theoretically equiv-
alent. However, each of them brings out a particular
approach to the definition of A and is adapted to spe-
cific applications.

2.1 Intuitionistic Fuzzy Sets (IFS)

In the fuzzy set community, the intuitionistic fuzzy sets
have been introduced by Atanassov [2]. An IFS A of U
is defined as:

A = {(u,µA(u),νA(u)) |u ∈U}

with µA : U → [0,1] and νA : U → [0,1] such that for
all u ∈U , 0≤ µA(u)+νA(u)≤ 1.

The values µA(u) and νA(u) are, respectively, the mem-
bership degree and the non-membership degree of u
to A.

The complement Ac of the IFS A is defined as the sub-
set Ac = {(u,νA(u),µA(u)) |u ∈U}

Two particular cases are the following: U is the IFS
such that µU (u) = 1 and νU (u) = 0 for all u ∈ U ,
and the empty set is the IFS such that µU (u) = 0 and
νU (u) = 1 for all u ∈U .

The margin of hesitancy of the membership of u to A
is defined as πA(u) = 1− (µA(u) + νA(u)), it is also
called intuitionistic index of u to A. This index informs
us about the lack of knowledge about A when it exists.

When the margin of hesitancy according to A is equal
to zero for all u, that is to say when µA(u)+νA(u) = 1,
∀u ∈U , then A is a Zadeh’s fuzzy set.

An IFS A such that µA(u) = νA(u) = 0, ∀u ∈U is said
completely intuitionistic [5]. It corresponds to an IFS
with a maximal margin of hesitancy, stating that there
is no information available concerning the membership
or the non-membership to A for elements from U .

2.2 Interval-Valued Fuzzy Sets (IVFS)

Interval-valued fuzzy sets have been introduced by
L. A. Zadeh in 1975 [23]. In the sequel, we use no-
tations classically used in the literature [7, 8].

An IVFS A of U is defined by a function FA from
U to I([0,1]), the set of all closed intervals of [0,1],
such that for every u ∈ U , FA(u) = [ f

A
(u), f A(u)]

with f
A
(u) ≤ f A(u). The IVFS is then the set A =

{(u, [ f
A
(u), f A(u)]) |u ∈U}.

This interval represents a framing of the degree of
membership of u to A. f

A
(u) represents the minimum

value that can be given to the degree of membership of
u to A and f A(u) the maximum value that can be given
to this degree. The bigger this interval, the less knowl-
edge or reliable information we have on the belonging
of u to A.

When f
A
(u) = f A(u) for all u ∈U , then A is a Zadeh’s

fuzzy set.

2.3 IFS or IVFS?

Various authors have shown that the intuitionistic and
interval-based knowledge representations are equiva-
lent. There exists a one-to-one mapping between the
set of IFS and the set of IVFS of U [1, 5, 7, 8]. In other
words, the IFS A = {(u,µA(u),νA(u)) |u ∈U} can be
represented as the IVFS

{(u, [µA(u),1−νA(u)]) |u ∈U}.

Conversely, the IVFS A = {(u, [ f
A
(u), f A(u)]) |u ∈U}

can be represented as the IFS

{(u, f
A
(u),1− f A(u)) |u ∈U}.

Figure 1 illustrates the representation of an IVFS and
the equivalent IFS.
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Figure 1: Links between IFS and IVFS.

Thus, it can be concluded that IFS and IVFS are two
different representations of a similar phenomenon of
the knowledge related to both the membership and the
non-membership of an element to a set. As a conse-
quence, the choice of one of these representations de-
pends only of the context of use: one could be more ap-
propriate in a given context than the other. One could
conclude that theoretical study related to IFS could
easily be adapted to IVFS and reciprocally.

In the following, we have decided to focus on the IFS
representation and we argue that the study can also be
adapted to IVFS.



3 Polar representation of IFS

An IFS A = {(u,µA(u),νA(u)) |u ∈ U} can be rep-
resented in a cartesian space by the set of points
(µA(u),νA(u)) defined in [0,1]× [0,1], for every ele-
ment u ∈U [13, 14, 15].

It is also possible to use a polar representation for
this set of points. Each element u is then represented
by (rA(u),θA(u)), where rA(u) is its radius and θA(u)
its polar angle. The radius is defined by rA(u) =√

µA(u)2 +νA(u)2, and it corresponds to the distance
between the point and the origin.

The polar angle θA(u), such that tanθA(u) =
νA(u)
µA(u)

if
µA(u) 6= 0 and θA(u) = π

2 otherwise, is the angle be-
tween the abscissa axis and the line between points
(0,0) and (µA(u),νA(u)) (see Figure 2).
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Figure 2: Representations of IFS and IVFS.

In the sequel, to simplify the notations, we denote
rA(u) and θA(u) by r and θ when there is no ambiguity.

In [15], this polar representation of IFS allows to study
the variations of measures of entropy of IFS and it
brings a better interpretation of these variations.

From Section 2.3, we see that it is possible to
represent an IVFS in a similar way, as A =
{(u, [ f

A
(u), f A(u)]) |u ∈ U} for the Cartesian coordi-

nates. Obtaining polar coordinates is then done accord-
ingly (Figure 2).

A polar representation of IFS and IVFS is an inter-
esting tool to study them, since radius and polar an-
gle combine both aspects of membership and non-
membership.

3.1 Semantics for the radius r

Let θ be given such that θ ∈ [0, π

2 ]. In this case, the

corresponding radius r varies in [0,

√
2

2sin(θ + π

4 )
]. The

radius r evaluates the distance from the origin (0,0).

When r is equal to

√
2

2sin(θ + π

4 )
, it corresponds to the

case of a well-known fuzzy set.

For a given θ , the radius r provides an information
about the knowledge we have on the membership of u
to A: the greater r, the smaller the lack of information
about the fact that u belongs or not to A.

This is close to the information provided by the intu-
itionistic index πA(u) = 1−(µA(u)+νA(u)) that could
also be rewritten πA(u) = 1−r

√
2sin(θ + π

4 ) in a polar
representation as given in [15].

3.2 Semantics for the polar angle θ

Let r be given such that r∈ [0,1]. In this case, θ varies1

in [0, π

2 ].

When A is not completely intuitionistic, three particu-
lar values for θ can be highlighted:

• when θ = 0, the corresponding element u belongs
to the abscissa axis, thus, νA(u) = 0 and u belongs
”at least a little” to A;

• when θ = π

2 , the corresponding element u belongs
to the ordinate axis and thus, µA(u) = 0 and u
doesn’t belong to A;

• when θ = π

4 , the corresponding element u is on
the straight line y = x and µA(u) = νA(u), and,
thus, the corresponding information is not suffi-
cient to decide whether u belongs or not to A.

As a consequence, given r, the gap |θ − π

4 | provides us
with the information concerning the way it can be de-
cided whether the corresponding u belongs or not to A:
the more θ is far from π

4 , the more one of the degrees
(membership or non-membership) is dominating.

4 Entropies and monotonicities

In the following, several entropies of IFS are presented.
As it has been recalled in Section 2.3, the correspond-
ing presentation could be similarly made for IVFS.

An entropy of IFS is a measure E, from 2U to [0,1] (or
possibly R+ according to [5] but with the possibility to

1When r is greater than
√

2
2 the variations of θ are re-

stricted in order to define an IFS.



normalise it to [0,1] as the maximum is finite) that ful-
fils a set of properties that could differ according to the
authors. Major differences to define such an entropy
could be noted between the definition in [5] and those
in [10, 21]: the first one is based on the difference be-
tween A and a fuzzy set, and the second ones is based
on the difference between A and a crisp set.

A summary of these definitions can be given:

i) E(A) = 0 if and only if:

• A is a crisp set [10, 21]
• A is a fuzzy set [5]

ii) maximum value for E(A):

• E(A) = 1 iff µA(u) = νA(u) ∀ u ∈U [10, 21]
• E(A) = |U | iff µA(u) = νA(u) = 0 ∀ u ∈ U

[5]

iii) E(A) = E(Ac) for all IFS A [5, 10, 21]

iv) monotonicity property of E related to an order on
elements of 2U (this property differs according to
[5, 21, 10] as explained hereafter).

Property iv) states that entropy measures should ful-
fil a monotonicity property according to a given order
on the elements of 2U . It is a main characteristic of
entropies as it has been highlighted that all entropies
should satisfy a particular kind of monotonicity [3].

4.1 Order and entropy

In the state of the art, a main property for an entropy of
IFS is related to a given order between elements of 2U .
In [5], this order is said to be based on the definition by
[2], and in [10, 21] it is based on the definition of less
fuzzy than. We recall these two orders (M1) and (M2)
in the following:

(M1) E(A)≤ E(B), if A is less fuzzy than B,

ie. if µA(u)≤ µB(u) and νA(u)≥ νB(u) when µB(u)≤
νB(u), ∀u ∈U , or µA(u) ≥ µB(u) and νA(u) ≤ νB(u)
when µB(u)≥ νB(u), ∀u ∈ U .

(M2) E(A)≥ E(B) if A� B

ie. if µA(u)≤ µB(u) and νA(u)≤ νB(u), ∀u ∈ U ,

More generally, any definition of monotonicity could
be used to define a particular entropy E [3, 13, 15].

However, interpreting an order relation could be diffi-
cult and non-intuitive. For instance, the impact of the
definition of an entropy by means of each of these two
order relations is presented in Figure 3 for (M1) and
Figure 4 for (M2).
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Figure 3: Example for order relation (M1).

These two orders lead to distinct behaviours. More-
over, it should be noted that these orders are not clearly
interpretable. For instance, in Figure 3, it is easy to see
that there exist some A’s that are completely fuzzy and
considered as "less fuzzy than B".
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Figure 4: Example for order relation (M2).

4.2 New definitions of monotonicity

In this paper, our aim is to propose a more interpretable
and intuitive view of the monotonicity properties for
the entropy of an IFS in order to provide an interpre-
tation closer to the expectations of the user of such a
measure. Two new monotonicity properties are intro-
duced in this sense hereafter.

In the following, let A be an IFS (or, similarly, an
IVFS) of U = {u1, . . . ,un}.



4.2.1 Radius monotonicity

As it has been recalled in Section 3.1, for a given u∈U ,
the value of rA(u) brings out some knowledge about
the membership or non-membership of u to A. The
greater rA(u), the more information we have about the
membership or non-membership of u to A. This can be
used to define a partial order on IFS (resp. IVFS): let
A and B be two IFS (resp. IVFS) of U , A is said to be
better known than B when rA(u)≥ rB(u) for all u ∈U .

A monotonicity property related to a radius r for a
given measure E can thus be defined as:

Definition 4.1 (Radius monotonicity). E(A)≤ E(B) if
A is better known than B. That is to say: E(A)≤ E(B)
if rA(u)≥ rB(u) for all u ∈U .

This monotonicity is illustrated in Figure 5.
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Figure 5: Example for radius Monotonicity.

A radius monotonous entropy measures a disorder and
a better knowledge of the studied phenomenon entails
a smaller value of such an entropy.

4.2.2 Polar angle monotonicity

As it has been shown in Section 3.2, the greater∣∣θA(u)− π

4

∣∣, the easier the decision according to the
fact that u belongs or not to A. Thus, the value∣∣θA(u)− π

4

∣∣ provides an information about the possi-
bility to decide firmly on the membership of u to A.
The decision is related here to the question of which
side of the (fuzzy) border of A is u.

A partial order on IFS (resp. IVFS) can be defined ac-
cording to this: let A and B be two IFS (resp. IVFS)
of U . A is said to be more informative about the de-
cision related to the membership of u than B when∣∣θA(u)− π

4

∣∣≥ ∣∣θB(u)− π

4

∣∣ for all u ∈U .

Definition 4.2 (Polar angle monotonicity.). E(A) ≤
E(B) when A is more informative about the deci-
sion than B. That is to say: E(A) ≤ E(B) when∣∣θA(u)− π

4

∣∣≥ ∣∣θB(u)− π

4

∣∣ for all u ∈U .

This monotonicity is illustrated in Figure 6.
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Figure 6: Example for polar angle Monotonicity.

The polar angle monotonicity is associated with the
possibility to decide on which side of the set border
a given element is: the higher E(A), the more difficult
it is to decide on the membership of elements to A. A
polar-angle monotonous entropy is then useful to eval-
uate the easiness to make a decision for a given set.

4.3 Application to entropies of IFS

In [15], three measures of entropy of IFS have been
studied in the polar form and we present them in this
section.

In the sequel, to simplify notations, we respectively de-
note µA(ui), νA(ui), rA(ui) and θA(ui) by µi, νi, ri and
θi when there is no ambiguity.

The entropy measure of an IFS A of U introduced by
Szmidt and Kacprzyk [21] is written as follows in a
polar representation:

E1(A) = 1−
√

2
2n

n

∑
i=1

ri

∣∣∣sin(
π

4
−θi)

∣∣∣ .
This measure has a form close to one of the entropies
defined by Hung [11] that could thus be handled in the
same way.

The entropy measure introduced by Burillo and
Bustince [5] is written as:

E2(A) = n−
√

2
n

∑
i=1

ri sin(θi +
π

4
).



Figure 7: Variations of E1, E2 and E3

Finally, the measure proposed by Guo and Song [10] is
the following:

E3(A) =
1

2n

n

∑
i=1

(
1− ri

√
2
∣∣∣sin(

π

4
−θi)

∣∣∣)
·
(

2− ri
√

2sin(
π

4
+θi)

)
.

The variations of E1, E2 and E3 when r varies in

[0,

√
2

2
] and θ varies in [0,

π

2
] are shown in Figure 7.

4.3.1 Monotonicity with regard to r

In order to focus on the way the entropies vary in re-
lation with the radius r, we consider U reduced to a
unique element u and an IFS A defined on U . It can
be noted that a corresponding study could be done on a
set U such that |U | > 1 and focusing on the variations
concerning a single element u ∈U .

It can be easily verified that the three entropy measures
E1, E2 and E3 are radius monotonous as they satisfy the
monotonicity with regard to r, as defined in Section 4.2
(an illustration of their variations can be found in [15]).

In fact, it is sufficient to see that the three measures are
decreasing in r for a fixed value of θ , which indicates
a desirable property for entropies.

4.3.2 Monotonicity with regard to θ

Still considering U reduced to a unique element u,
we can see that the three measures have different be-
haviours (an illustration of their variations in this case
can also be found in [15]).

For a fixed value of r, on the one hand the two mea-
sures E1 and E3 are increasing for θ ∈ [0, π

4 ] and de-
creasing for θ ∈ [π

4 ,
π

2 ]. On the other hand, the mea-
sure E2 has an opposite behaviour as it is decreasing
for θ ∈ [0, π

4 ] and increasing for θ ∈ [π

4 ,
π

2 ]. As a con-
sequence, E1 and E3 are polar-angle monotonous as
they fit the definition of polar angle monotonicity. On
the contrary, E2 is not polar-angle monotonous.

5 Conclusion and future work

In this paper, two new definitions of monotonicity for
entropy measures of intuitionistic fuzzy sets are intro-
duced. They are based on the polar representation of
these sets, with the purpose of improving the inter-
pretability of these entropies. Thus we point out defini-
tions of entropy measures that are semantically closer
to the classic definition of entropy.

In future works, these definitions will be used to pro-
pose a more general framework for the definition of
entropies of IFS and IVFS. Such a study could also
be proposed for parametric entropies, such as [12, 18]
which are based on the order M1, or for entropies gen-
erated by other orders, for instance “sharpened” [9], or
defined from divergences [16, 17].
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