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Interpretable monotonicities for entropies of intuitionistic fuzzy sets or interval-valued fuzzy sets

Introduction

Monotonicity is a major property of entropy measures (or entropies for short) [START_REF] Bouchon-Meunier | Entropy and monotonicity in artificial intelligence[END_REF] that relies on a given order. It may be a partial order, on the sets on which it applies. In the literature, it does not exist a unique definition of a monotonicity property for an entropy measure.

In the fuzzy setting, and in particular, when considering Atanassov Intuitionistic Fuzzy Sets (IFS) [START_REF] Atanassov | Intuitionistic fuzzy sets[END_REF] or Interval-Valued Fuzzy Sets (IVFS) [START_REF] Zadeh | The concept of a linguistic variable and its application to approximate reasoning, part 1[END_REF], several entropies have been proposed, often defined from a specific definition of monotonicity [START_REF] Burillo | Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[END_REF][START_REF] Bustince | A historical account of types of fuzzy sets and their relationships[END_REF][START_REF] Couso | From fuzzy sets to interval-valued and Atanassov intuitionistic fuzzy sets: A unified view of different axiomatic measures[END_REF][START_REF] Singh | Information measures in atanassov's intuitionistic fuzzy environment and their application in decision making[END_REF]. Indeed, these two models of representation, IFS and IVFS, are equivalent from a theoretical point of view, even though they are different in practice [START_REF] Bustince | A historical account of types of fuzzy sets and their relationships[END_REF][START_REF] Dubois | Interval-valued fuzzy sets, possibility theory and imprecise probability[END_REF]. Therefore, entropies for one of this kind of fuzzy sets are usable for the other kind. Such entropies are very useful to measure the information brought out by an IFS or an IVFS in several kinds of application, such as in decision support systems [START_REF] Szmidt | How to measure the amount of knowledge conveyed by atanassov's intuitionistic fuzzy sets[END_REF] or in machine learning [START_REF] Bujnowski | Intuitionistic fuzzy decision tree: a new classifier[END_REF] to cite a few examples.

In order to enable a more interpretable study of entropies in the IFS/IVFS setting, we introduced a polar representation of these kinds of fuzzy sets [START_REF] Marsala | Entropies et ensembles flous intuitionistes[END_REF][START_REF] Marsala | Polar representation of bipolar information: A case study to compare intuitionistic entropies[END_REF]. Indeed, it is very promising to manipulate and to study such bipolar information represented as polar coordinates [START_REF] Marsala | Entropies et ensembles flous intuitionistes[END_REF][START_REF] Marsala | Polar representation of bipolar information: A case study to compare intuitionistic entropies[END_REF][START_REF] Son | A new representation of intuitionistic fuzzy systems and their applications in critical decision making[END_REF] and we can highlight the gain in interpretability it allows.

In this paper, we propose two definitions of monotonicity in this context. The polar representation allows the introduction of a monotonicity based on the radius and another one based on the angle. They prove to be more easily interpretable as they take into account the two components of the IFS in a global way and represent a measure of the disorder in the values. They are closer to the classic interpretation of entropy than the existing definitions.

The paper is composed as follows. In Section 2, a recall on IFS and IVFS is done and we remind the connections between these two representations. In Section 3, the polar representation of IFS is introduced and the meaning of each of the two components of this representation are highlighted. In Section 4, after a quick recall of existing monotonicity properties and of the three main entropies of IFS, we introduce two new definitions of monotonicity for an entropy of IFS. Section 5 concludes this paper and highlights some future works.

Intuitionistic and Interval-valued Fuzzy Sets

Let U = {u 1 , . . . , u n } be a discrete universe and let A be a subset of U that might be imprecisely defined. The intuitionistic fuzzy sets and the interval-valued fuzzy sets are two representations of the imprecision that point out two different ways of representing the same knowledge about the membership of an element u ∈ U to the subset A.

As it has already been shown in the literature, these two models of representation are theoretically equivalent. However, each of them brings out a particular approach to the definition of A and is adapted to specific applications.

Intuitionistic Fuzzy Sets (IFS)

In the fuzzy set community, the intuitionistic fuzzy sets have been introduced by Atanassov [START_REF] Atanassov | Intuitionistic fuzzy sets[END_REF]. An IFS A of U is defined as:

A = {(u, µ A (u), ν A (u)) | u ∈ U} with µ A : U → [0, 1] and ν A : U → [0, 1] such that for all u ∈ U, 0 ≤ µ A (u) + ν A (u) ≤ 1.
The values µ A (u) and ν A (u) are, respectively, the membership degree and the non-membership degree of u to A.

The complement A c of the IFS A is defined as the subset

A c = {(u, ν A (u), µ A (u)) | u ∈ U}
Two particular cases are the following: U is the IFS such that µ U (u) = 1 and ν U (u) = 0 for all u ∈ U, and the empty set is the IFS such that µ U (u) = 0 and ν U (u) = 1 for all u ∈ U.

The margin of hesitancy of the membership of u to A is defined as π A (u) = 1 -(µ A (u) + ν A (u)), it is also called intuitionistic index of u to A. This index informs us about the lack of knowledge about A when it exists.

When the margin of hesitancy according to A is equal to zero for all u, that is to say when µ A (u) + ν A (u) = 1, ∀u ∈ U, then A is a Zadeh's fuzzy set.

An IFS A such that µ A (u) = ν A (u) = 0, ∀u ∈ U is said completely intuitionistic [START_REF] Burillo | Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[END_REF]. It corresponds to an IFS with a maximal margin of hesitancy, stating that there is no information available concerning the membership or the non-membership to A for elements from U.

Interval-Valued Fuzzy Sets (IVFS)

Interval-valued fuzzy sets have been introduced by L. A. Zadeh in 1975 [START_REF] Zadeh | The concept of a linguistic variable and its application to approximate reasoning, part 1[END_REF]. In the sequel, we use notations classically used in the literature [START_REF] Couso | From fuzzy sets to interval-valued and Atanassov intuitionistic fuzzy sets: A unified view of different axiomatic measures[END_REF][START_REF] Dubois | Interval-valued fuzzy sets, possibility theory and imprecise probability[END_REF].

An IVFS A of U is defined by a function F A from U to I([0, 1]), the set of all closed intervals of [0, 1], such that for every

u ∈ U, F A (u) = [ f A (u), f A (u)] with f A (u) ≤ f A (u). The IVFS is then the set A = {(u, [ f A (u), f A (u)]) | u ∈ U}.
This interval represents a framing of the degree of membership of u to A. f A (u) represents the minimum value that can be given to the degree of membership of u to A and f A (u) the maximum value that can be given to this degree. The bigger this interval, the less knowledge or reliable information we have on the belonging of u to A.

When f A (u) = f A (u) for all u ∈ U, then A is a Zadeh's fuzzy set.

IFS or IVFS?

Various authors have shown that the intuitionistic and interval-based knowledge representations are equivalent. There exists a one-to-one mapping between the set of IFS and the set of IVFS of U [START_REF] Atanassov | Interval valued intuitionistic fuzzy sets[END_REF][START_REF] Burillo | Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[END_REF][START_REF] Couso | From fuzzy sets to interval-valued and Atanassov intuitionistic fuzzy sets: A unified view of different axiomatic measures[END_REF][START_REF] Dubois | Interval-valued fuzzy sets, possibility theory and imprecise probability[END_REF]. In other words, the 

IFS A = {(u, µ A (u), ν A (u)) | u ∈ U} can be represented as the IVFS {(u, [µ A (u), 1 -ν A (u)]) | u ∈ U}. Conversely, the IVFS A = {(u, [ f A (u), f A (u)]) | u ∈ U} can be represented as the IFS {(u, f A (u), 1 -f A (u)) | u ∈ U}.
f A (u) f A (u) u 1 -νA(u) µA(u) νA(u)
A Thus, it can be concluded that IFS and IVFS are two different representations of a similar phenomenon of the knowledge related to both the membership and the non-membership of an element to a set. As a consequence, the choice of one of these representations depends only of the context of use: one could be more appropriate in a given context than the other. One could conclude that theoretical study related to IFS could easily be adapted to IVFS and reciprocally.

In the following, we have decided to focus on the IFS representation and we argue that the study can also be adapted to IVFS.

An IFS A = {(u, µ A (u), ν A (u)) | u ∈ U} can be represented in a cartesian space by the set of points

(µ A (u), ν A (u)) defined in [0, 1] × [0, 1],
for every element u ∈ U [START_REF] Marsala | Entropies et ensembles flous intuitionistes[END_REF][START_REF] Marsala | Interprétabilité des entropies d'ensembles flous intuitionnistes ou définis par intervalles[END_REF][START_REF] Marsala | Polar representation of bipolar information: A case study to compare intuitionistic entropies[END_REF].

It is also possible to use a polar representation for this set of points. Each element u is then represented by (r A (u), θ A (u)), where r A (u) is its radius and θ A (u) its polar angle. The radius is defined by 2 , and it corresponds to the distance between the point and the origin.

r A (u) = µ A (u) 2 + ν A (u)

The polar angle θ

A (u), such that tan θ A (u) = ν A (u) µ A (u) if µ A (u) = 0 and θ A (u) = π
2 otherwise, is the angle between the abscissa axis and the line between points (0, 0) and (µ A (u), ν A (u)) (see Figure 2). In the sequel, to simplify the notations, we denote r A (u) and θ A (u) by r and θ when there is no ambiguity.

1 y = x y = 1 -x θA(u) rA(u) f A (u) 1 -f A (u)
In [START_REF] Marsala | Polar representation of bipolar information: A case study to compare intuitionistic entropies[END_REF], this polar representation of IFS allows to study the variations of measures of entropy of IFS and it brings a better interpretation of these variations.

From Section 2.3, we see that it is possible to represent an IVFS in a similar way, as

A = {(u, [ f A (u), f A (u)]) | u ∈ U} for the Cartesian coordi- nates.
Obtaining polar coordinates is then done accordingly (Figure 2).

A polar representation of IFS and IVFS is an interesting tool to study them, since radius and polar angle combine both aspects of membership and nonmembership.

Semantics for the radius r

Let θ be given such that θ ∈ [0, π 2 ]. In this case, the corresponding radius r varies in [0,

√ 2 2 sin(θ + π 4 )
]. The radius r evaluates the distance from the origin (0, 0).

When r is equal to

√ 2 2 sin(θ + π 4 )
, it corresponds to the case of a well-known fuzzy set.

For a given θ , the radius r provides an information about the knowledge we have on the membership of u to A: the greater r, the smaller the lack of information about the fact that u belongs or not to A.

This is close to the information provided by the intu-

itionistic index π A (u) = 1 -(µ A (u) + ν A (u)) that could also be rewritten π A (u) = 1 -r √ 2 sin(θ + π 4
) in a polar representation as given in [START_REF] Marsala | Polar representation of bipolar information: A case study to compare intuitionistic entropies[END_REF].

Semantics for the polar angle θ

Let r be given such that r ∈ [0, 1]. In this case, θ varies 1 in [0, π 2 ]. When A is not completely intuitionistic, three particular values for θ can be highlighted:

• when θ = 0, the corresponding element u belongs to the abscissa axis, thus, ν A (u) = 0 and u belongs "at least a little" to A;

• when θ = π 2 , the corresponding element u belongs to the ordinate axis and thus, µ A (u) = 0 and u doesn't belong to A;

• when θ = π 4 , the corresponding element u is on the straight line y = x and µ A (u) = ν A (u), and, thus, the corresponding information is not sufficient to decide whether u belongs or not to A.

As a consequence, given r, the gap |θ -π 4 | provides us with the information concerning the way it can be decided whether the corresponding u belongs or not to A: the more θ is far from π 4 , the more one of the degrees (membership or non-membership) is dominating.

Entropies and monotonicities

In the following, several entropies of IFS are presented.

As it has been recalled in Section 2.3, the corresponding presentation could be similarly made for IVFS.

An entropy of IFS is a measure E, from 2 U to [0, 1] (or possibly R + according to [START_REF] Burillo | Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[END_REF] but with the possibility to 1 When r is greater than

√ 2
2 the variations of θ are restricted in order to define an IFS. normalise it to [0, 1] as the maximum is finite) that fulfils a set of properties that could differ according to the authors. Major differences to define such an entropy could be noted between the definition in [START_REF] Burillo | Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[END_REF] and those in [START_REF] Guo | On the entropy for Atanassov's intuitionistic fuzzy sets: an interpretation from the perspective of amount of knowledge[END_REF][START_REF] Szmidt | New measures of entropy for intuitionistic fuzzy sets[END_REF]: the first one is based on the difference between A and a fuzzy set, and the second ones is based on the difference between A and a crisp set.

A summary of these definitions can be given: i) E(A) = 0 if and only if:

• A is a crisp set [START_REF] Guo | On the entropy for Atanassov's intuitionistic fuzzy sets: an interpretation from the perspective of amount of knowledge[END_REF][START_REF] Szmidt | New measures of entropy for intuitionistic fuzzy sets[END_REF] • A is a fuzzy set [START_REF] Burillo | Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[END_REF] ii) maximum value for E(A):

• E(A) = 1 iff µ A (u) = ν A (u) ∀ u ∈ U [10, 21] • E(A) = |U| iff µ A (u) = ν A (u) = 0 ∀ u ∈ U [5]
iii) E(A) = E(A c ) for all IFS A [5, 10, 21] iv) monotonicity property of E related to an order on elements of 2 U (this property differs according to [START_REF] Burillo | Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[END_REF][START_REF] Szmidt | New measures of entropy for intuitionistic fuzzy sets[END_REF][START_REF] Guo | On the entropy for Atanassov's intuitionistic fuzzy sets: an interpretation from the perspective of amount of knowledge[END_REF] as explained hereafter).

Property iv) states that entropy measures should fulfil a monotonicity property according to a given order on the elements of 2 U . It is a main characteristic of entropies as it has been highlighted that all entropies should satisfy a particular kind of monotonicity [START_REF] Bouchon-Meunier | Entropy and monotonicity in artificial intelligence[END_REF].

Order and entropy

In the state of the art, a main property for an entropy of IFS is related to a given order between elements of 2 U . In [START_REF] Burillo | Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[END_REF], this order is said to be based on the definition by [START_REF] Atanassov | Intuitionistic fuzzy sets[END_REF], and in [START_REF] Guo | On the entropy for Atanassov's intuitionistic fuzzy sets: an interpretation from the perspective of amount of knowledge[END_REF][START_REF] Szmidt | New measures of entropy for intuitionistic fuzzy sets[END_REF] it is based on the definition of less fuzzy than. We recall these two orders (M1) and (M2) in the following:

(M1) E(A) ≤ E(B), if A is less fuzzy than B, ie. if µ A (u) ≤ µ B (u) and ν A (u) ≥ ν B (u) when µ B (u) ≤ ν B (u), ∀u ∈ U, or µ A (u) ≥ µ B (u) and ν A (u) ≤ ν B (u) when µ B (u) ≥ ν B (u), ∀u ∈ U. (M2) E(A) ≥ E(B) if A B ie. if µ A (u) ≤ µ B (u) and ν A (u) ≤ ν B (u), ∀u ∈ U,
More generally, any definition of monotonicity could be used to define a particular entropy E [START_REF] Bouchon-Meunier | Entropy and monotonicity in artificial intelligence[END_REF][START_REF] Marsala | Entropies et ensembles flous intuitionistes[END_REF][START_REF] Marsala | Polar representation of bipolar information: A case study to compare intuitionistic entropies[END_REF].

However, interpreting an order relation could be difficult and non-intuitive. For instance, the impact of the definition of an entropy by means of each of these two order relations is presented in Figure 3 for (M1) and Figure 4 for (M2).
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Area where A is These two orders lead to distinct behaviours. Moreover, it should be noted that these orders are not clearly interpretable. For instance, in Figure 3, it is easy to see that there exist some A's that are completely fuzzy and considered as "less fuzzy than B".
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New definitions of monotonicity

In this paper, our aim is to propose a more interpretable and intuitive view of the monotonicity properties for the entropy of an IFS in order to provide an interpretation closer to the expectations of the user of such a measure. Two new monotonicity properties are introduced in this sense hereafter.

In the following, let A be an IFS (or, similarly, an IVFS) of U = {u 1 , . . . , u n }.

As it has been recalled in Section 3.1, for a given u ∈ U, the value of r A (u) brings out some knowledge about the membership or non-membership of u to A. The greater r A (u), the more information we have about the membership or non-membership of u to A. This can be used to define a partial order on IFS (resp. IVFS): let A and B be two IFS (resp. IVFS) of U, A is said to be better known than B when r A (u) ≥ r B (u) for all u ∈ U.

A monotonicity property related to a radius r for a given measure E can thus be defined as:

Definition 4.1 (Radius monotonicity). E(A) ≤ E(B) if A is better known than B. That is to say: E(A) ≤ E(B) if r A (u) ≥ r B (u) for all u ∈ U.
This monotonicity is illustrated in Figure 5.
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Area where A is better known than B: A radius monotonous entropy measures a disorder and a better knowledge of the studied phenomenon entails a smaller value of such an entropy.

Polar angle monotonicity

As it has been shown in Section 3.2, the greater θ A (u) -π 4 , the easier the decision according to the fact that u belongs or not to A. Thus, the value θ A (u) -π 4 provides an information about the possibility to decide firmly on the membership of u to A. The decision is related here to the question of which side of the (fuzzy) border of A is u.

A partial order on IFS (resp. IVFS) can be defined according to this: let A and B be two IFS (resp. IVFS) of U. A is said to be more informative about the decision related to the membership of u than B when θ A (u) -π 4 ≥ θ B (u) -π 4 for all u ∈ U. This monotonicity is illustrated in Figure 6.
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Area where A is more informative than B: The polar angle monotonicity is associated with the possibility to decide on which side of the set border a given element is: the higher E(A), the more difficult it is to decide on the membership of elements to A. A polar-angle monotonous entropy is then useful to evaluate the easiness to make a decision for a given set.

Application to entropies of IFS

In [START_REF] Marsala | Polar representation of bipolar information: A case study to compare intuitionistic entropies[END_REF], three measures of entropy of IFS have been studied in the polar form and we present them in this section.

In the sequel, to simplify notations, we respectively denote µ A (u i ), ν A (u i ), r A (u i ) and θ A (u i ) by µ i , ν i , r i and θ i when there is no ambiguity.

The entropy measure of an IFS A of U introduced by Szmidt and Kacprzyk [START_REF] Szmidt | New measures of entropy for intuitionistic fuzzy sets[END_REF] is written as follows in a polar representation:

E 1 (A) = 1 - √ 2 2n n ∑ i=1 r i sin( π 4 -θ i ) .
This measure has a form close to one of the entropies defined by Hung [START_REF] Hung | A note on entropy of intuitionistic fuzzy sets[END_REF] that could thus be handled in the same way.

The entropy measure introduced by Burillo and Bustince [START_REF] Burillo | Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[END_REF] is written as:

E 2 (A) = n - √ 2 n ∑ i=1 r i sin(θ i + π 4 
). Finally, the measure proposed by Guo and Song [START_REF] Guo | On the entropy for Atanassov's intuitionistic fuzzy sets: an interpretation from the perspective of amount of knowledge[END_REF] is the following:

E 3 (A) = 1 2n n ∑ i=1 1 -r i √ 2 sin( π 4 -θ i ) • 2 -r i √ 2 sin( π 4 + θ i ) .
The variations of E 1 , E 2 and E 3 when r varies in

[0, √ 2 2 
] and θ varies in [0, π 2 ] are shown in Figure 7.

Monotonicity with regard to r

In order to focus on the way the entropies vary in relation with the radius r, we consider U reduced to a unique element u and an IFS A defined on U. It can be noted that a corresponding study could be done on a set U such that |U| > 1 and focusing on the variations concerning a single element u ∈ U.

It can be easily verified that the three entropy measures E 1 , E 2 and E 3 are radius monotonous as they satisfy the monotonicity with regard to r, as defined in Section 4.2 (an illustration of their variations can be found in [START_REF] Marsala | Polar representation of bipolar information: A case study to compare intuitionistic entropies[END_REF]).

In fact, it is sufficient to see that the three measures are decreasing in r for a fixed value of θ , which indicates a desirable property for entropies.

Monotonicity with regard to θ

Still considering U reduced to a unique element u, we can see that the three measures have different behaviours (an illustration of their variations in this case can also be found in [START_REF] Marsala | Polar representation of bipolar information: A case study to compare intuitionistic entropies[END_REF]).

For a fixed value of r, on the one hand the two measures E 1 and E 3 are increasing for θ ∈ [0, π 4 ] and decreasing for θ ∈ [ π 4 , π 2 ]. On the other hand, the measure E 2 has an opposite behaviour as it is decreasing for θ ∈ [0, π 4 ] and increasing for θ ∈ [ π 4 , π 2 ]. As a consequence, E 1 and E 3 are polar-angle monotonous as they fit the definition of polar angle monotonicity. On the contrary, E 2 is not polar-angle monotonous.

Conclusion and future work

In this paper, two new definitions of monotonicity for entropy measures of intuitionistic fuzzy sets are introduced. They are based on the polar representation of these sets, with the purpose of improving the interpretability of these entropies. Thus we point out definitions of entropy measures that are semantically closer to the classic definition of entropy.

In future works, these definitions will be used to propose a more general framework for the definition of entropies of IFS and IVFS. Such a study could also be proposed for parametric entropies, such as [START_REF] Joshi | Parametric (r,s)-norm entropy on intuitionistic fuzzy sets with a new approach in multiple attribute decision making[END_REF][START_REF] Singh | On a generalized entropy and dissimilarity measure in intuitionistic fuzzy environment with applications[END_REF] which are based on the order M1, or for entropies generated by other orders, for instance "sharpened" [START_REF] Grzegorzewski | On the entropy of intuitionistic fuzzy sets and interval-valued fuzzy sets[END_REF], or defined from divergences [START_REF] Montes | On the use of divergences for defining entropies for Atanassov intuitionistic fuzzy sets[END_REF][START_REF] Montes | Entropy measures for Atanassov intuitionistic fuzzy sets based on divergence[END_REF].
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