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Abstract

We consider an epidemic SIS model described by a multitype birth-and-death
process in a randomly switched environment. That is, the infection and cure
rates of the process depend on the state of a finite Markov jump process (the
environment), whose transitions also depend on the number of infectives. The
total size of the population is constant and equal to some K ∈ N

∗, and the
number of infectives vanishes almost surely in finite time. We prove that, as
K → ∞, the process composed of the proportions of infectives of each type
XK and the state of the environment ΞK , converges to a piecewise deterministic
Markov process (PDMP) given by a system of randomly switched ODEs. The
long term behaviour of this PDMP has been previously investigated by Benaïm
and Strickler, and depends only on the sign of the top Lyapunov exponent Λ of
the linearised PDMP at 0: if Λ < 0, the proportion of infectives in each group
converges to zero, while if Λ > 0, the disease becomes endemic. In this paper,
we show that the large population asymptotics of XK also strongly depend on
the sign of Λ: if negative, then from fixed initial proportions of infectives the
disease disappears in a time of order at most log(K), while if positive, the typical
extinction time grows at least as a power of K. We prove that in the situation
where the origin is accessible for the linearised PDMP, the mean extinction time
of XK is logarithmically equivalent to Kp∗ , where p∗ > 0 is fully characterised.
We also investigate the quasi-stationary distribution µK of (XK ,ΞK) and show
that, when Λ < 0, weak limit points of (µK)K>0 are supported by the extinction
set, while when Λ > 0, limit points belong to the (non empty) set of stationary
distributions of the limiting PDMP which do not give mass to the extinction set.
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1 Introduction

In the mid-seventies, in an influential paper [35] Lajmanovich and Yorke developed and
investigated a deterministic SIS (Susceptible-Infective-Susceptible) model of infection,
describing the evolution of a disease that does not confer immunity (such as gonorrhea)
in a population divided into d groups. The model is given by a differential equation on
[0, 1]d having the form

dxi
dt

= (1− xi)(

d
∑

j=1

Cijxj)−Dixi , i ∈ J1, dK, (1)

where C = (Cij)(i,j)∈J1,dK2 is an irreducible matrix with nonnegative entries and Di > 0.
Here xi ∈ [0, 1] represents the proportion of infected individuals in group i. They are
assumed to be infective and Cij represents the rate at which group i transmits the
infection to group j, while Di is the intrinsic cure rate in group i. The irreducibility of
C implies that each group indirectly affects the other groups. It is easily seen that the
origin is an equilibrium of (1), called in this framework the disease-free equilibrium since
it corresponds to the absence of the disease in each group. The dynamics of (1) is fully
described by Lajmanovich and Yorke, and is surprisingly simple : either the disease-
free equilibrium is linearly stable, in which case, every solution converges to 0; or it
is unstable, and there exists a unique positive equilibrium x∗, globally asymptotically
stable on [0, 1]d \ {0}. When it exists, x∗ is called the endemic equilibrium, and it
represents the proportion of infectives in each group when the disease is eventually
ingrained in the population.

In order to be more realistic, one should take into account the following features
of real life : the populations are finite, and the events of contamination and cure
involve randomness. A rigorous derivation of the Lajmanovich-Yorke equation from an
individual-based stochastic model was performed by Benaïm and Hirsch in [11] : (1)
appears as the limit, when the size of the population goes to infinity, of a finite-state
discrete-time Markov chain. Actually, Benaim and Hirsch consider an extended version,
allowing for a exogenous source of infection, corresponding to the addition of constants
Qi ≥ 0 in the right handside of 1. When Qi > 0 for all i, the Markov chain is irreducible
and the authors show that when the size of the population goes to infinity, its stationary
distribution concentrates near the unique stable equilibrium point of the ODE (which
in turn converges, in the limit of vanishing Qi’s, to the endemic equilibrium when it
exists, or to 0).

More generally, the links between stochastic population growth models and their
mean-field ODE approximation are the topics of numerous papers, especially since the
pioneer works of Kurtz (see e.g. [34]). A very important difference between stochastic
and deterministic population models concerns the extinction phenomena : in (1), if
there are infectives initially, it remains so at all times, while in a stochastic individual-
based model with no external source of infection, the disease will die out with probability
one in finite time. Typically, in such a model the extinction time of the disease, starting
from a fixed proportion of infectives, will grow with the size K of the population. How-
ever, the speed of that growth drastically changes depending on whether the limiting
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ODE is endemic (i.e. the disease-free equilibrium is unstable) or not. For a classical
monotype stochastic SIS model, Kryscio and Lefèvre [33], Andersson and Djehiche [2],
and Doering, Sargsyan and Sander [23] proved that, if the disease-free equilibrium is lin-
early unstable for the ODE, the typical extinction time starting from a fixed proportion
of infectives grows exponentially with K, while if it is linearly stable, this extinction
time is of order log(K). In particular, in the endemic case, for large populations, it is
very unlikely to observe the extinction of the disease. Instead of that, we have better
chance to see the population reaching a metastable equilibrium, which can be related
to the existence of a quasi-stationary distribution (QSD) for the Markov chain. Once
again, the behaviour for large K of the QSD strongly depends on the nature of the
limiting ODE (endemic or not). Nåsell [39], [40] studied this question for the classical
monotype SIS model. More recently, in a series of papers, Chazottes, Collet, Méléard
and Martinez study the behaviour of monotype [17] and multitype [18, 16] birth-and-
death processes involving a scaling parameter K and such that 0 is linearly unstable
for the limiting ODE. They get sharp asymptotics for the extinction rate, the rate of
convergence to the QSD, and the total variation distance between the marginal law of
the process and a mixture of the QSD and the Dirac mass at 0. They also show that,
as K goes to infinity, the QSD of the birth-and-death process approaches a Gaussian
law centered on the unique non-zero equilibrium of the ODE (see [16, Appendix C]).
Results on the extinction rate and the concentration of the QSD around the endemic
equilibrium have also been obtained by Schreiber, Huang, Jiang and Wang in [43] for
discrete-time epidemiological stochastic models converging to discrete-time determinis-
tic dynamical systems, based on arguments in the seminal paper of Faure and Schreiber
[27].

The randomness in the aforementioned Markov chain models is the reflect of demo-
graphic stochasticity, given by the fact that infections and cures arrive at random time.
Another way to add randomness is to take into account environmental stochasticity. By
this we mean that the population lives in an environment subject to random fluctua-
tions that influences the rates of infections and cures (for more details on demographical
and environmental stochasticity, we refer to the nice review of Schreiber [42]). Inspired
by a paper by Ait Rami, Bokharaie, Mason and Wirth [1], Benaïm and Strickler re-
cently considered in [14] the case where the matrix C and the vector D = (Di)i∈J1,dK in
(1) are selected in finite families (Cξ)ξ∈E and (Dξ)ξ∈E , and changed at random times.
More precisely, they consider a stochastic process (X(t))t≥0 = (X1(t), . . . , Xd(t))t≥0

with values in [0, 1]d evolving according to

dXi(t)

dt
= (1−Xi(t))(

d
∑

j=1

C
Ξ(t)
ij Xj(t))−D

Ξ(t)
i Xi(t) , i ∈ J1, dK, (2)

where (Ξ(t))t≥0 is a continuous-time Markov chain on the finite set E with some rate
matrix Q = (q(ξ, ξ′))(ξ,ξ′)∈E2 .

The process Ξ represents an environment subject to abrupt random changes, for
instance changes in the weather or in the public health policy (such as lock-down). The
process X̂ = (X,Ξ) belongs to the class of Piecewise Deterministic Markov Processes
(PDMP), a term coined by Davis in one of the first general study on this kind of
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processes (see [22]). In the last decades, PDMPs generated by switching ODEs have
been extensively studied by numerous authors in the context of population dynamics
and epidemiology, see e.g , Takueshi et al. [45], Du, Dang, and Feng [24], Benaïm and
Lobry [13], Costa [20], Hening and Strickler [30] for population dynamics or Gray et al.
[28] and Li, Liu and Cui [37] for epidemiology.

After Gray et al. [28] studied the case of a one dimensional SIS model in two
environments, system (2) was fully analysed in [14],where it is shown that the behaviour
of X near 0 only depends on the sign of a Lyapunov exponent Λ ∈ R of the linearised
PDMP at 0, satisfying

Λ := lim
t→∞

1

t
log ‖Yt‖ a.s., (3)

where Yt solves Ẏt = AΞtYt, with Aξ = Cξ −Diag(Dξ) (see Section 3 for a more explicit
definition of Λ). The results in [14], completed by Nguyen and Strickler [41] who
handled the critical case Λ = 0, can be summed up by the following theorem :

Theorem 1.1 (Benaïm and Strickler, [14]; Nguyen and Strickler, [41]). Let Λ be as
defined by Equation 3.

1. If Λ > 0, there exists a unique invariant probability distribution µ∗ of X̂ on
[0, 1]d × E such that µ∗({0} × E) = 0 and, provided that X0 6= 0 a.s., (Xt,Ξt)
converges in law to µ∗.

2. If Λ < 0, then Xt converges almost surely to 0 exponentially fast.

3. If Λ = 0, then Xt converges in probability to 0 as t→ +∞.

In the first case (Λ > 0), the PDMP (X,Ξ) is said to be persistent, while in the
second case (Λ < 0), it is said to be non-persistent. These results can be seen as an
extension of the Lajmanovich and Yorke dichotomy in random environment. Despite
its apparent simplicity, Theorem 1.1 can lead to striking results : indeed, in [14], ex-
amples are exhibited where Λ is positive even though the disease-free equilibrium is
globally asymptotically stable for each individual environment! In other words, if the
environment was fixed in one of its possible states, the disease would disappear, but
the disease is able to persist due to environmental changes.

Naturally, the next step forward is to combine both demographic and environmental
stochasticity. That is, to consider a stochastic individual-based model evolving in a ran-
dom environment, see e.g. the paper of Cogburn and Torrez [19]. The particular case of
epidemiological birth-and-death processes in randomly switched environment has been
considered by Artalejo, Economou and Lopez-Herrero [7], and in several works of Ba-
caër, notably [8] (see the references therein). In [8], Bacaër investigates a monotype SIS
stochastic model, with a constant population of size K, evolving in a Markovian envi-
ronment switching between two states. The process giving the proportion of infectives
admits, as a scaling limit when K goes to infinity, a PDMP satisfying (2) in dimension
d = 1. Bacaër focuses on the persistent case, which he calls supercritical, and makes the
following conjecture, relying on various heuristic approximations as well as numerical
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simulations. If the two environments are favourable to the disease (strongly supercrit-
ical case), then the mean extinction time starting from a fixed initial proportion of
infectives grows exponentially in K. In contrast, if one environment is unfavourable to
the disease (weakly supercritical case), the time of extinction is of order Kω, for some
explicit positive constant ω.

The aim of this paper is to investigate the behaviour of a family of individual-
based multi-type SIS models in random environment whose scaling limit as the size
of the population goes to infinity is precisely the PDMP (X,Ξ) described above. Let
d ∈ N

∗, E be a finite non empty set, (Cξ)ξ∈E be a family of nonnegative irreductible
d × d matrices, (Dξ)ξ∈E be a family of elements of (R∗

+)
d, and Q = (q(ξ, ξ′))(ξ,ξ′)∈E2

be a transition rate matrix on E. For all K ≥ d, we consider a process (NK(t))t≥0

describing the evolution of the number of infectives in a population of size K divided
into d groups, with group i of size Ki ≥ 1. The process NK takes values in

∏d
i=1J0, KiK,

the i-th coordinate counting the number of infectives of type i. Together with NK ,
we consider a process (ΞK(t))t≥0 modelling the evolution of the environment, taking
values in a finite set E. We assume that (NK ,ΞK) is a continuous-time Markov chain
on
∏d

i=1J0, KiK × E, with three different kinds of transitions possible starting from a
state (n, ξ). First, a susceptible of group i may become infected, at rate

(Ki − ni)

d
∑

j=1

Cξ
i,j

nj
Kj

,

In this formula, (Ki − ni) is the number of susceptibles in group i, Cξ
i,j is the rate

at which a given individual in group i contacts people in group j, and nj/Kj is the
proportion of infectives in that group. Second, an infective may cure : in group i, each
infective cures at rate Dξ

i , which amounts to a total cure rate equal to niD
ξ
i . Finally,

the environment may switch to another state ξ′, at rate q(ξ, ξ′).
Let us assume that, in the large population limit, each group represents a fixed

non-zero fraction of the total population, i.e. Ki/K → αi > 0 as K → +∞ for all
i ∈ J1, dK. Then, as we will show, the scaled process X̂K = (XK ,ΞK) with

XK(t) =

(

NK
1 (t)

K1
, . . . ,

NK
d (t)

Kd

)

converges, as K goes to infinity, to the PDMP X̂ = (X,Ξ) where X evolves according
to (2), and Ξ is a continuous-time Markov chain on E with rate matrix Q.

We denote by τK0 the hitting time of 0 by NK (or equivalently XK), which we call
the extinction time. It corresponds to the extinction of the disease in all the groups.
This time is almost surely finite, due to the finiteness of the state space of the Markov
chain (NK ,ΞK) and the accessibility of {0}×E. Our first main result gives bounds on
the extinction time starting from any initial condition, as summarised in the following
theorem (see Theorems 4.1, 4.6 and 4.9 for more precise statements).
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Theorem 1.2. Let Λ be defined by Equation 3. Then,

1. If Λ > 0, there exists p∗ ∈ (0,+∞] such that, for all p ∈ (0, p∗), there exists
C1, C

′
1 > 0 such that, for all K large enough, all n ∈ N

∗ and all t ≥ 0,

P

(

τK0 > t
∣

∣

∣

∑

i

NK
i (0) = n

)

≥ exp

(

−C
′
1

np

)

exp

(

−C1t

Kp

)

. (4)

In particular, conditional on NK(0) 6= 0 we have

E(τK0 ) ≥ e−C
′
1

C1

Kp.

2. If Λ > 0 and p∗ < +∞ then for all p′ > p∗, there exists C2, C
′
2 > 0 such that for

all K large enough, all initial conditions and all t ≥ 0,

P(τK0 > t) ≤ C ′
2 exp

(

−C2t

Kp′

)

.

In particular, in that case, for all p < p∗ < p′, for all K large enough, conditional
on NK(0) 6= 0 we have

e−C
′
1

C1
Kp ≤ E(τK0 ) ≤ C ′

2

C2
Kp′.

3. If Λ < 0, there exists C3, C
′
3 > 0 such that for all K large enough, all initial

conditions and all t ≥ 0,

P(τK0 > t) ≤ C ′
3 exp

(

− C3t

log(K)

)

.

In particular,

E(τK0 ) ≤ C ′
3

C3
log(K).

Let us describe and comment the above results. We discuss first the case Λ > 0,
meaning that the limiting PDMP is persistent. The prefactor exp(−C ′

1/n
p) in (4)

corresponds to a lower bound on the probability of a major outbreak of the epidemic
starting from n infectives, meaning that a macroscopic fraction of the population gets
infected. We see that this bound does not depend on K. Then, starting from a large
initial number of infectives, at least for p > 0 small enough the extinction time τK0 is
greater than Kp with high probability. In some situations (p∗ < ∞), this extinction
time is also smaller than Kp′ with high probability for p′ large enough. What’s more,
item 2 shows that when p∗ <∞, the mean extinction time is logarithmically equivalent
to Kp∗ . The finiteness of p∗ depends on the possibility for the linearised PDMP Y to get
arbitrarily close to 0 (see Theorem 3.4) : for example, if the disease-free equilibrium is
linearly asymptotically stable in at least one environment, then p∗ is finite. In the one-
dimensional case, the conditions Λ > 0, p∗ <∞ correspond to the weakly supercritical
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case studied by Bacaër in [8] that we mentioned before. We will check in Example 3.5
that our p∗ is equal to his constant ω ; hence, our results prove rigorously the conjecture
of Bacaër on mean extinction times. The fact that the extinction time grows as a power
of K when Λ > 0 and p∗ < ∞ contrasts with the case of a constant, supercriticical
environment studied in [17, 18], where the extinction time grows exponentially in K
(see [17, Corollary 3.5] and [18, Theorem 3.2]). Intuitively, this comes from the fact
that when p∗ <∞, there is a scenario where XK is led to reach values of order 1/K by
environmental switches and then goes extinct, which facilitates the extinction compared
to the case where there is only one environment with an endemic equilibrium. Finally,
when the scaling limit PDMP is non-persistent (Λ < 0), the extinction time is of order
at most log(K), which corresponds to the time needed for the limiting process X to
reach values of order 1/K starting from a macroscopic initial condition.

Altough the disease eventually dies out with probability one, in the persistent case
the typical extinction time is very long. From basic results on finite continuous-time
Markov chains with an accessible absorbing set (here {0}×E) which are irreducible on
the complement, the distribution of X̂K(t) conditional on τK0 > t converges, as t goes
to infinity and for any non-zero initial condition, to the unique QSD µK (see Section
4.2 for a recall of the definition of this notion). Provided the convergence of conditional
distributions is quick with respect to the time scale of extinction, the QSD µK reflects
a metastable behaviour of X̂K . The study of the speed of convergence to the QSD is an
important issue, but we postpone its study to future works. Our primary focus, which
is the object of our second main result, concerns the asymptotic behaviour of the family
(µK)K≥d. Recall that a basic property of the QSD is that if X̂K(0) ∼ µK then τK0 has
an exponential distribution with rate parameter λK ∈ (0,+∞). We let =⇒ denote the
weak convergence of probability measures.

Theorem 1.3. Let Λ, µ∗, p∗ be as defined by Equation (3), Theorem 1.1 and Theorem
1.2 respectively.

1. If Λ > 0, then
µK =⇒

K→+∞
µ∗.

Furthermore,
log(λK)

log(K)
→

K→+∞
−p∗.

2. If Λ < 0, then
µK(· ×E) =⇒

K→+∞
δ0.

Briefly put, this theorem states that, when the limiting PDMP is non-persistent,
the QSD µK degenerates into a measure concentrated on the extinction set {0}×E as
K goes to +infty. On the contrary, if the PDMP is persistent, then µK converges to
µ∗, which is concentrated on the survival set ([0, 1]d \ {0})× E. Moreover, in the case
p∗ < +∞, the extinction rate λK under the QSD is of order K−p∗ , while if p∗ = ∞, λK

is rapidly decreasing with K, in the sense that λK = O(K−p) for all p > 0.
The main difficulty in the proof of the above theorem is the proof of the convergence

of µK to µ∗ in the persistent case. A result of Strickler [44][Theorem 6.1] shows that
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every weak limit point of (µK)K≥d is an invariant probability measure of the limiting

PDMP X̂. Since by Theorem 1.1 µ∗ is the unique invariant probability measure that
gives no mass to {0} ×E, all the problem is to show that (µK)K≥d is tight on ([0, 1]d \
{0}) × E. Compared to the case with a constant environment, this result is harder
to establish in random environment because even though X̂ is persistent, it might go
arbitrarily close to the extinction set.

To the best of our knowledge, this paper is among the first ones to provide a rig-
orous study of the large population asymptotics related to the extinction time and
quasi-stationary distributions for non-branching birth-and-death processes in randomly
switched environment.

The paper is organised as follows. First, in Section 2, we construct properly the
processes X̂K and X̂ on the same probability space, give our precise assumptions as
well as the convergence rate of X̂K to X̂. In Section 3, we slightly complete the analysis
of the PDMP X̂ performed in [14]. Our main results are stated precisely in Section
4 and proved in Section 6. Finally, some annex results are proved in the Appendix,
Section 7.

2 Description and construction of the processes

In this section, we give a precise description of the different processes, in a more general
framework than the one presented in the introduction. Indeed, as noticed by Benaïm
and Hirsch [11], the dichotomy exhibited by the Lajmanovich-Yorke model is valid for a
wide range of vector fields with some monotonic properties (see below), which enables
to choose more general infection and cure rates. We also allow the environmental
transition rates to depend (continuously) on the vector of proportion of infectives.

Before proceeding further, let us introduce the following notations and conventions.
We let F(Y) denote the set of real-valued measurable functions on a measurable space
(Y ,Y ), and Fb(Y) denote the subset of bounded functions. If Y is a topological space,
then C(Y) stands for the set of real-valued continuous functions on Y . Given k, n, p ∈
N

∗, Z ⊂ R
n and f : Z → R

p, we say that f is of class Ck if it can be extended into a
function f̃ defined on some open subset of Rn containing Z, which is of class Ck in the
usual sense. In that case, we assume that such an extension is fixed and write ∂jf(z),
j ∈ J1, nK the partial derivatives of f̃ at z ∈ Z and Df(z) = (∂jfi(z))(i,j)∈J1,pK×J1,nK the

Jacobian matrix of f̃ at z. Moreover, if g is a function defined on Z ×E, for all ξ ∈ E
the notation gξ stands for g(·, ξ) and we say that g is of class Ck if each gξ is of class
Ck. We let ‖·‖ denote the ℓ1-norm on R

d i.e. ‖x‖ = |x1| + . . . + |xd| for all x ∈ R
d.

Given a function f : E1 → E2, where (E2, ‖·‖E2) is some normed vector space, we let
‖f‖∞ := supx∈E1

‖f(x)‖E2. Finally, if E1 is a subset of Rd, we let ‖f‖Lip denote the
quantity sup

{

‖f(y)− f(x)‖E2/‖x− y‖ ; x, y ∈ R
d, x 6= y

}

.
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2.1 Description and assumptions

Let d ∈ N
∗. We assume that we are given sequences of positive integers (Ki(K))K≥d,

i ∈ J1, dK, and (α1, . . . , αd) ∈ (0, 1)d such that

d
∑

i=1

Ki(K) = K, lim
K→∞

Ki(K)

K
= αi > 0. (5)

In the sequel, to avoid cumbersome notations, we will write Ki instead of Ki(K). The
integer K is the total size of the population, Ki is the size of group i. The limit in
(5) is to be interpreted as follows : for K large enough, the proportion of individuals
belonging to group i is approximatively αi ∈ (0, 1). We set α = mini∈J1,dK αi.

We let E = {1, . . . , |E|} with |E| ≥ 2 denote the set of possible states of the
environment. Setting X = [0, 1]d and XK = X ∩

∏d
i=1

(

K−1
i N

d
)

, we consider the

state spaces X̂ = X × E and X̂K = XK × E. In addition, we set X+ = X \ {0},
XK

+ = XK \ {0}, X̂+ = X+ × E and X̂K
+ = XK

+ × E, which correspond to survival sets
of the disease.

We assume that X̂K := (XK(t),ΞK(t))t≥0 is a continuous-time Markov chain on

X̂K with the following transition rates, for all x ∈ XK , i ∈ J1, dK, and (ξ, ξ′) ∈ E2 with
ξ′ 6= ξ :

Transition Rate

(x, ξ) → (x+
ei

Ki
, ξ) Ki(1− xi)bi(x, ξ)

(x, ξ) → (x−
ei

Ki

, ξ) Kixidi(x, ξ)

(x, ξ) → (x, ξ′) q(x, ξ, ξ′),

where (e1, . . . , ed) denotes the canonical basis of Rd, bi, di : X̂ → R+ and q(·, ξ, ξ′) :
X → R+. In the following, we put q(x, ξ, ξ) = −

∑

ξ′ 6=ξ q(x, ξ, ξ
′) for all ξ ∈ E and

denote by Q(x) = (q(x, ξ, ξ′))(ξ,ξ′)∈E2 the environmental transition rate matrix. More-

over, we denote by LK ∈ R
X̂K×X̂K

the transition rate matrix of X̂K . Note that the
special form of the transition rates does indeed imply that X̂K cannot leave the state
space X̂K . The number bi(x, ξ) represents the total rate of contact and transmission of
the disease from infectives to a susceptible individual in group i, when the proportion
of infectives in each group is xi and the environment is in state ξ. As for di(x, ξ), it
represents the individual cure rate of an infective in group i in environment ξ. In the
Lajmanovich-Yorke example given in the introduction, we have bi(x, ξ) =

∑

j C
ξ
i,jxj and

di(x, ξ) = Dξ
i .

We first make a regularity assumption, that stands in the rest of the paper.

Assumption A (Standing assumption). For all ξ ∈ E and i ∈ J1, dK, the functions bξi
and dξi are of class C2 on X , and the function x 7→ Q(x) is continuous on X .
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We let LK : F(X̂K) → F(X̂K), f 7→ LKf , denote the infinitesimal generator
of X̂K . Letting βei, β−ei : X̂ → R+ be defined by βei(x, ξ) = (1 − xi)bi(x, ξ) and
β−ei(x, ξ) = xidi(x, ξ), the generator writes

LKf(x, ξ) =
∑

i∈J1,dK
h∈{−1,1}

Kiβ
ξ
hei

(x)

[

f ξ
(

x+ h
ei
Ki

)

− f ξ(x)

]

+
∑

ξ′∈E
ξ′ 6=ξ

q(x, ξ, ξ′)
[

f ξ
′

(x)− f ξ(x)
]

.

For all f ∈ C1(X̂ ,R) we have, with a slight abuse of notation,

LKf(xK , ξ) −→
K→+∞
xK→x

Lf(x) :=
d
∑

i=1

F ξ
i (x)∂if

ξ(x) +
∑

ξ′∈E
ξ′ 6=ξ

q(x, ξ, ξ′)
[

f ξ
′

(x)− f ξ(x)
]

, (6)

where the Fi are the coordinates of the C2-vector field F : X̂ → R
d defined by

F ξ(x) =

d
∑

i=1

(

βξei(x)− βξ−ei(x)
)

ei =
∑

i=1

(

(1− xi)b
ξ
i (x)− xid

ξ
i (x)

)

ei.

Note that since F ξ
i (x) ≥ 0 when xi = 0 and F ξ

i (x) ≤ 0 when xi = 1, the space [0, 1]d

is positively invariant under F ξ. By this, we mean that for all x0 ∈ X , the Cauchy
problem ẋ = F ξ(x), x(0) = x0 admits a solution defined on R+ which takes values in
X . This solution is unique and denoted by t 7→ ψξt (x0). We call ψξ : R+ × X → X ,
(t, x0) 7→ ψξt (x0) the semi-flow induced by F ξ.

The right handside of (6) coincides with the expression of the generator L of a
PDMP X̂ = (X(t),Ξ(t))t≥0 with state space X̂ satisfying

{

Ẋ(t) = F (X̂(t))

P

(

Ξ(t+ h) = ξ′
∣

∣ (X̂(s))0≤s≤t, Ξ(t) = ξ
)

= hq(X(t), ξ, ξ′) + o(h)

for all t ≥ 0 and ξ, ξ′ ∈ E, ξ′ 6= ξ. We refer to ((F ξ)ξ∈E, Q) as the local characteristics

of the switched dynamical system X̂. The convergence (6) strongly suggests that X̂
is a scaling limit of X̂K as K → +∞. We will see later (Proposition 2.2) that this is
indeed the case.

In the following, we say that a square real matrix is Metzler if it has non-negative
off diagonal entries; such a matrix is said to be irreducible if, adding a sufficiently large
multiple of the identity, we obtain a non-negative irreducible matrix in the usual sense.
We introduce a second set of standing assumptions.

Assumption B (Standing assumption). For all ξ ∈ E :

B1. bξi (0) = 0 for all i ∈ J1, dK;

B2. dξi (x) > 0 for all i ∈ J1, dK and x ∈ X ;

B3.
(

∂jb
ξ
i (x)

)

1≤i,j≤d
is non-negative and irreducible for all x ∈ X ;

10



B4. Q(x) is irreducible for all x ∈ X .

It is easily seen that all these hypotheses are satisfied by the model presented in
the introduction. They all have a natural interpretation in an epidemiological context.
Assumption B1 reflects the fact that there is no external source of infection for the sys-
tem. Assumption B2 means that infectives always have the ability to recover regardless
of the situation. As for Assumption B3, it expresses the fact that the apparition of
new infectives in one group increases, directly or indirectly, the infection rate of all the
other groups. Finally, Assumption B4 means that the environment may transit from
any state to any other state while the number of infectives (for XK) stays the same.

From the mathematical point of view, B1 entails that the extinction set {0} ×E is
absorbing both for the Markov chain X̂K and the PDMP X̂. Moreover, B2 ensures that
the extinction set is accessible from every state in X̂K for X̂K . Together, Assumptions
B2, B3 and B4 ensure that X̂K

+ is an irreducible set of states for the Markov chain X̂K ,
for all K ≥ d. Let us explain why. Thanks to B4, it is enough to show that XK

+ ×{ξ} is
irreducible, for some fixed ξ. Assumption B2 entails that, starting from the state (1, ξ)
where 1 = (1, . . . , 1), one can access every other state in XK

+ × {ξ}. Moreover, for all

i, j ∈ J1, dK such that ∂jb
ξ
i (0) > 0, we have bξi (εej) > 0 for all ε > 0 small enough, hence

bξi (x) > 0 for all x ∈ X such that xj > 0 since bξi is non-decreasing with respect to all
variables. This entails that, provided xj > 0 and xi < 1, a new infective may appear

in group i. Using the irreducibility of the matrix (∂jb
ξ
i (0))i,j∈J1,dK, we obtain that (1, ξ)

is accessible from every state in XK
+ × {ξ}, which yields the claimed irreducibility of

X̂K
+ . Another important consequence of B3 is the fact that Aξ := DF ξ(0) is Metzler

and irreducible, given that its off-diagonal entries coincide with the ∂jbi(0), i 6= j.

Finally, we introduce an additional set of assumptions which are also satisfied by
the Lajmanovich-Yorke vector fields, that we will sometimes need, in order to obtain
global and ergodic properties for the PDMP X̂. Contrary to Assumptions A and B,
the following hypotheses will stand only when explicitly stated. We let R

d
++ denote

the set of elements of Rd with positive entries, and for x, y ∈ R
d, we write x ≪ y if

y − x ∈ R
d
++ and x ≤ y if y − x ∈ R

d
+.

Assumption C. For all ξ ∈ E :

C1. F ξ is cooperative, meaning that DF ξ(x) is Metzler for all x ∈ [0, 1]d ;

C2. F ξ is irreducible on [0, 1)d, meaning that DF ξ(x) is irreducible for all x ∈ [0, 1)d;

C3. F ξ is strongly sub-homogeneous on (0, 1)d, i.e. F ξ(λx) ≪ λF ξ(x) for all λ > 1
and all x ∈ (0, 1)d such that λx ∈ (0, 1)d.

Note that given B3, a sufficient condition to have C1 and C2 is that ∂jdi ≤ 0 on
X for all i, j, expressing the fact that the apparition of new infectives in one group
may only degrade the individual recovery rate of infectives in each group (for instance
due to the stress put on the healthcare system). Finally, condition C3 refers to the
fact that increasing the proportion of infectives in each group by a factor λ > 1 results
in a smaller increase in the rate of progress of the disease. This can be understood

11



since when the number of infectives is increased by a factor λ > 1, the number of
susceptibles is decreased by a factor (1 − λx)/(1 − x) < 1, hence the total number
of possible contacts between infectives and susceptibles is likely to be increased by a
factor less than λ. Provided that this effect is not compensated by the decrease of the
individual recovery rates (for instance if they are constant as in the Lajmanovich-Yorke
model), this yields the strong sub-homogeneity of F ξ. Such a phenomena is also known
by the economists as a decreasing returns to scale, meaning e.g. that doubling some
factors of production (here, the number of infectives), does not double the production
(the disease).

Assumption C implies that for all ξ ∈ E, ψξ is a strongly monotone, strongly
subhomogeneous semi-flow on X , see e.g. the works of Hirsch [32, 11] or Takáč [46].
Strong monotonicity means that for all t > 0 and all x, y ∈ R

d
+ such that x ≤ y, x 6= y,

we have ψξt (x) ≪ ψξt (y); and strong sub-homogeneity means that C3 holds replacing
F ξ by ψξt , t > 0. These two properties of the semi-flow are sufficient to obtain the
same structure of equilibria as in the Lajamnovich-Yorke model : either the disease-
free equilibrium is linearly stable for F ξ in which case it is globally asymptotically
stable ; or it is unstable, and there exists an endemic equilibrium xξ∗ ∈ (0, 1)d, globally
asymptotically stable on X+, see [14, Theorem 4.2].

2.2 Coupled construction of the processes

For comparison purposes, it is useful to construct the processes X̂K and X̂ start-
ing from all possible initial conditions on the same probability space. From now
on, we generally write the time variable t in subscript to increase readability. Let
(Ω◦,F ◦, (F ◦

t )0≤t≤∞,P) be a filtered probability space satisfying the usual conditions,
equipped with a (F ◦

t )-Poisson point measure N on R
2
+ × ((J1, dK × {−1, 1}) ⊔ E) of

intensity Leb⊗2 ⊗
∑

y∈(J1,dK×{−1,1})⊔E δy. We let NX and NΞ denote the traces of N on

R
2
+ × J1, dK × {−1, 1} and R

2
+ × E respectively. For each K ≥ d and x̂ = (x, ξ) ∈ X̂ ,

we let X̂K,x̂ =
(

XK,x̂
t ,ΞK,x̂t

)

t≥0
solve

XK,x̂
t = ⌊x⌋K +

∫

(0,t]×R+×J1,dK×{−1,1}
1{u≤Kiβhei(X̂

K,x̂
s− )}

hei
Ki

NX(ds, du, di, dh) (7)

ΞK,x̂t = ξ +

∫

(0,t]×R+×E
1{ξ′ 6=ΞK,x̂

s− }
(

ξ′ − ΞK,x̂s−

)

1{u≤q(X̂K,x̂
s− ,ξ′)}NΞ(ds, du, dξ

′) (8)

P-almost surely for all t ≥ 0, where ⌊x⌋K := (⌊K1x⌋/K1, . . . , ⌊Kdx⌋/Kd). Moreover,
we let X̂ x̂ = (X x̂

t ,Ξ
x̂
t )t≥0 solve

X x̂
t = x+

∫ t

0

F (X̂ x̂
s )ds (9)

Ξx̂t = ξ +

∫

(0,t]×R+×E
1{ξ′ 6=Ξx̂

s−}
(

ξ′ − Ξx̂s−
)

1{u≤q(X̂x̂
s−,ξ

′)}NΞ (ds, du, dξ
′) . (10)

The proof of existence and uniqueness for systems (7)-(8) and (9)-(10) is given in Section
7.1. It is shown that X̂K,x̂ is indeed a continuous-time Markov chain of transition
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rate matrix LK and that X̂ x̂ is a switched dynamical system of local characteristics
((F ξ)ξ∈E, Q), and that these two processes satisfy the strong Markov property with

respect to (F ◦
t )0≤t≤∞. Moreover, we can choose the versions of X̂ x̂, x̂ ∈ X̂ in such a

way that (x̂, t, ω◦) 7→ X̂ x̂
t (ω

◦) is measurable (with respect to B(X̂ ) ⊗ B(R+) ⊗ F ◦)
and that P(dω◦)-almost surely, the sample path t 7→ X̂ x̂

t (ω
◦) is càdlàg for all x̂ ∈ X̂ .

In the following, most of the time it will be notationally convenient to drop the
exponent associated to the initial condition x̂. One way to do this is to work when
needed in the extended filtered space (Ω,F , (Ft)0≤t≤∞) where Ω = X̂ × Ω◦, F =

B(X̂ ) ⊗ F ◦, Ft = B(X̂ ) ⊗ F ◦
t , 0 ≤ t ≤ ∞, equipped with the family of probability

measures P
µ = µ⊗P, µ ∈ P(X̂ ), and with the processes (X̂K

t )t≥0 and (X̂t)t≥0 defined

by X̂K
t (x̂, ω◦) = X̂K,x̂

t (ω◦) and X̂t(x̂, ω
◦) = X x̂

t (ω
◦). As usual, we write P

x̂ = P
δx̂ ,

x̂ ∈ X̂ . For every random element S defined on (Ω◦,F ◦), we still denote by S its
natural extension to (Ω,F ), writing S(x̂, ω◦) = S(ω◦).

Let ˜NX denote the compensated measure associated to NX , namely ˜NX = NX −
Leb⊗2 ⊗

(

∑

z∈J1,dK×{−1,1} δz

)

. Equation (7) yields

XK
t = XK

0 +

∫ t

0

F (X̂K
s )ds +MK

t , (11)

where, for all x̂ ∈ X̂ ,

MK
t =

∫

(0,t]×R+×J1,dK×{−1,1}
1{u≤Kiβhei (X̂

K
s−)}

hei
Ki

˜NX(ds, du, di, dh)

P
x̂-almost surely for all t ≥ 0. The process MK is a (Ft)-martingale under each P

x̂.

2.3 Convergence to the PDMP and key estimates near the ex-

tinction set

As seen above, when K → +∞ the generator of X̂K converges to the one of X̂, see
(6), which strongly suggests that we have convergence in distribution of X̂K,x̂K to
X̂ x̂ with respect to the Skorokhod topology when x̂K → x̂. Such a convergence was
established in a similar setting by Crudu, Debussche, Muller and Radulescu [21], who
investigated a set of chemical reactions involving a group of molecules in large number
(of order K) and a group of molecules in small number (of order one), playing the role
of the environment. Here, the coupled construction enables us to prove convergence in
probability, with respect to the topology of uniform convergence, see Proposition 2.2
below.

Although useful, such a convergence is, however, largely insufficient for our purposes.
Indeed, when examining questions related to the extinction of XK , one needs much finer
estimates about its behaviour near zero. A first crucial estimate is given by Lemma
2.3 below which controls ‖XK −X‖ relatively to ‖X‖. Essentially, this control is good
for x̂ = (x, ξ) ∈ XK

+ such that ‖x‖ ≥ a/K with a large. It is completed by a second

key estimate, given by Lemma 2.5, about the behaviour of X̂K on the complementary
region 0 < ‖x‖ ≤ a/K.

13



Let us set CF = maxξ∈E‖F ξ‖Lip. Let 1 = (1, . . . , 1) and let 〈·, ·〉 denote the standard
inner product on R

d. Recall that ‖·‖ denotes the ℓ1-norm on R
d. We will repeatedly

use the fact that since F ξ(0) = 0 for all ξ ∈ E, we have |〈1, F (x̂)〉| ≤ CF‖x‖ for all
x̂ = (x, ξ) ∈ X̂ . Since for all t ∈ R+, (9) yields

‖X x̂
t ‖ = 〈1, X x̂

t 〉 = ‖x‖+
∫ t

0

〈1, F (X̂ x̂
s )〉ds

this entails that

‖x‖e−CF t ≤ ‖X x̂
t ‖ ≤ ‖x‖eCF t. (12)

We also define d̂ : X̂ ×X̂ → R+ by d̂((x, ξ), (x′, ξ′)) = ‖x−x′‖+1ξ 6=ξ′. This is a distance

on X̂ , which induces the usual topology. Note that for ε ∈ (0, 1), d̂((x, ξ), (x′, ξ′)) > ε
if and only if ξ 6= ξ′ or ‖x− x′‖ > ε.

The following lemma yields a general and precise control of the gap between X̂K

and X̂, starting from the same environment but possibly from different proportions of
infectives. It relies on the use of Grönwall’s lemma and of Chernoff bounds given by
Lemma 7.1 to control the martingale MK in (11). The proof is presented in Section
6.1.

Lemma 2.1. There exists C0, C
′
0 > 0 and K0 ≥ d such that for all K ≥ K0, T > 0,

x ∈ X , y ∈ XK, ξ ∈ E and ε > ‖y − x‖,

P

[

sup
0≤t≤T

d̂

(

X̂
K,(y,ξ)
t , X̂

(x,ξ)
t

)

> ε

]

≤ 2d exp

(

−Kδ(ε, T, x, y)
C0

(

δ(ε, T, x, y)

C ′
0(Te

CF T‖x‖+ ε)
∧ 1

))

+ T |E| sup
ξ1 6=ξ2, ‖z−z′‖≤ε

|q(z, ξ1, ξ2)− q(z′, ξ1, ξ2)| .

(13)

where δ(ε, T, x, y) = (εe−CF T − ‖y − x‖)+.

A first consequence of the above lemma is that it enables to establish, as announced,
the convergence in probability of X̂K to X̂ as K → +∞ with respect to the topology of
locally uniform convergence, provided the initial condition converges. More precisely we
prove the following proposition, which in addition yields uniformity of the convergence
with respect to the initial condition.

Proposition 2.2 (Functional law of large numbers). For all T, ε > 0,

sup
ξ∈E, x∈X , y∈XK

‖y−x‖≤h

P

[

sup
0≤t≤T

d̂

(

X̂
K,(y,ξ)
t , X̂

(x,ξ)
t

)

> ε

]

−→
(K,h)→(+∞,0)

0. (14)

In particular, for every x̂ ∈ X̂ and every sequence (x̂K)K≥d ∈
∏

K≥d X̂K such that
x̂K → x̂ as K → +∞,

X̂K,x̂K P−→
K→+∞

X̂ x̂ (15)

on D(R+, X̂ ) equipped with the (metrisable) topology of locally uniform convergence.
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Proof. Let T, ε > 0. For all ε′ ∈ (0, ε),

sup
ξ∈E,x∈X , y∈XK

‖y−x‖≤h

δ(ε′, T, x, y) −→
h→0

ε′e−CF T > 0.

Hence, letting pT : R∗
+ → [0, 1] be defined by

pT (r) = lim sup
(K,h)→(+∞,0)

sup
ξ∈E,x∈X , y∈XK

‖y−x‖≤h

P

[

sup
0≤t≤T

d̂

(

X̂
K,(y,ξ)
t , X̂

(x,ξ)
t

)

> r

]

,

applying Lemma 2.1 and using that ‖x‖ ≤ d for all x ∈ X , we obtain

pT (ε) ≤ pT (ε
′) ≤ T |E| sup

ξ1 6=ξ2, ‖z−z′‖≤ε′
|q(z, ξ1, ξ2)− q(z′, ξ1, ξ2)| .

By uniform continuity of the functions q(·, ξ1, ξ2), ξ1 6= ξ2, letting ε′ → 0 yields pT (ε) =
0, which ends the proof of (14). The convergence (15) follows immediately. �

Although useful and intellectually satisfying, this functional law of large numbers
is not fine enough for our purposes, which require a much more precise control of XK

near 0. The true aim of Lemma 2.1 is actually to prove the following estimate, which
enables to control ‖XK −X‖ relatively to ‖X‖.

Lemma 2.3. For all T > 0, there exists CT , εT > 0 such that, for all K large enough,
all x̂ = (x, ξ) ∈ X̂K and all ε ∈ (0, εT ],

P
x̂

[

sup
0≤t≤T

‖XK
t −Xt‖ > ε‖Xt‖

]

≤ 2de−CTK‖x‖ε2 + T |E| sup
ξ1 6=ξ2, ‖z−y‖≤ε e−CFT ‖x‖

|q(z, ξ1, ξ2)− q(z′, ξ1, ξ2)|. (16)

Proof. Let C ′
0, C0 > 0 and K0 ≥ d be given by Lemma 2.1. Let K ≥ K0, x̂ = (x, ξ) ∈

X̂K , T > 0. Using (12) and Lemma 2.1, we have, for all ε > 0,

P
x̂

[

sup
0≤t≤T

‖XK
t −Xt‖ > ε‖Xt‖

]

≤ P
x̂

[

sup
0≤t≤T

‖XK
t −Xt‖ > εe−CF T‖x‖

]

≤ 2d exp

(

−Kεe
−2CF T‖x‖
C0

(

εe−2CF T

C ′
0(Te

CF T+εe−CFT )
∧ 1

))

+ T |E| sup
ξ1 6=ξ2, ‖z−y‖≤ε e−CF T ‖x‖

|q(z, ξ1, ξ2)− q(z′, ξ1, ξ2)|.

If we choose εT ∈ (0, 1] small enough, then for all ε ∈ (0, εT ],

εe−2CF T

C ′
0(Te

CF T + εe−CF T )
∧ 1 =

εe−2CF T

C ′
0(Te

CF T + εe−CF T )
≥ εe−2CF T

C ′
0(Te

CF T + e−CF T )
.

Hence, we obtain (16) with CT = e−4CF T
(

C0C
′
0

(

TeCF T + e−CF T
))−1

. �
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Let us define, for all K ≥ d and all ρ ∈ R+, the entrance times

τKρ := inf
{

t ≥ 0 : ‖XK
t ‖ ≤ ρ

}

, τKρ := inf
{

t ≥ 0 : ‖XK
t ‖ ≥ ρ

}

.

When x 7→ Q(x) is not constant, we also need the following lemma, showing that for
large K, with high probability XK satisfies bounds similar to (12), i.e. the relative
variation of its norm is not too big. We give the proof in Section 6.2.

Lemma 2.4. Let T > 0. Set M = 2eCF T and m = e−CF T/2. There exists C ′ > 0 and
K0 ∈ N

∗ such that, for all K ≥ K0 and x̂ = (x, ξ) ∈ X̂K
+ ,

P
x̂
[

τKM‖x‖ ∧ τKm‖x‖ ≤ T
]

≤ 2e−C
′K‖x‖. (17)

The bounds (16) and (17) involve the terms 2de−CTK‖x‖ε2 and 2e−C
′K‖x‖. For fixed

T, ε > 0, they are small when K‖x‖ is large. The following lemma, which we prove in
Section 6.3, enables to control the behaviour of X̂K,x̂ when 0 < K‖x‖ ≤ a.

Lemma 2.5. Let T, a > 0. There exist c, c′ > 0 and K0 ∈ N
∗ such that for all K ≥ K0,

inf
x̂=(x,ξ)∈X̂K , ‖x‖≤a/K

P
x̂
[

τK0 ≤ T
]

≥ c (18)

and

inf
x̂=(x,ξ)∈X̂K

+ , ‖x‖≤a/K
P
x̂
[

τKa/K ≤ T
]

≥ c′. (19)

3 Complementary study of the PDMP

The long-term behaviour of X̂ has been investigated in [14]. One of the main tools to
achieve this study is the polar decomposition of X, together with the use of rsults of
Stochastic Persistence theory in [10]. We first recall briefly this polar decomposition
and the results obtained in [14]. Then, in Section 3.4 we present a new result, Theorem
3.4. It enables to get precise information about the growth rates of p-th moments of
‖X‖ near the extinction set, for all p ∈ R, yielding key Lyapunov and reverse Lyapunov
conditions (Proposition 3.6).

3.1 Polar decomposition and linearised PDMP

In order to understand the behaviour of the PDMP X̂ near zero, we will need its
polar decomposition. Here we use the ℓ1-norm, which is particularly well adapted for
calculations. Note that results in [14] are given for the ℓ2-norm, but by equivalence of
the norms, they translate immediately for the ℓ1-norm. Set ∆ =

{

x ∈ R
d
+ : ‖x‖ = 1

}

,

Û = {(ρ, θ, ξ) ∈ R+ ×∆×E : ρθ ∈ X} and Û+ = Û \ ({0} ×∆×E). Let x̂ = (x, ξ) ∈
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X̂+. Since X x̂ does not hit 0, its polar decomposition remains defined for all t ≥ 0, and
(9) yields

‖X x̂
t ‖ = ‖x‖+

∫ t

0

〈1, F (X̂ x̂
s )〉ds,

X x̂
t

‖X x̂
t ‖

=
x

‖x‖+
∫ t

0

(

F (X̂ x̂
s )

‖X x̂
s ‖

− 〈1, F (X̂ x̂
s )〉X x̂

s

‖X x̂
s ‖2

)

ds.

Let u = (ρ, θ) = (‖x‖, x/‖x‖), û = (u, ξ), U û
t =

(

Rû
t ,Θ

û
t

)

=
(

‖X x̂
t ‖, X x̂

t /‖X x̂
t ‖
)

, Ξût =

Ξx̂t and Û û
t =

(

U û
t ,Ξ

û
t

)

, t ≥ 0. The above set of equations can be written

Rû
t = ρ+

∫ t

0

Rû
sG(Û

û
s )ds (20)

Θû
t = θ +

∫ t

0

H(Û û
s )ds (21)

where F̃ , G,H are defined on Û+ by

F̃ (û) = F (ρθ, ξ)/ρ, G(û) = 〈1, F̃ (û)〉, H(û) = F̃ (û)−G(û)θ.

As a matter of fact, F̃ can be extended on Û by setting F̃ (0, θ, ξ) = Aξθ. That way, for
all û = (ρ, θ, ξ) ∈ Û we have

F̃ (û) =

∫ 1

0

DF ξ(uρθ)θ du. (22)

Since F is C2 on X̂ , F̃ is C1 on Û . We extend G and H to Û accordingly. In other words,
the functions G0 = G(0, ·, ·) and H0 = H(0, ·, ·) are given, for all θ̂ = (θ, ξ) ∈ ∆×E, by

G0(θ̂) = 〈1, Aξθ〉, H0(θ̂) = Aξθ − 〈1, Aξθ〉θ.

This enables to define Û (0,θ̂) for all θ̂ = (θ, ξ) ∈ ∆×E. We still set R(0,θ̂) = ‖X x̂‖ ≡ 0

and Ξ(0,θ̂) = Ξx̂ where x̂ = (0, ξ). As for Θ(0,θ̂), we define it to be the unique solution of
(21), i.e.

Θ
(0,θ̂)
t = θ +

∫ t

0

H0

(

Θ(0,θ̂)
s ,Ξ(0,ξ)

s

)

ds. (23)

That way, (20) and (21) are satisfied for all û ∈ Û . In what follows we write Θθ̂ and

Ξξ instead of Θ(0,θ̂) and Ξ(0,ξ), and we set Θ̂θ̂ = (Θθ̂,Ξξ). The process Ξξ is a continuous-

time Markov chain of transition rate matrix Q(0). The processes X̂ x̂, Û û and Θ̂θ̂ are
PDMPs generated by switched flows, on the compact state spaces X̂ , Û and ∆̂ = ∆×E
respectively. We denote by (P X̂

t )t∈R+ , (P Û
t )t∈R+ and (P Θ̂

t )t∈R+ the associated semi-
groups. As shown1 in Proposition 2.1 of [12], these semi-groups are Feller. That is, for

1In [12] the authors assume for simplicity that the vector fields driving the dynamics of the PDMP
between the jumps are smooth. However their proof of the Feller property only requires C1-regularity,
which is satisfied here.
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all f ∈ C(X̂ ) and t ≥ 0 we have P X̂
t f ∈ C(X̂ ), and ‖P X̂

t f − f‖∞ −→
t→0

0, and the same

holds replacing (X̂, X̂ ) by (Û , Û) and (Θ̂, ∆̂).

It turns out that Θθ̂ is also the angular process of the linearised version of X at 0.
That is, for ŷ = (y, ξ) ∈ R

d × E, let (Y ŷ
t )t≥0 solve

Y ŷ
t = y +

∫ t

0

AΞξ
sY ŷ

s ds. (24)

or, in compact form,
dY ŷ

t

dt
= AΞξ

tY ŷ
t , Y ŷ

0 = y.

The process (Y ŷ,Ξξ) is also a PDMP, generated by switched linear flows. It is easily

seen that if y 6= 0 then Y ŷ/‖Y ŷ = Θθ̂ where θ̂ = (y/‖y‖, ξ), and

‖Y ŷ
t ‖ = ‖y‖+

∫ t

0

G0(Θ̂
θ̂
s)ds. (25)

3.2 Top Lyapunov exponent

The polar decomposition enables us to define rigorously the quantity Λ from the intro-
duction. As explained below, it corresponds to the mean growth rate of ‖Y ‖ under the

unique invariant probability measure of (P Θ̂
t )t∈R+ .

Assumption B and [14, Proposition 2.13] imply the following :

Proposition 3.1. The semi-group (P Θ̂
t )t∈R+ admits a unique invariant probability mea-

sure π0.

It follows from the Feller property (P Θ̂
t )t∈R+ and a classical compactness-uniqueness

argument that for all θ̂ ∈ ∆×E, the empirical measure A 7→ t−1
∫ t

0
1A(Θ̂

θ̂
s)ds converges

almost surely as t → +∞ to π0 for the weak topology. Hence, using (25) we obtain
that, for all ŷ ∈ R

d
+ \ {0} ×E,

lim
t→∞

1

t
log ‖Y ŷ

t ‖ = lim
t→∞

1

t

∫ t

0

G0(Θ̂
θ̂
s)ds = Λ a.s., (26)

where Λ is defined by

Λ := π0(G0) =

∫

∆̂

G0(θ̂)π0(dθ̂). (27)

It is proven in [14] that Λ coincides with the top Lyapunov exponent in the sense of
Oseledets’ Multiplicative Ergodic Theorem (see [4, Theorem 3.4.1] and [14, Proposition
2.5]). The main results in [14] state that the asymptotic behaviour of X̂ depends only
on the sign of Λ. More precisely, if Λ < 0, then Xt converges to 0 exponentially fast
with positive probability, while if Λ > 0, then X̂ is stochastically persistent, meaning
that X spends an arbitrarily large proportion of time away from 0. Assuming C,
these results can be strengthened to Theorem 3.2 below (it corresponds to Theorem
1.1 of the introduction). We say that a probability measure µ ∈ P(X̂ ) is persistent if
µ({0} ×E) = 0 (in other words µ ∈ P(X̂+)).
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Theorem 3.2 (Benaïm and Strickler [14]). Under Assumption C, the following hold.

1. If Λ > 0 and x 7→ Q(x) is constant, then X̂ admits a unique persistent stationary
distribution and, provided that X0 6= 0 a.s., (Xt,Ξt) converges in law to µ∗ as
t→ +∞.

2. If Λ < 0, then for all x̂ ∈ X̂+,

P
x̂

(

lim sup
t→∞

1

t
log ‖Xt‖ ≤ Λ

)

= 1.

The first item is a consequence of [14, Theorem 4.12]. As for the second one, it
essentially follows from Theorem 3.1 of the same paper. We fully justify it in Section
3.3 just below with Lemma 3.3.

One can also associate a top Lyapunov exponent Λξ to each fixed environment ξ ∈ E,
which corresponds to the principal eigenvalue of Aξ. By principal eigenvalue, we mean
that

Λξ ∈ Sp(Aξ) ∩R and Λξ = max
{

Re(λ), λ ∈ Sp(Aξ)
}

,

which exists thanks to the Perron-Frobenius theorem, using that Aξ is Metzler. The
disease-free equilibrium is linearly (asymptotically) stable for the semi-flow ψξ if and
only if Λξ is (strictly) less than 0. What’s more, by irreducibility of Aξ there exists a
unique right eigenvector θξ∗ ∈ ∆++ := ∆ ∩R

d
++ , and for all y ∈ (Rd

+ \ {0}), we have

log(‖etAξ
y‖)/t → Λξ and etA

ξ
y/‖etAξ

y‖ → θξ∗ as t → +∞. The analog of (27) is that
Λξ = G0(θ

ξ
∗, ξ). As we mentioned in the introduction, except when d = 1 there is no

way in general to deduce the sign of Λ = π0(G0) from the signs of the Λξ = G0(θ
ξ
∗, ξ),

ξ ∈ E. When d ≥ 2, one can have Λξ > 0 for all ξ and Λ < 0, see [14, Example 4.6];
and one can have Λξ < 0 for all ξ and Λ > 0, see [14, Example 4.7].

3.3 Accessibility

Before proceeding further, we need to define the notion of accessible points, that appears
in the statement of Theorem 3.4 below. Let M be a closed subset of R

d, let F =
(F ξ)ξ∈E be family of C1-vector fields from M to R

d leaving M positively invariant,
and let (φξ)ξ∈E the associated family of semi-flows. For i = (i1, . . . , im) ∈ Em and
u = (u1, . . . , um) ∈ R

m
+ , we denote by φi

u
the composite flow : φi

u
= φimum ◦ . . . ◦ φi1u1.

For x ∈ R
d and t ≥ 0, we denote by γ+t (x) (resp. γ+(x)) the set of points that are

reachable from x at time t (resp. at any nonnegative time) with a composite flow:

γ+t (x) = {φi

u
(x), (i,u) ∈ Em ×R

m
+ , m ∈ N, u1 + . . .+ um = t},

γ+(x) =
⋃

t≥0

γ+t (x).

Finally, given a subset M ′ of M , we let the set of F -accessible points from M ′ be defined
by

Γ(M ′,F) = ∩x∈M ′γ+(x),
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where the topological closure is taken in the Alexandroff compactification of M . That
is to say, if γ+(x) is unbounded for all x ∈M ′ then we write ∞ ∈ Γ(M ′,F). Note that
by construction, Γ(M ′,F) \ {∞} is positively invariant by each F ξ. Now, we define
three different sets of accessible points by taking F to be the family of driving vector
fields associated to the PDMPs X̂, Θ̂ and Ŷ , by setting

Γ(X) = Γ
(

X+, (F
ξ)ξ∈E

)

; Γ(Y ) = Γ
(

R
d
+\{0}, (y 7→ Aξy)ξ∈E

)

; Γ(Θ) = Γ
(

∆, (Hξ
0)ξ∈E

)

.

Moreover, we let Γ(X̂) = Γ(X) × E, Γ(Ŷ ) = Γ(Y ) × E and Γ(Θ̂) = Γ(Θ) × E. This
choice of notation is motivated by the fact that Γ(X̂) coincides with the set of points
that are accessible from X+ × E for X̂ as a Markov process, see e.g. [12, Lemme 3.2].
That is, ŷ = (y, ξ) ∈ Γ(X̂) if and only if, for all neighbourhoods O of y and all x̂ ∈ X̂+,
there exists t ≥ 0 such that P(X̂ x̂

t ∈ O × {ξ}) > 0. The same property holds replacing
X̂ by Ŷ (resp. Θ̂) and X+ by R

d
+ \ {0} (resp. ∆).

Next lemma will be very useful in the following.

Lemma 3.3. Assume C. If 0 ∈ Γ(Y ) then 0 ∈ Γ(X). In particular if Λ < 0 then
0 ∈ Γ(X).

Proof. Assume C. Then for all ξ ∈ E, ψξ is monotone and sub-homogeneous. Hence,
for all x, y ∈ X such that x ≤ y and for all t ≥ 0, we have ψξt (x) ≤ ψξt (y) ≤ h−1ψξt (hy)
for all 0 < h < 1, which yields, letting h → 0, ψξt (x) ≤ Dψξt (0)y. Now, by classical
results on differential equations, Dψξt (0)y = φξt (y) where φξ is the semi-flow of the linear
ODE ż = Aξz. Using this inequality recursively entails that for all i ∈ Em and u ∈ R

m
+ ,

ψi

u
(x) ≤ φi

u
(x).

Now assume what’s more that 0 ∈ Γ(Y ). Let x ∈ X and ε > 0. Then, there exist
i ∈ Em and u ∈ R

m
+ such that ‖φi

u
(x)‖ ≤ ε. Thus, by the previous inequality on the

composite flows, ‖ψi

u
(x)‖ ≤ ε. This implies that 0 ∈ Γ(X).

Finally, let us prove the final claim. We only assume that Λ < 0 and that Cholds.
Then, it is clear from (26) that 0 ∈ Γ(Y ), and thus 0 ∈ Γ(X). �

This lemma enables to fully justify the second item of Theorem 3.2. Indeed, As-
sumption C and Λ < 0 imply that the condition 0 ∈ Γ(X) is satisfied, which allows to
apply [14, Theorem 3.1].

3.4 Moment Lyapunov exponents of the linearised PDMP

The sign of the Lyapunov exponent Λ gives the almost sure stability or unstability of the
linear process Y . Another classical question is the p-moment stability, for some p ∈ R.
That is, the asymptotic behaviour of E(‖Yt‖p). It is classical in the multiplicative
ergodic theory to consider the p-moment Lyapunov exponent, starting from ŷ = (y, ξ) ∈
(Rd

+ \ {0})×E, given by

g(p, ŷ) = lim sup
t→∞

1

t
logE(‖Y ŷ

t ‖p).
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Using again the polar decomposition of Y , the p-moment Lyapunov can also be ex-
pressed as

g(p, ŷ) = lim sup
t→∞

1

t
logE

[

exp

(

p

∫ t

0

G0(Θ̂
θ̂
s)ds

)]

(28)

where θ̂ = (y/‖y‖, ξ). The p-moment Lyapunov exponent for linear stochastic systems
has been notably studied by Arnold and his co-authors in the real and the white noise
case (see [3], [5] and [6]). Under irreducibility type conditions, they prove that g does
not depend on ŷ, that the map p 7→ g(p) is analytic, convex, and that its derivative at
p = 0 is the top Lyapunov exponent of the linear system under consideration. They use
the fact that g(p) can be interpreted as the principal eigenvalue of the generator of an
irreducible, compact positive semigroup (T pt )t≥0 which, for p close to 0 is a perturbation
of the initial semigroup of the process on the sphere.

This consideration was extended to jump linear systems by Leizarowitz [36] who
showed that, in general, g(p) can only be seen as an approximated eigenvalue. He
has also proved that, under irreducibility conditions, if g is differentiable at 0 then its
derivative must coincide with the top Lyapunov exponent. It was proven by Fang in
its PhD thesis [26] that the derivative of g from the right is the Lyapunov exponent
(see [26, Theorem 3.4.12]) and that, in general, g is not differentiable at 0 (see [26,
Example 3.4.11]). Moreover, he gives an irreducibility condition under which g is this
time differentiable at 0 (see [26, Proposition 3.4.11]). However, this condition is not
satisfied in our context.

In the one-dimensional case (d = 1), a general result from Bardet, Guérin and
Malrieu (see [9, Propositions 4.1 and 4.2]) implies that g is convex, differentiable at
p = 0, and can be explicitly computed as g(p) = ηp, where ηp is the principal eigenvalue
of the matrix Qp := Q+ pDiag(A1, . . . ,A|E|).

Here, we are able to prove the following theorem, which states that the aforemen-
tioned results still hold when switching between Metlzer, irreducible, d × d matrices.
The key tool is the use of the Hilbert projective metric, with respect to which the
dynamics of the angular process Θ is contractive.

Theorem 3.4.

1. For all p ∈ R, there exists g(p) ∈ R such that

g(p) = lim
t→+∞

1

t
log sup

θ̂∈∆×E
E

[

exp

(

p

∫ t

0

G0(Θ̂
θ̂
s)ds

)]

= lim
t→+∞

1

t
log inf

θ̂∈∆×E
E

[

exp

(

p

∫ t

0

G0(Θ̂
θ̂
s)ds

)]

. (29)

In particular, Equation (28) yields that for all ŷ ∈ (Rd
+ \ {0})× E,

g(p, ŷ) = lim
t→∞

1

t
logE(‖Y ŷ

t ‖p) = g(p).

2. The function p 7→ g(p) is convex and satisfies

max
ξ∈E

Λξ ≤ lim
p→+∞

g(p)

p
≤ max

θ̂∈Γ(Θ̂)
G0(θ̂), min

θ̂∈Γ(Θ̂)
G0(θ̂) ≤ lim

p→−∞

g(p)

p
≤ min

ξ∈E
Λξ.
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3. The function p 7→ g(p) is differentiable at p = 0 and satisfies

g(0) = 0, g′(0) = Λ.

4. Assume that Λ > 0 and let p∗ = inf{p > 0 : g(−p) > 0}. Then p∗ is finite if and
only if 0 ∈ Γ(Y ).

5. Assume that Λ < 0 and let p∗ = inf{p > 0 : g(p) > 0}. Then p∗ is finite if and
only if ∞ ∈ Γ(Y ).

Example 3.5. Consider the one dimensional Lajmanovich and Yorke model in switched
environment, studied by Bacaër and mentioned in the introduction : that is, E = {1, 2},
bξ(x) = bξx and dξ = d̃ for some b1, b2, d̃ > 0, and Q(x, 1, 2) = q1, Q(x, 2, 1) = q2 for
some q1, q2 > 0. For the associated one dimensional PDMP, it not hard to show that
Λ = q2

q1+q2
(b1 − d̃) + q1

q2+q1
(b2 − d̃). In particular, to have Λ > 0, one needs at least

that one of the bj ’s, says b1, is greater than d. This means that if the environment
was fixed in state 1, the disease would persist in the population (for the deterministic
associated model). In that persistent case (Λ > 0), Bacaër distinguishes two regimes
: strongly supercritical, with b1 > b2 > d̃, and weakly supercritical, with b1 > d̃ > b2.
In the strongly supercritical regime, the rate of infection is higher than the cure rate
in both environments, while in the weakly supercritical regime, the rate of infection
is lower that the cure rate in the second environment. It is thus straightforward that
in the strongly supercritical case, Γ(Y ) does not contain 0 while it does in the weakly
supercritical case. Moreover, using the result of Bardet, Guérin and Malrieu discussed
above, we have that p∗ is the unique positive solution to ηp = 0, where ηp is the principal
eigenvalue of the matrix

Qp =

(

−q1 + p(d̃− b1) q1
q2 −q2 + p(d̃− b2)

)

.

A quick computation gives that

det(Qp) = p
[

p(d̃− b1)(d̃− b2)− q1(d̃− b2)− q2(d̃− b1)
]

,

which yields

p∗ =
q1(d̃− b2) + q2(d̃− b1)

(d̃− b1)(d̃− b2)
,

or equivalently

p∗ =
q2

d̃− b2
− q1

b1 − d̃

which coincides with the ω given by Bacaer in [8]. Note that the assumptions Λ > 0
and b1 > d̃ > b2 imply that p∗ > 0.
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3.5 Lyapunov condition for the nonlinear PDMP

Another important conclusion in [14] is the existence of a Lyapunov function when
Λ > 0. Indeed, in that case, it has been proven that for p > 0 small enough, there
exists T, η > 0 and γ0 ∈ (0, 1) such that, for all x with ‖x‖ ≤ η,

E
x̂
[

‖XT‖−p
]

≤ γ0‖x‖−p.

Theorem 3.4 and the Feller regularity of (P Û
t )t∈R+ enable to complete this result and

yield the following proposition, which plays a key role in our study.

Proposition 3.6.

1. Let p ∈ R such that g(p) < 0. There exist T > 0, γ0 ∈ (0, 1) and η > 0 such that
for all x̂ = (x, ξ) ∈ X̂+ such that ‖x‖ ≤ η,

E
x̂ [‖XT‖p] ≤ γ0‖x‖p. (30)

2. Let p ∈ R such that g(p) > 0. There exist T > 0, γ̃0 > 1 and η > 0 such that for
all x̂ = (x, ξ) ∈ X̂+ such that ‖x‖ ≤ η,

E
x̂ [‖XT‖p] ≥ γ̃0‖x‖p. (31)

Proof. We only prove the first point, the proof of the second one is similar. Let p ∈ R

such that g(p) < 0. For all û = (ρ, θ, ξ) ∈ Û , (20) yields, for all t ≥ 0,

Rû
t = ρ exp

(
∫ t

0

G(Û û
s )ds

)

(32)

hence

E
[

(Rû
t )
p
]

= ρpE

[

exp

(

p

∫ t

0

G(Û û
s )ds

)]

(33)

We claim that for all t ≥ 0 the function

Wp,t : û 7→ E

[

exp

(

p

∫ t

0

G(Û û
s )ds

)]

is continuous on Û . Indeed, the Feller property of (P Û
t )t∈R+ entails that the probability

distribution of Û û is continuous with respect to û, where P
(

D(R+, Û)
)

is equipped

with the weak topology associated to the Skorokhod topology (this fact is a corollary
of Theorem 2.5 in Chapter IV of [25]). Now, since convergence in D(R+, Û) implies
convergence Lebesgue-almost everywhere, it follows from the continuity of G and the

dominated convergence theorem that for all t ≥ 0, u 7→ exp
(

p
∫ t

0
G(us)ds

)

is a bounded

continuous functional on D(R+, Û), yielding the continuity of Wp,t.
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Given that g(p) < 0, it follows from Proposition 3.4 that we can choose T > 0 such
that

γ(T ) := sup
θ̂∈∆×E

Wp,T (0, θ̂) = sup
θ̂∈∆×E

E

[

exp

(

p

∫ t

0

G0(θ̂
θ̂
s)ds

)]

< 1.

By continuity of Wp,T , we can find η > 0 small enough so that

γ0 := sup
û∈[0,η]×∆×E

Wp,T (û) < 1.

Combining this with (33), we obtain that (30) holds for all x̂ ∈ X̂ such that ‖x‖ ≤ η.
�

Proposition 3.6 enables to control the tail near 0 of persistent stationary distribu-
tions of X̂:

Corollary 3.7. Assume that Λ > 0, and let µ be a persistent stationary distribution
of X̂. Then :

1. For all p ∈ (0, p∗),
∫

X̂+

‖x‖−p µ(dx, dξ) < +∞.

2. If 0 ∈ Γ(Y ) and Assumption C holds, then for all p > p∗,
∫

X̂+

‖x‖−p µ(dx, dξ) = +∞.

Proof. For all p ∈ (0, p∗) we have g(−p) < 0, hence Proposition 3.6 entails that
(x, ξ) 7→ ‖x‖−p is a Lyapunov function for X̂. Then, it follows from classical arguments
(see e.g. Proposition 4.24 in [29]) that this function is integrable with respect to µ.

Now, assume that 0 ∈ Γ(Y ) (i.e. p∗ < ∞) and that C holds. Fix p > p∗. We
have g(−p) > 0 and we let T, η > 0 and γ̃0 > 1 be given by Proposition 3.6 applied to
−p. Let ϕ : X → R+ be defined by ϕ(x, ξ) = 1‖x‖>0(‖x‖−p ∨ η−p). A straightforward

consequence of the definition of ϕ and Proposition 3.6 is that for all x̂ = (x, ξ) ∈ X̂ ,

E
x̂
(

ϕ(X̂T )
)

≥ γ̃0ϕ(x̂)1‖x‖≤η + ϕ(x̂)1‖x‖>η.

Integrating the above equation with respect to µ and using the invariance of µ yields

µϕ ≥ µϕ+ (γ̃0 − 1)µ(ϕ1{x̂∈X̂+: ‖x‖≤η}).

Now, due to Lemma 3.3, 0 ∈ Γ(X), and therefore {0}×E is in the topological support
of µ by Proposition 3.17 in [12]. Since γ̃0 > 1 and ϕ > 0 on X̂+, this implies that the
second term in the right handside of the above inequality is strictly positive. Hence,
we must have µϕ = +∞, which entails that

∫

X̂+
‖x‖−p µ(dx, dξ) = +∞. �
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4 Main results

Our main results concern the behaviour of X̂K for large K, in two aspects. In Section
4.1 we give stochastic bounds on the extinction time of the disease, starting from any
initial condition. Then, in Section 4.2 we describe the asymptotic behaviour of the
unique quasi-stationary distribution of X̂K , as K goes to infinity. The results are very
different depending on whether the limiting PDMP is persistent or not.

4.1 Asymptotics for the extinction time

As mentioned in Section 2.1, Assumption B entails that {0} × E is accessible from
every state in X̂K for the Markov chain X̂K . Due to the finiteness of X̂K , this ensures
that the extinction time of the disease

τK0 = inf{t ≥ 0 : XK
t = 0},

is finite almost surely, under every P
µ. A natural question is to know what is the order

of magnitude of τK0 . Our first main results, Theorems 4.1, 4.6 and 4.9 below, show that
the answer to that question depends on whether the limit process X̂ is persistent or
not. Together, these three theorems form Theorem 1.2, stated in the introduction in
the simplified framework.

4.1.1 The persistent case

We begin with the case where the limiting PDMP X̂ is persistent, i.e. Λ > 0. Our
first theorem yields two results. First, we obtain a lower bound, independent of K,
on the probability that a macroscopic fraction of the population gets infected, starting
from any initial condition with at least one infective. Second, our theorem yields a
stochastic lower bound on the extinction time of the epidemic. When the initial number
of infectives is large i.e. K‖XK

0 ‖ ≫ 1, the extinction time is greater than Kp with high
probability, for all p < p∗.

Theorem 4.1. Assume that Λ > 0, and let p ∈ (0, p∗). There exist η, C1, C
′
1, C

′′
1 > 0

and K0 ∈ N
∗ such that, for all K ≥ K0, all x̂ = (x, ξ) ∈ X̂K

+ and all t ≥ 0,

P
x̂
(

τKη <∞
)

≥ exp

(

− C ′′
1

(K‖x‖)p
)

≥ e−C
′′
1 .

and

P
x̂
(

τK0 > t
)

≥ exp

(

− C ′
1

(K‖x‖)p
)

exp

(

−C1t

Kp

)

.

In particular, for all K ≥ K0,

inf
x̂∈X̂K

+

E
x̂(τK0 ) ≥ e−C

′
1

C1

Kp.
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We prove this theorem in Section 6.5. Let us explain the main ingredients of the
proof. The first crucial step consists in transfering to X̂K the Lyapunov property of
x̂ 7→ ‖x‖−p for p ∈ (0, p∗) given by Proposition 3.6 for X̂. More precisely, we have the
following proposition.

Proposition 4.2. Let p ∈ R such that g(p) < 0. Let T > 0 and η > 0 be given by
Proposition 3.6. There exist γ ∈ (0, 1), a > 0 and K0 ∈ N

∗ such that for all K ≥ K0

and all x̂ = (x, ξ) ∈ X̂K
+ satisfying a/K ≤ ‖x‖ ≤ η, we have

E
x̂
[

‖XK
T ‖p1{T<τK0 }

]

≤ γ ‖x‖p. (34)

The proof relies on the use of Lemma 2.1, which entails that ‖XK‖/‖X‖ stays close
to 1 with high probability on [0, T ], as well as the control of XK given by Lemma 2.4.
As we see below, it is crucial that this Lyapunov condition holds for ‖x‖ as small as
a/K.

Thanks to the above proposition, we can use a supermartingale argument to bound
from above the probability for ‖XK‖ to reach low barriers before higher ones.

Lemma 4.3. Assume that Λ > 0 and let p ∈ (0, p∗). Let η > 0 be given by Proposition
3.6, item 1. There exist a′ > 0, C5 ≥ 1 and K0 ∈ N

∗ such that for all K ≥ K0, ρ > 0
and x̂ = (x, ξ) ∈ X̂K

+ such that a′/K ≤ ρ ≤ ‖x‖ ≤ η, we have

P
x̂
(

τKρ < τKη
)

≤ C5(‖x‖/ρ)−p.

Let us fix some η′ < η. Intuitively, assuming that ‖XK
0 ‖ ≥ η, the trajectory of XK

before its norm goes below some level ρ astisfying a/K ≤ ρ < η′ can be decomposed
into successive excursions of the following form. First, wait for ‖XK‖ to go below η′.
Then, wait for it to either exceed η again, in which case we call it a failed excursion and
repeat the procedure, or to go below ρ, in which case we call it successful excursion and
the decomposition is over. By means of the above lemma, we can obtain a lower bound
on the probability of a failed excursion. In addition, the duration of a failed excursion
can be bounded from below with high probability by some constant T ′, using Lemma
2.4 which shows that ‖XK‖ varies slowly. This decomposition yields a lower bound on
τKρ , as stated by the following lemma.

Lemma 4.4. Assume that Λ > 0, and let p ∈ (0, p∗). Let η > 0 be given by Proposition
3.6. There exist T ′, a′ > 0, c1 > 0, δ ∈ (0, η) and K0 ∈ N

∗ such that for all K ≥ K0,
ρ ∈ [a′/K, δ], x̂ = (x, ξ) ∈ X̂K

+ such that ‖x‖ ≥ η and t ≥ 0, we have

P
x̂
(

τKρ > t
)

≥ e−c1ρ
p⌈t/T ′⌉.

This yields a lower bound on the extinction time starting from a macroscopic fraction
of infectives, using that τK0 ≤ τKa/K . Here we see that in order to get the time scale Kp

in Theorem 4.1, it is crucial to be able to take ρ of order 1/K. Finally, Theorem 4.1
follows from the above lemmas together with Lemma 2.5, which yields a lower bound
on the probability that the total number of infectives reaches some prescribed value a′′.
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Remark 4.5. In case Λ > 0 and 0 /∈ Γ(Y ), we have p∗ = +∞ hence Theorem 4.1
implies that the typical extinction time starting from a large initial number of infec-
tives (i.e. K‖x‖ ≫ 1) grows faster than any power of K. Thus, one may wonder if
the extinction time grows exponentially fast with K in that case, as for the classical
stochastic SIS epidemic model in constant environment in the supercritical case, and
numerous other models where 0 is an unstable equilibrium of the limiting ODE, see e.g.
[23, 17, 18]. However, this is not case in general. Consider the context of Example 3.5,
that is, E = {1, 2}, bξ(x) = bξx and dξ = d̃ for some b1, b2, d̃ > 0, and Q(x, 1, 2) = q1,
Q(x, 2, 1) = q2 for some q1, q2 > 0. Assume that b1 > d̃ and that b2 = d̃. This implies
that Λ = q2

q1+q2
(b1 − d̃) > 0. Moreover, in that case, A1 = b1 − d̃ > 0 and A2 = 0. In

particular, 0 is not in Γ(Y ). Let x̂ = (x, ξ) ∈ X̂K
+ be an initial condition for X̂K . First,

the environment ΞK reaches state 2 before time 1 with probability at least 1 − e−q1.
Then, as long as it stays in state 2, KXK coincides with a critical stochastic SIS pro-
cess, whose mean extinction time, starting from a maximal initial number of infectives,
is asymptotically equivalent to C

√
K for some C > 0, see [23, Section 2.2]. What’s

more, the probability that the environment stays in state 2 during a period of time
longer than t is equal to e−q2t. Therefore, for K large enough we have

P
x̂
(

τK0 ≤ 2C
√
K
)

≥ (1− e−q1)P(x,2)
(

τK0 ≤ 2C
√
K − 1

)

≥ (1− e−q1)e−q2(2C
√
K−1)

P
(x,2)

(

τK0 ≤ 2C
√
K − 1 | ∀t ∈ [0, 2C

√
K − 1], ΞKt = 2

)

≥ C ′e−2q2C
√
K

where C ′ = (1 − e−q1)e2q2C/3, using Markov’s inequality. Then the use of the Markov

property shows that for all x̂ ∈ X̂K
+ , Px̂(τK0 > t) ≤

(

1− C ′e−2q2C
√
K
)⌊t/(2C√

K)⌋
, which

entails that E
x̂(τK0 ) ≤ 2CC ′−1

√
Ke2q2C

√
K . Hence, it is possible to have Λ > 0, p∗ =

+∞ and a mean time of extinction which is subexponential in K.

We complete the lower bound on the extinction time given by Theorem 4.1 by an
upper bound. In the case where 0 ∈ Γ(Y ) i.e. p∗ < ∞, we prove that for all p > p∗,
the extinction time is smaller than Kp with high probability, under Assumption C.

Theorem 4.6. Assume that Λ > 0, 0 ∈ Γ(Y ) and that Assumption C holds. Let
p > p∗. There exist C2, C

′
2 > 0 and K0 ∈ N

∗ such that for all K ≥ K0, all x̂ ∈ X̂K
+ and

all t ≥ 0,

P
x̂
(

τK0 > t
)

≤ C ′
2 exp

(

−C2t

Kp

)

.

In particular, for all K ≥ K0,

sup
x̂∈X̂K

+

E
x̂(τK0 ) ≤ C ′

2

C2
Kp.

The two above theorems yield the following control on the mean extinction time,
uniform in the initial condition. Under Assumption C, the mean extinction time is
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logarithmically equivalent to Kp∗ if p∗ < ∞, and grows faster than any power of K if
p∗ = ∞.

Corollary 4.7. Assume that Λ > 0. Then,

lim inf
K→+∞

log inf x̂∈X̂K
+
E
x̂(τK0 )

log(K)
≥ p∗. (35)

If, in addition, Assumption C holds, then

lim inf
K→+∞

log inf x̂∈X̂K
+
E
x̂(τK0 )

log(K)
= lim sup

K→+∞

log supx̂∈X̂K
+
E
x̂(τK0 )

log(K)
= p∗.

Proof. Assume that Λ > 0. Applying Theorem 4.1, letting K → +∞ and then p→ p∗

yields (35). If 0 ∈ Γ(Y ), which is equivalent to p∗ = +∞, then the proof is complete.
If 0 /∈ Γ(Y ) and C holds, then Theorem 4.6 entails

lim sup
K→+∞

log supx̂∈X̂K
+
E
x̂(τK0 )

log(K)
≤ p∗,

which concludes the proof. �

The proof of Theorem 4.6 is given in Section 6.6. Its ingredients are very similar
to those of the proof of Theorem 4.1. This time, we transfer to the process X̂K the
"reverse" Lyapunov property verified by x̂ 7→ ‖x‖−p with respect to X̂ when p > p∗.

Proposition 4.8. Assume that Λ > 0 and 0 ∈ Γ(Y ), and let p > p∗. Let T > 0 and
η > 0 be given by item 2 of Proposition 3.6 applied to −p. There exist γ̃ > 1, a > 0 and
K0 ∈ N

∗ such that for all K ≥ K0 and all x̂ = (x, ξ) ∈ X̂K
+ satisfying a/K ≤ ‖x‖ ≤ η,

E
x̂
[

‖XK
T ‖−p1{T<τK0 }

]

≥ γ̃ ‖x‖−p. (36)

Using a submartingale argument, combined with Lemma 2.5 and the fact that 0 ∈
Γ(X) (Lemma 3.3), we can show that the probability of extinction before a time of
order log(K) is of order at least K−p, uniformly on the starting point in X̂K

+ . Theorem
4.6 then follows from the Markov property.

4.1.2 The non-persistent case

We conclude on the extinction time with the non-persistent case. In this situation, the
extinction time is of order at most log(K).

Theorem 4.9. Assume that Λ < 0 and that C holds. There exist K0 ∈ N
∗, C3, C

′
3 > 0

such that for all K ≥ K0, all x̂ ∈ X̂K
+ and all t ≥ 0,

P
x̂
(

τK0 > t
)

≤ C ′
3 exp

(

− C3t

log(K)

)

.

In particular, for all K ≥ K0,

sup
x̂∈X̂K

+

E
x̂(τK0 ) ≤ C ′

3

C3
log(K).
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We give the proof in Section 6.7. Since g′(0) = Λ < 0 (see Theorem 3.4), we can
choose p > 0 such that g(p) < 0 and make use of Proposition 4.2. By a supermartingale
argument and using once that 0 ∈ Γ(X) thanks to Lemma 3.3, we are able to bound
from below by a constant the probability of extinction before a time of order log(K),
uniformly on the starting point in X̂K

+ . Theorem 4.9 then follows from the Markov
property.

4.2 Scaling limit of quasi-stationary distributions

As we know, with probability one the disease eventually dies out. A good way to gain
understanding on the behaviour of X̂K before extinction is to study its quasi-stationary
distribution(s) (QSD). A probability measure µK on X̂K

+ is a QSD for X̂K if and only
if, for all t ≥ 0,

P
µK
(

X̂K
t ∈ ·

∣

∣ τK0 > t
)

= µK(·).

Due to the finiteness of the state space X̂K and the irreducibility of X̂K
+ for the

continuous-time Markov chain X̂K , there exists a unique QSD µK for X̂K , by clas-
sical arguments based on the Perron-Frobenius theorem. Furthermore, the distribution
of X̂K

t conditional on non-extinction converges exponentially fast to µK , in the sense
that for some positive constants C(K), γ(K),

∥

∥

∥
P
ν
(

X̂K
t ∈ ·

∣

∣ τK0 > t
)

− µK
∥

∥

∥

TV
≤ C(K)e−γ(K)t, (37)

for every initial distribution ν ∈ P(X̂K
+ ), where ‖·‖TV denotes the total variation norm.

We refer to the nice survey [38] for the proof of these basic results and much more
about quasi-stationary distributions. An interesting question, not treated here and
left for future works, would be to find bounds on C(K) and γ(K). This was done
by Chazottes, Collet and Méléard for the multitype birth-and-death processes they
studied in [18], which are similar to the multitype SIS model considered here in a
constant environment ξ in the persistent case. They obtained C(K) = O(1) and γ(K)
of order 1/ log(K), see their Theorem 3.1. Hence, in that context convergence to the
QSD occurs on a time scale log(K), which is very small with respect to the time scale of
extinction, exponential in K. We expect that this separation of time scales is also true
in our context if Λ > 0, C holds and x 7→ Q(x) is constant. Indeed, in that case, on the
one hand the typical extinction time starting from a large initial number of infectives
(i.e. K‖XK

0 ‖ ≫ 1) grows at least as a power of K; one the other hand, the limiting
PDMP X̂ has good mixing properties, see Theorem 3.2, item 1 (and more precisely [14,
Theorem 4.12]), which makes us think that convergence to the QSD for the conditional
marginals of X̂K takes place on a much smaller time scale than extinction. If this
is valid, then at least in that case, the QSD µK yields a good approximation of the
marginal distributions of X̂K for a large period of time, which motivates its study.

Here, we are interested in the behaviour of µK as K goes to infinity. Once again,
this behaviour strongly depends on the sign of Λ. Our main result is Theorem 4.11
below, which treats the persistent case. We also consider the non-persistent case in
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Proposition 4.13 below. Together with Proposition 4.10, these three results extend
Theorem 1.3 from the introduction to our more general framework.

Before presenting our results, let us recall that a few basic facts about the QSD (see
e.g. [38]). Under P

µK , the extinction time τK0 has an exponential distribution with
a rate parameter λK ∈ (0,+∞), called the extinction rate. In particular, EµK [τK0 ] =
1/λK. For all t ∈ R+, let us define the submarkovian kernel P̃K

t on XK by

P̃K
t (x̂, A) = P

x̂
(

X̂K
t ∈ A, τK0 > t

)

for all x̂ ∈ XK and A ⊂ X̂K . The family (P̃K
t )t∈R+ constitutes a submarkovian semi-

group on XK , called the killed semi-group of X̂K . By definition of the QSD and the
fact that PµK (τK0 > t) = e−λ

K t, we have µKP̃K
t = e−λ

K tµK for all t ∈ R+.

The persistent case. First, we consider the case where Λ > 0. From Corollary 4.7
and the fact that EµK [τK0 ] = 1/λK , we immediately deduce the following result.

Proposition 4.10. Assume that Λ > 0. Then λK −→
K→+∞

0, and more precisely

lim sup
K→+∞

log(λK)

log(K)
≤ −p∗.

If, in addition, Assumption C holds, then

log(λK)

log(K)
−→

K→+∞
−p∗.

In order to study the asymptotic behaviour of the sequence (µK)K≥d, we see these

QSDs as probability distributions on the compact state space X̂ , with the advantage
that P(X̂ ) is compact for the weak topology. In his PhD thesis [44, Lemma 6.3],
Strickler proved that the convergence of λK to 0 entails that all weak limit points
of (µK)K≥d in P(X̂ ) are stationary probability distributions of the limiting PDMP X̂.
However, it remains to know whether part of the mass could escape to {0}×E. Roughly
speaking, in a large population (K ≫ 1), knowing that the disease is still present in
the population at some large time t, is it likely that the proportion of infectives in the
population is very low ? Or on the contrary, is it likely that a significant proportion
of the population is still infected ? Intuitively, due to the tendency of the epidemic
to invade the population from low levels of infectives in the persistent case, one is
naturally inclined to choose the second option. In other words, it is quite intuitive to
think that L ⊂ P(X̂+), where L denotes the set of weak limit points of (µK)K≥d.
This is what happens for several models in constant environment, such as the birth-
and-death processes studied in [17, 16] and the supercritical stochastic SIS model (in
discrete time) studied in [43], where the QSD converges to the unique non-zero stable
equilibrium point of the limiting ODE.

Our main result, Theorem 4.11 below, states that this is indeed the case. In the
following, we say that a collection (or a family) of elements of P(X̂+) is persistent if
it is tight on X+. By Prohorov’s theorem, L ⊂ P(X̂+) is equivalent to saying that
(µK)K≥d is persistent.
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Theorem 4.11. Assuming that Λ > 0, the following hold.

1. The sequence (µK)K≥d is persistent. Furthermore, for all p ∈ (0, p∗), there exists
C4 > 0 such that, for all µ ∈ L ,

∫

X̂+

‖x‖−pµ(dx, dξ) ≤ C4.

2. Every element of L is a persistent stationary distribution of X̂.

3. If Assumption C holds and x 7→ Q(x) is constant, then

µK =⇒
K→+∞

µ∗,

where µ∗ is the unique persistent stationary distribution for X̂ given by Theorem
3.2.

The second item is a consequence of the first one and the fact that L is included
in the set of invariant probability measures. As we just said, this fact follows from [44,
Lemma 6.3], but for the sake of completeness we provide the proof in Section 6.8 (see
Proposition 6.6). As for item 3, it follows from item 2 and the unicity of the persistent
stationary distribution when C holds and x 7→ Q(x) is constant, given by Theorem 3.2.
Note that in the case of a constant environment, this says that µK converges to the
Dirac mass on the endemic equilibrium, as in [43, 17, 16].

The difficult part of Theorem 3.2 is item 1. Although we argued that the result is
somewhat intuitive, the mathematical proof requires a fine analysis of the microscopical
behaviour of the process near the extinction set. We stress that the convergence of X̂K

to a persistent process X̂ is not enough. Let us explain why, on a simple example.
Consider the classical supercritical stochastic SIS model, corresponding to d = |E| = 1,
XK = NK/K where NK is a birth-and-death process with state space J0, KK, birth rate
bn(1 − n/K) and death rate d̃n in state n, with b > d̃ > 0. Consider also the slightly
modified Markov process X̃K = ÑK/K where ÑK is another birth-and-death process,
with the same transition rates as NK except starting from state 1, where we set the
birth rate and the death rate equal to some very small εK ∈ (0, 1]. The value of εK
will be fixed later. We know that if XK

0 −→
K→+∞

x0, then XK converges in distribution

to the solution of the Cauchy problem

ẋ = x(b− d̃− bx), x(0) = x0, (38)

in the Skorokhod space D([0, T ],R), for all T > 0. It is not hard to see that the
same goes for X̃K : if X̃K

0 → 0, then X̃K → 0 in distribution on D([0, T ],R); while
if X̃K

0 → x0 > 0, X̃K has the same distribution as XK until the hitting time of 1/K,
which tends to +∞, hence X̃K converges in distribution in D([0, T ],R) to the solution
of 38. However the process X̃K has the particularity that the state 1/K is almost
absorbing, in the sense that the total jump rate from 1/K is very small, equal to
2εK. Due to the irreducibility of K−1J1, KK and the accessibility of 0 for the process
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X̃K , it admits a unique QSD µ̃K . We claim that by choosing εK small enough, we
can make µ̃K({1/K}) arbitrarily close to 1. The QSD µ̃K satisfies the eigenequation
µ̃KL̃K = −λ̃K µ̃K for some λ̃K > 0, where L̃K is the infinitesimal generator of the
killed semi-group of X̃K , i.e. the transition rate matrix of X̃K restricted to the states
K−1J1, KK. Setting mK

i = µ̃K({i/K}) and ℓKi,j = L̃K(i/K, j/K), i, j ∈ J1, KK, we have

µ̃KL̃K({1/K}) = −mK
1 (2εK) +mK

2 (2d̃) = −λ̃KmK
1

and for all i ∈ J2, K − 1K,

µ̃KL̃K({i/K}) = mK
i−1ℓ

K
i−1,i −mK

i |ℓKi,i|+mK
i+1ℓ

K
i+1,i = −λ̃KmK

i .

Thus, we have

mK
2 ≤ mK

1 (εK/d̃) and ∀i ∈ J2, K − 1K, mK
i+1 ≤ mK

i |ℓKi,i|/ℓKi+1,i.

Since the rates |ℓKi,i|, ℓKi+1,i, i ∈ J2, K − 1K, do not depend on εK , these inequalities

entail that we can fix the value of εK small enough so that
∑K

i=2m
K
i ≤ CKεKm

K
1 for

some constant CK which does not depend on εK . Given that
∑K

i=1m
K
i = 1, we obtain

mK
1 ≥ 1/(1+CKεK). Hence, if we fix εK = 1∧(KCK)−1, we obtain mK

1 ≥ 1−1/(K+1).
With such a choice, we see that the QSD µ̃K converges weakly to δ0 as K → +∞, even
though X̃K converges to the solution of an ODE repelled by 0.

Let us go back to the general framework. As we just explained, the proof of the first
item of Theorem 4.11 requires fine control of the microscopical behaviour of the chain
X̂K near the extinction set {0} ×E. This is what the following proposition provides.

Proposition 4.12. Assume that Λ > 0 and let p ∈ (0, p∗). Let T, a > 0 be given by
Proposition 4.2 applied to −p, and for all K ≥ d, let ϕK1 : X̂K

+ → R
∗
+ be defined by

ϕK1 (x, ξ) = ‖x‖−p ∧ (a/K)−p. There exist θ ∈ (0, 1) and C6 > 0 such that :

i) for all K large enough,

P̃K
T ϕ

K
1 ≤ θϕK1 + C6 ; (39)

ii) lim supK→+∞ µKϕK1 ≤ C6/(1− θ).

In order to obtain the global Lyapunov condition (39) for ϕK1 with respect to the
killed kernel P̃K

T , there are two main ingredients. Obviously, the first one is given by
Proposition 4.2 which yields the Lyapunov condition on the set {(x, ξ) ∈ X̂K : ‖x‖ ≥
a/K}. The second main ingredient is given by Lemma 2.5, Equation 18, which yields
a lower bound, independent of K, on the probability of extinction of X̂K in constant
time starting from {(x, ξ) ∈ X̂K : 1 ≤ ‖x‖ < a/K}. This notably prevents that X̂K

stays too long in that region, which was the problem for the "pathological" process X̃K

constructed above. We stress that in order to be able to glue these two ingredients and
get a constant θ independent of K, it proved crucial that the Lyapunov condition given
by Proposition 4.2 be able to cover a region which is at distance of order only 1/K
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of the extinction set. Finally, item ii) easily follows from the integration of (74) with
respect to µK and the fact that λK converges to 0.

Let us mention that the idea of using a global Lyapunov condition with respect to
the killed semi-group in order to control moments of the QSD was inspired to us by the
reading of the works of Champagnat and Villemonais, see e.g. [15, Lemma 9.6]. Here,
we do not need a reverse Lyapunov condition because we already have an upper bound
on λK .

The non-persistent case. To complete the picture, we give the following result for
the non-persistent case, which is a direct consequence of [44, Theorem 6.2].

Proposition 4.13. Assume that Λ < 0 and that Assumption Cholds. Then

µK(· × E) =⇒
K→+∞

δ0.

5 Perspectives

A first important question that we have left for future work concerns the rate of conver-
gence to the QSD of the marginal distributions of X̂K conditional on non-extinction,
in the persistent case. We believe that the environmental variation should not pre-
vent a rate γ(K) of order 1/ log(K) from being obtained in (37), as for the multitype
birth-and-death processes in constant environment studied in [18].

Second, although we have focused on SIS epidemic models in this paper, it seems
clear that several of the techniques that we have developed in this paper can be used
or adapted for other classes of birth-and-death processes in random environment. We
are in particular thinking of Lotka-Volterra competitive or prey-predator models in
random environment. For these processes, when we are interested in coexistence of
all the species, extinction corresponds to at least one of the species being extinct.
Conditions for coexistence of the limiting PDMP are given by signs of average growth
rates of the species when rare, see e.g. [13]. It is also possible to build Lyapunov
functions of the form (x, ξ) 7→ |xi|−p for the PDMP near the extinction set of species i
and thus, probably, for the associated birth-and-death process. One important issue in
the birth-and-death Lotka-Volterra models, that was missing in the epidemic model we
investigated, is the non finiteness of the state space : the population can grow to infinity
and is no more bounded by K, which is in that case a scaling parameter representing
the typical size of the population at equilibrium. However, if the limiting PDMP as an
attracting compact set, as it the cases for most models, we believe that the behaviour
at infinity can be handled with a bit of work. Moreover, using techniques borrowed to
Champagnat and Villemonais [15], it is certainly possible to prove the existence and
uniqueness of a quasi-stationary distribution for each K. We leave this extension for
future research.

Finally, it would be interesting to be even more precise and general in our asymp-
totics. To begin with, the critical case Λ = 0 remains open. In addition, for the
persistent case, when p∗ <∞ we have obtained a logarithmic equivalent of the extinc-
tion time but not an equivalent. When p∗ = +∞, Remark 4.5 showed that it can lead
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both to subexponential and exponential order for the extinction time, hence it would
be nice to determine under what conditions the extinction time is exponential in K.
Finally, in the non-persistent case Λ < 0, we conjecture that the typical extinction time
from fixed proportions of infectives is of order log(K)/|Λ|, as suggested by 26 and the
fact that X̂K is likely to die in a time of order one as soon as it gets of order 1/K.

6 Proofs

6.1 Proof of Proposition 2.1

Let us fix K large enough so that for all i ∈ J1, dK, Ki(K)/K ≥ α/2. Let T > 0,
x ∈ XK , y ∈ X and ξ ∈ E, and set x̂ = (x, ξ), ŷ = (y, ξ). Finally, let ε > ‖x− y‖, and
introduce the following stopping times :

σK,x̂,ŷε := inf{t ≥ 0 : ‖XK,ŷ
t −X x̂

t ‖ > ε}, ηK,x̂,ŷ := inf{t ≥ 0 : ΞK,ŷt 6= Ξx̂t }.

We claim that for some constants C0, C
′
0 > 0, which do not depend on K, x, y, ε nor

T , the following hold :

P
[

σK,x̂,ŷε ≤ T ∧ ηK,x̂,ŷ
]

≤ 2d exp

(

−Kδ(ε, T, x, y)
C0

(

δ(ε, T, x, y)

C ′
0(Te

CF T‖x‖+ ε)
∧ 1

))

(40)

P
[

ηK,x̂,ŷ ≤ T ∧ σK,x̂,ŷε

]

≤ T |E| sup
ξ1 6=ξ2, ‖z−z′‖≤ε

|q(z, ξ1, ξ2)− q(z′, ξ1, ξ2)|. (41)

Let us start by the proof of (40). In the following, we simplify the notations by
writing σKε = σK,x̂,ŷε and ηK = ηK,x̂,ŷ. Combining (11) and (9), we obtain that P-almost
surely for all t ≤ ηK ,

‖XK,ŷ
t −X x̂

t ‖ ≤ ‖y − x‖+ CF

∫ t

0

‖XK,ŷ
s −X x̂

s ‖ds+ ‖MK,ŷ
t ‖

where

MK,ŷ
t =

∫

(0,t]×R+×J1,dK×{−1,1}
1{u≤Kiβhei(X̂

K,ŷ
s− )}

hei
Ki

ÑX(ds, du, di, dh)

Thus Grönwall’s lemma yields, almost surely for all t ≤ ηK ,

sup
0≤s≤t

‖XK,ŷ
s −X x̂

s ‖ ≤ eCF t

(

‖y − x‖+ sup
0≤s≤t

‖MK,ŷ
s ‖

)

.

It follows that

{

σKε ≤ T ∧ ηK
}

⊂
{

sup
0≤s≤T∧ηK∧σKε

‖XK,ŷ
s −X x̂

s ‖ ≥ ε

}

⊂
{

sup
0≤s≤T

‖MK,ŷ
s∧ηK∧σKε

‖ ≥ δ(ε, T, x, y)

}

(42)
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where δ(ε, T, x, y) := (εe−CF T−‖x−y‖)+. Let MK,ŷ,i, i ∈ J1, dK, denote the coordinates
of MK,ŷ. We have

MK,ŷ,i
t∧ηK∧σKε

=

∫

(0,t]×R+×{−1,1}
GK,ŷ,i
s,u ÑX(ds, du, {i} , dh),

with

GK,ŷ,i
s,u = 1{s≤ηK≤σKε }1{u≤Kiβhei(X̂

K,ŷ
s− )}

h

Ki
. (43)

Let Cβ = supi∈J1,dK,h∈{−1,1},ζ∈E‖βζhei‖Lip. For all s ≤ T ∧ ηK , i ∈ J1, dK and h ∈ {−1, 1}
we have, using that βζhei(0) = 0 for all ζ ∈ E,

βhei(X̂
K,ŷ
s− ) ≤ Cβ(‖X x̂

s−‖+ ε) ≤ Cβ(‖x‖eCF T + ε). (44)

Using (43), (44) and applying Lemma 7.1, we obtain

P

(

sup
0≤s≤T

‖MK,ŷ
s∧ηK∧σKε

‖ ≥ δ(ε, T, x, y)

)

≤
∑

i∈J1,dK

P

(

sup
0≤s≤T

|MK,ŷ,i
s∧ηK∧σKε

| ≥ δ(ε, T, x, y)/d

)

≤ 2d exp

(

−Kδ(ε, T, x, y)
4dα

(

δ(ε, T, x, y)

4dT (CβeCF T‖x‖+ ε)
∧ log(2)

))

which yields (40) with C0 = 4dα and C ′
0 = 4d(Cβ ∨ 1)/ log(2).

Now, we prove (41). Let us introduce the counting process (DK
t )t≥0 defined by

DK
t =

∫

(0,t]×R+×E
1{ξ′ 6=Ξx̂

s−}
∣

∣

∣
1{u≤q(XK,ŷ

s− ,Ξx̂
s−,ξ

′)} − 1{u≤q(Xx̂
s−,Ξ

x̂
s−,ξ

′)}
∣

∣

∣
NΞ (ds, du, dξ

′) .

Recalling Equations (8) and (10), and given that ΞK,ŷ and Ξx̂ coincide before ηK , we
see that DK has the useful property that

{

ηK ≤ T ∧ σKε
}

=
{

DK
T∧ηK∧σKε = 1

}

.

It follows that

P
[

ηK ≤ T ∧ σKε
]

≤ E

(

(DK
T∧σKε )

2
)

= E





∫ T∧ηK∧σKε

0

1{s≤σKε }
∑

ξ′ 6=Ξx̂
s

∣

∣q(XK,ŷ
s ,Ξx̂s , ξ

′)− q(X x̂
s ,Ξ

x̂
s , ξ

′)
∣

∣ ds





≤ T |E| sup
‖z−z′‖≤ε, ξ1 6=ξ2,

|q(z, ξ1, ξ2)− q(z′, ξ1, ξ2)| ,
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which ends the proof of (41). Now we can conclude :

P

[

sup
0≤t≤T

d̂

(

X̂K,ŷ
t , X̂ x̂

t

)

> ε

]

≤ P
[

σKε ∧ ηK ≤ T
]

≤ P
[

σKε ≤ T ∧ ηK
]

+P
[

ηK ≤ T ∧ σKε
]

≤ 2d exp

(

−Kδ(ε, T, x, y)
C0

(

δ(ε, T, x, y)

C ′
0(Te

CF T‖x‖+ ε)
∧ 1

))

+ T |E| sup
ξ1 6=ξ2, ‖z−z′‖≤ε

|q(z, ξ1, ξ2)− q(z′, ξ1, ξ2)| .

�

6.2 Proof of Lemma 2.4

Let K ≥ d and x̂ = (x, ξ) ∈ X̂K
+ . We work under P

x̂. Equation (11) yields

‖XK
t ‖ = 〈1, XK

t 〉 = ‖x‖+
∫ t

0

〈1, F (X̂K
s )〉ds+ 〈1,MK

t 〉.

Since for all s ≥ 0, −CF‖XK
s ‖ ≤ 〈1, F (X̂K

s )〉 ≤ CF‖XK
s ‖, applying generalized Ito’s

formula to t 7→ eCF t‖XK
t ‖ and t 7→ e−CF t‖XK

t ‖ yields

eCF t‖XK
t ‖ ≥ ‖x‖ − ZK

t and e−CF t‖XK
t ‖ ≤ ‖x‖+ Z

K

t (45)

where

ZK
t := −

d
∑

i=1

∫ t

0+

eCF sdMK
i (s)

= −
∫

(0,t]×R+×J1,dK×{−1,1}
1{u≤Kiβhei(X̂

K
s−)}

h

Ki
eCF s ˜NX(ds, du, di, dh),

Z
K

t :=

∫ t

0+

e−CF sdMK
i (s)

=

∫

(0,t]×R+×J1,dK×{−1,1}
1{u≤Kiβhei(X̂

K
s−)}

h

Ki

e−CF sÑX(ds, du, di, dh).

Using (45), we get
{

τKM‖x‖∧τK
m‖x‖

≤ T
}

⊂
{

τKm‖x‖ ≤ T ∧ τKM‖x‖
}

∪
{

τKM‖x‖ ≤ T
}

⊂
{

sup
0≤t≤T

ZKt∧τK
M‖x‖

≥ ‖x‖/2
}

∪
{

sup
0≤t≤T

Z
K

t∧τK
M‖x‖

≥ ‖x‖
}

.

We can bound the probability of each event of this union using Lemma 7.1. Set Cβ =

supi∈J1,dK,h∈{−1,1}‖βξhei‖Lip. We suppose that K is large enough so that Ki(K)/K ≥ α/2.
Since

ZK
t∧τK

M‖x‖
=

∫

(0,t]×R+×J1,dK×{−1,1}
Gs,u,i,h

˜NX(ds, du, di, dh)
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with

∣

∣Gs,u,i,h

∣

∣ =

∣

∣

∣

∣

−1{

s≤τK
M‖x‖

}1{u≤Kiβhei(X̂
K
s )}

h

Ki
eCF s

∣

∣

∣

∣

≤ 2eCF T

αK
1{u≤KCβM‖x‖}

almost surely for all (s, u, i, h) ∈ [0, T ]×R+ × J1, dK × {−1, 1}, Lemma 7.1 yields

P
x̂

(

sup
0≤t≤T

ZK
t∧τK

M‖x‖
≥ ‖x‖/2

)

≤ exp (−C ′K‖x‖)

where

C ′ =
α2

128dCβMe2CF TT
∧ α log(2)

8eCF T
> 0.

Similarly, we obtain

P
x̂

(

sup
0≤t≤T

Z
K

t∧τK
M‖x‖

≥ ‖x‖
)

≤ exp
(

−C ′
K‖x‖

)

for some C
′
> 0. Hence,

P
x̂(τKM‖x‖ ∧ τKm‖x‖ ≤ T ) ≤ e−C

′K‖x‖ + e−C
′K‖x‖ ≤ 2e−C

′K‖x‖

with C ′ = C ′ ∧ C ′ > 0. �

6.3 Proof of Lemma 2.5

Let T, a > 0. We first prove the existence of a constant c > 0 satisfying (18). By
Assumption B, we have

Cb := sup
i∈J1,dK
ξ∈E

‖βξei‖Lip <∞ and d := min
i∈J1,dK
ξ∈E

dξi (0) > 0.

By continuity of the dξi , there exists K0 ∈ N
∗ such that for all K ≥ K0,

min
i∈J1,dK

inf
(x,ξ)∈X̂
‖x‖≤a/K

dξi (x) ≥ d/2

Let K ≥ K0 and x̂ = (x, ξ) ∈ X̂K such that ‖x‖ ≤ a/K. We can get a very rough
lower bound on the probability of extinction before time T starting from x̂ by giving a
condition on NX which ensures that :

(a) there is no infection on [0, T ];

(b) there is at least Kixi recoveries in each group i.
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Recalling (7), we see that (a) holds P
x̂-a.s. on the event

I := {NX ([0, T ]× [0, Cba]× J1, dK × {1}) = 0} ,

since Kiβ
ξ
hei

(y) ≤ KCb‖y‖ for all i ∈ J1, dK and (y, ζ) ∈ XK . Moreover, (b) holds
P
x̂-a.s. on the event

R :=
d
⋂

i=1

{NX ([0, T ]× [0, d]× {i} × {−1}) ≥ a} .

Indeed : (i) ‖x‖ ≤ a/K entails that in each group i, the initial number of infected
individuals Kixi is less than or equal to a; (ii) each atom of NX in [0, T ]× [0, d]×{i}×
{−1} causes a new recovery in group i as long are there are still infected individuals
in that group, since Kiβ

ξ
−ei(y) = Kiyid

ξ
i (y) ≥ d for all y ∈ XK

+ such that ‖y‖ ≤ a/K.
It follows that {I ∩ R} ⊂

{

τK0 ≤ T
}

P
x̂-almost surely. Hence, (18) is satisfied with

c := P
x̂(I ∩ R), which is positive and does not depend on x̂.

By a similar argument, we can prove the existence of a constant c′ > 0 satisfying
(19). By Assumption B, we have

b := min
j∈J1,dK
ξ∈E

max
i∈J1,dK

∂jb
ξ
i (0) > 0,

and for all i ∈ J1, dK and ξ ∈ E,

βei(x, ξ) = (1− xi)b
ξ
i (x) =

d
∑

j=1

∂jb
ξ
i (0)xj + o(‖x‖). (46)

Fix j ∈ J1, dK, ξ ∈ E, and let i = ij,ξ ∈ J1, dK be such that ∂jb
ξ
i (0) ≥ b. Expansion

(46) entails that we may choose K0 large enough so that for all K ≥ K0, the rate of
infection in group i satisfies

inf
x∈XK , ‖x‖≤a/K, xj>0

Kiβei(x, ξ) ≥ Ki(bxj + o(1/K)) ≥ (αb)/2, (47)

since xj > 0 implies xj ≥ 1/K. Let us introduce the events

I ′j,ξ = {NX ([0, T ]× [0, (αb)/2]× {ij,ξ} × {1}) ≥ a} ,
R′ =

{

NX

(

[0, T ]× [0, d]× {1, d} × {−1}
)

= 0
}

,

E ′ = {NΞ ([0, T ]× [0, q]×E) = 0}

where d = maxi∈J1,dK‖di‖∞ and q = supx∈X , ζ 6=ζ′ q(x, ζ, ζ
′). Let K ≥ K0 and x ∈ X

such that ‖x‖ ≤ a/K and xj > 0. We work under P
(x,ξ). The event E ′ implies

that the environment Ξ remains equal to ξ on [0, T ], and R′ implies that there is
no recovery on [0, T ]. What’s more, inequality (47) entails that each atom of NX in
[0, T ] × [0, (αb)/2] × {i} × {1} arriving at a time t such that Ξt = ξ, ‖XK

t ‖ ≤ a/K
and XK

j (t) > 0 causes a new infection in group i. Hence, we see that I ′j,ξ ∩ R′ ∩ E ′
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implies
{

τ̄Ka/K ≤ T
}

. This entails that for all K large enough, for all x ∈ XK such that

‖x‖ ≤ a/K and xj > 0, we have

P
(x,ξ)

(

τ̄Ka/K ≤ T
)

≥ c′j,ξ,

where c′j,ξ = P
(x,ξ)

(

I ′j,ξ ∩ R′ ∩ E ′) > 0, which does not depend on x. Then, c′ = min c′j,ξ
satisfies (19) for all K large enough, which concludes the proof.

�

6.4 Proof of Theorem 3.4

Let p ∈ R. Let f p : R+ → R be defined by

f p(t) = log sup
θ̂∈∆×E

E

[

exp

(

p

∫ t

0

G0(Θ̂
θ̂
s)ds

)]

.

The Markov property of the family Θ̂θ̂ entails that fp is a subadditive function, i.e.,

fp(s + t) ≤ f p(s) + f p(t) for all s, t ≥ 0. Since f p is Borel measurable and f p(t)/t ∈
[−|p|‖G0‖∞, |p|‖G0‖∞] for all t > 0, the fundamental theorem of subadditive functions
[31, Theorem 7.6.1] entails that

fp(t)

t
−→
t→+∞

λp

for some λp ∈ [−|p|‖G0‖∞, |p|‖G0‖∞]. For all t > 0 and θ̂ ∈ ∆ × E the function
p 7→ f p(t) is a supremum of cumulant generating functions, hence it is convex, and
consequently, p 7→ λp is convex, being a limit of convex functions.

Similarly, the function f
p
: R+ → R defined by

f
p
(t) = log inf

θ̂∈∆×E
E

[

exp

(

p

∫ t

0

G0(Θ̂
θ̂
s)ds

)]

is Borel-measurable, superadditive, and

f
p
(t)

t
−→
t→+∞

νp

for some νp ∈ [−|p|‖G0‖∞, |p|‖G0‖∞].
We must show that νp = λp. In order to do this, we are going to compare the

trajectories of Θ̂ starting from different initial conditions. For all ξ ∈ E, let ϕξ :
R+ ×∆ → ∆ be the projection of the linear flow induced by Aξ on the simplex, i.e.

ϕξ(t, θ) =
etA

ξ
θ

〈1, etAξθ〉 .

Equivalently, one can check that ϕξ is the flow associated to the vector field Hξ
0 on

the simplex ∆. The fact that Aξ is Metlzer and irreducible entails that for all t > 0,

39



etA
ξ

belongs to Md
++, the set of d × d matrices with positive entries. Indeed, etA

ξ
=

e−rtet(A
ξ+rId) where r > 0 can be chosen large enough so that Aξ+rId is nonnegative and

irreducible in the usual sense. Positive matrices have very nice geometrical properties,
with respect to the Hilbert geometry. Let dH : Rd

++ ×R
d
++ → R+ denote the Hilbert

metric, defined by

dH(x, y) = log
maxi∈J1,dK(xi/yi)

mini∈J1,dK(xi/yi)
.

This is in fact a pseudo-metric (dH(x, y) = 0 ⇔ ∃λ > 0, x = λy), which induces a true
metric on ∆++ := ∆ ∩R

d
++. The induced topology is equivalent to the usual one and

moreover,

‖θ1 − θ2‖ ≤ edH (θ1,θ2) − 1 (48)

for all θ1, θ2 ∈ ∆++. A theorem of Birkhoff entails that every positive matrix T induces
a strict contraction with respect to the Hilbert metric, i.e. there exists κ[T ] < 1 such
that

dH(Tx, Ty) ≤ κ[T ]dH(x, y)

for all x, y ∈ R
d
++. This entails that for all t > 0, ξ ∈ E and θ1, θ2 ∈ R

d
++, we have

dH(ϕ
ξ(t, θ1), ϕ

ξ(t, θ2)) ≤ κt dH(θ1, θ2) (49)

with κt := maxξ∈E κ[e
tAξ

] < 1. Let θ1, θ2 ∈ ∆, ξ ∈ E, p ∈ R, and ε > 0. We write

θ̂i = (θi, ξ) and

M θ̂i
p (t) = exp

(

p

∫ t

0

G0(Θ̂
θ̂i
s )ds

)

.

For all t > 0 we have

M θ̂1
p (t) =M θ̂2

p (t) exp

[

p

∫ t

0

(

G0(Θ
θ̂1
s ,Ξ

ξ
s)−G0(Θ

θ̂2
s ,Ξ

ξ
s)
)

ds

]

,

hence, using Hölder’s inequality,

1

t
logE

[

M θ̂1
p (t)

]

≤ 1

(1 + ε)t
logE

[

M θ̂2
p(1+ε)(t)

]

+
ε

(1 + ε)t
logE

[

Lθ̂1,θ̂2p,ε (t)
]

(50)

where, setting CG = supζ∈E‖Gζ
0‖Lip,

Lθ̂1,θ̂2ε (t) = exp

(

|p|(1 + ε−1)CG

∫ t

0

∥

∥Θθ̂1
s −Θθ̂2

s

∥

∥ds

)

.

Let us bound E

[

Lθ̂1,θ̂2p,ε (t)
]

. For all t > 0, Θθ̂1
t ,Θ

θ̂2
t ∈ ∆++ and (49) implies that

t 7→ dH(Θ
θ̂1
t ,Θ

θ̂2
t ) is decreasing. Moreover, we can show that, roughly speaking, the

rate of decrease is exponential provided that the environmental process Ξξ does not
switch too often. Let δ > 0, and for all k ∈ N

∗, set

χk = 1{NΞ(](k−1)δ,kδ]×[0,q]×E)=0},
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where q = maxζ 6=ζ′ q(0, ζ, ζ
′). The variables χk, k ∈ N

∗ are i.i.d. with P(χk = 1) =
e−δ|E|q, and have the property that, for all k ≥ 2,

{χk = 1} ⊂
{

∀t ∈ [(k − 1)δ, kδ[, Ξξt = Ξξ(k−1)δ

}

⊂
{

∀i ∈ {1, 2} ,Θθ̂i
kδ = ϕΞξ

(k−1)δ

(

δ,Θθ̂i
(k−1)δ

)}

⊂
{

dH

(

Θθ̂1
kδ,Θ

θ̂2
kδ

)

≤ κδdH

(

Θθ̂1
(k−1)δ,Θ

θ̂2
(k−1)δ

)}

using (49) for the last line. In addition, if k0 = inf {k ∈ N
∗ : χk = 1}, then

dH(Θ
θ̂1
k0δ
,Θθ̂2

k0δ
) ≤ Dδ <∞,

where Dδ is the dH-diameter of the compact
{

ϕζ(δ, θ), (θ, ζ) ∈ ∆×E
}

⊂ ∆++. It
follows that for all n ∈ N, if we set Sn =

∑n
k=1 χk,

{Sn ≥ 1} ⊂
{

∀t ∈ [nδ, n + 1δ[, dH

(

Θθ̂1
t ,Θ

θ̂2
t

)

≤ κSn−1
δ Dδ

}

.

Combining this with (48) and using that eu−1 ≤ ueu for all u ≥ 0 and supθ,θ′∈∆‖θ−θ′‖ ≤
d, we obtain that for all n ∈ N and t ∈ [nδ, (n + 1)δ[,

∥

∥Θθ̂1
t −Θθ̂2

t

∥

∥ ≤ Cδκ
Sn
δ , (51)

where Cδ = d ∨
(

κ−1
δ Dδe

Dδ
)

.

Set Cp,ε = |p|(1 + ε−1)CG, and for all n ∈ N, set Ln = Lθ̂1,θ̂2p,ε (nδ) and un = E [Ln].
We have

Ln+1 ≤ Ln exp
(

Cp,εδCδ κ
n/2
δ

)

1{Sn≥n/2} + exp(Cp,εdδn)1{Sn<n/2},

hence

un+1 ≤ anun + bn (52)

where an = exp
(

Cp,εδCδ κ
n/2
δ

)

and bn = exp(Cp,εdδn)P [Sn < n/2]. We may assume

that δ is chosen small enough so that e−δ|E|q = E[χ1] > 1/2. Then, we can use the
Cramér-Chernoff bound

P(Sn < n/2) ≤ e−nIδ(1/2),

where Iδ is the Cramér transform of the Bernouilli distribution of parameter e−q|E|δ,
given by Iδ(r) = r log(req|E|δ) + (1 − r) log

(

(1− r)/(1− e−q|E|δ)
)

for r ∈ (0, 1). Since
Iδ(1/2) → +∞ as δ → 0, we may choose δ = δp,ε small enough so that Bp,ε :=
Iδp,ε(1/2)− Cp,εdδp,ε > 0. By an elementary induction (52) entails that for all n ∈ N,

un ≤
(

n−1
∏

k=0

ak

)

u0 +

n
∑

j=1

(

n−1
∏

k=j

ak

)

bj−1 ≤
( ∞
∏

k=0

ak

)(

1 +

∞
∑

j=0

bj

)

≤ C ′
p,ε (53)
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where C ′
p,ε = exp

(

Cp,εδCδ(1−
√
κδ)

−1
) (

1 + (1− e−Bp,ε)−1
)

. Thus,

sup
t≥0

E

[

Lθ̂1,θ̂2p,ε (t)
]

= sup
n≥0

un ≤ C ′
p,ε.

Since constant C ′
p,ε does not depend on (θ1, θ2, ξ), by plugging this into (50), we obtain

that for all ξ ∈ E and all t > 0,

1

t
log sup

θ1∈∆
E
[

M (θ1,ξ)
p (t)

]

≤ 1

(1 + ε)t
log inf

θ2∈∆
E

[

M
(θ2,ξ)
p(1+ε)(t)

]

+
ε

(1 + ε)t
log(C ′

p,ε). (54)

Since Q(0) is irreducible, c1 := infξ,ξ′∈E P

[

Ξξ
′

1 = ξ
]

> 0. Thus, using the Markov

property at time 1 we obtain that for all t ≥ 1, θ′ ∈ E and ξ, ξ′ ∈ E,

E

[

M
(θ′,ξ′)
p(1+ε)(t)

]

≥ e−|p|(1+ε)‖G0‖∞E

[

1{

Ξξ′

1 =ξ
} exp

(

p

∫ t

1

G0(Θ̂
(θ′,ξ′)
s )ds

)]

≥ e−|p|(1+ε)‖G0‖∞c1 inf
θ2∈∆

E

[

exp

(

−p(1 + ε)

∫ t−1

0

G0(Θ̂
(θ2,ξ)
s )ds

)]

≥ e−2|p|(1+ε)‖G0‖∞c1 inf
θ2∈∆

E

[

M
(θ2,ξ)
p(1+ε)(t)

]

.

Combining this with (54) yields, for all t ≥ 1,

1

t
log sup

θ̂∈∆×E
E

[

M θ̂
p (t)

]

≤ 1

(1 + ε)t

(

log inf
θ̂∈∆×E

E

[

M θ̂
p(1+ε)(t)

]

+ log(e2|p|(1+ε)‖G0‖∞c−1
1 ) + ε log(C ′

p,ε)

)

.

Hence, letting t → +∞, we obtain that λp ≤ νp(1+ε)/(1 + ε). Moreover we have
νp(1+ε) ≤ λp(1+ε) by definition, thus, for all q ∈ R and ε > 0,

(1 + ε)λq/(1+ε) ≤ νq ≤ λq.

Since q 7→ λq is convex on R, it is continuous, hence, letting ε → 0, we obtain that
νq = λq =: g(q). This ends the proof of item 1.

We now prove item 2. We already know that p 7→ λp is convex, hence g is convex.
Now let us investigate limp→+∞ g(p)/p. This limit exists due to the convexity of g. For
all p > 0, ξ ∈ E and t ≥ 0 we have, recalling that θξ∗ is an equilibrium of the flow ϕξ

and G0(θ
ξ
∗, ξ) = Λξ,

E

[

exp

(

p

∫ t

0

G0(Θ̂
(θξ∗,ξ)
s )ds

)]

≥ P
[

∀s ∈ [0, t], Ξξs = ξ
]

exp
(

ptG0(θ
ξ
∗, ξ)

)

≥ exp
(

pΛξt
)

exp (−|q(0, ξ, ξ)|t) ,

hence, when p > 0, f p(t)/t ≥ pΛξ − |q(0, ξ, ξ)|. Dividing by p and letting t→ +∞ and
then p→ +∞ yields

lim
p→+∞

g(p)

p
≥ max

ξ∈E
Λξ.
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Let θ̂ ∈ Γ(Θ̂). Since Γ(Θ̂) is positively invariant by the flow ϕξ
′
for all ξ′ ∈ E, we get

that Θ̂θ̂
t ∈ Γ(Θ̂) almost surely for all t ≥ 0. In particular, for all p > 0,

f
p
(t) ≤ logE

[

exp

(

p

∫ t

0

G0(Θ̂
θ̂
s)ds

)]

≤ ptmax
Γ(Θ̂)

G0,

hence g(p)/p ≤ maxΓ(Θ̂)G0. The proofs are similar for the bounds when p goes to −∞.
Let us prove item 3. Obviously g(0) = 0. Let us show that g′(0) exists and equals

Λ. We claim that

I :=

∫ ∞

0

osc(P Θ̂
s G0)ds <∞ (55)

where osc(f) = sup f − inf f denotes the oscillation of f . Let us prove this claim. Let
θ̂ = (θ, ζ), θ̂′ = (θ′, ζ ′) ∈ ∆×E. For all t ≥ 0, we have

P Θ̂
t G0(θ̂)− P Θ̂

t G0(θ̂
′) = E

[(

G0(Θ
θ̂
t )−G0(Θ

θ̂′

t )
)

1{Tc(ζ,ζ′)>t/2}

]

+ E

[(

G0(Θ
θ̂
t )−G0(Θ

θ̂′

t )
)

1{Tc(ζ,ζ′)≤t/2}

]

. (56)

where Tc(ζ, ζ
′) denotes the first coalescent time of Ξζ and Ξζ

′
, i.e. Tc(ζ, ζ

′) = inf{t ≥
0 : Ξζt = Ξζ

′

t }. By construction, Ξζ and Ξζ
′

coincide after Tc(ζ, ζ
′) and moreover,

using the irreducibility of Q(0), infζ1,ζ2∈E P (Tc(ζ1, ζ2) ≤ 1) > 0. This entails, using the
Markov property, that there exists C, a > 0 such that for all ζ1, ζ2 ∈ E and t ≥ 0,
P(Tc(ζ1, ζ2) > t) ≤ Ce−at. Hence, the absolute value of the first term in the right
handside of (56) can be bounded by 2‖G0‖∞Ce−at/2. As for the second term, the
Markov property at time t/2 yields

∣

∣

∣
E

[(

G0(Θ
θ̂
t )−G0(Θ

θ̂′

t )
)

1{Tc(ζ,ζ′)≤t/2}

]∣

∣

∣
≤ sup

θ1,θ2∈∆, ξ∈E

∣

∣

∣
E

[

G0(Θ̂
(θ1,ξ)
t/2 )−G0(Θ̂

(θ2,ξ)
t/2 )

]∣

∣

∣
.

Fix some δ > 0, and let θ1, θ2 ∈ ∆, ξ ∈ E. Let (χk)k∈N∗ , (Sn)n∈N and Cδ be as above
(in the proof of item 1). Then for all u ≥ 0 we have, recalling (51),

E
[∥

∥Θ(θ1,ξ)
u −Θ(θ2,ξ)

u

∥

∥

]

≤ CδE
[

κ
S⌊u/δ⌋

δ

]

= CδE [κχ1 ]⌊u/δ⌋ ≤ C ′e−a
′u

where C ′ = Cδ/E [κχ1] and a′ = − logE [κχ1] /δ > 0. It follows that the absolute value
of the second term in the right handside of (56) can be bounded by CGC

′e−a
′t/2. Hence,

plugging the bounds into (56) yields, for all t ≥ 0,

osc(P Θ̂
t G0) ≤ 2‖G0‖∞Ce−at/2 + C ′e−a

′t/2,

which finally proves the claim (55) with I = 4‖G0‖∞C/a+ 2C ′/a′.
A useful consequence of (55)is that

sup
t≥0, θ̂∈∆×E

∣

∣

∣

∣

tΛ−
∫ t

0

P Θ̂
s G0(θ̂)ds

∣

∣

∣

∣

≤ I <∞, (57)
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using that tΛ = tπ0(G0) =
∫ t

0
π0P

Θ̂
s G0ds and

∣

∣

∣
π0P

Θ̂
s G0 − P Θ̂

s G0(θ̂)
∣

∣

∣
≤ osc(P Θ̂

s ). Let

t ≥ 0 and θ̂ ∈ ∆ × E. Set Z =
∫ t

0
G0(Θ

θ̂
s)ds and let ℓ : R 7→ R+ denote its cumulant

generating function, i.e. ℓ(p) = logE
[

epZ
]

. The function ℓ is of class C∞ and for all
p ∈ R we have ℓ′(p) = Ep[Z] and ℓ′′(p) = Ep[Z

2]−Ep[Z]
2, where Ep is the expectation

operator associated to the probability distribution of density epZ/E[epZ ] with respect
to P. Hence 0 ≤ ℓ′′ ≤ t2‖G0‖∞ and a second order Taylor expansion at 0 yields, for all
p ∈ R,

ℓ(p) ≤ p

∫ t

0

P Θ̂
s G0(θ̂)ds+

1

2
p2t2‖G0‖∞.

Combining this with (57), we obtain that

f p(t) ≤ pΛt+ |p|I + 1

2
p2t2‖G0‖∞.

Now, by the subadditive theorem we have g(p) = λp = infs>0 f p(s)/s, hence

g(p) ≤ pΛ +
|p|I
t

+
1

2
p2t‖G0‖∞.

Since g is convex, it has a right (resp. left) derivative at 0, denoted g′+(0) (resp. g′−(0)),
and the above inequality yields, for all t > 0,

g′+(0) = lim
p→0
p>0

g(p)

p
≤ Λ +

I

t
, g′−(0) = lim

p→0
p<0

g(p)

p
≥ Λ− I

t
.

Letting t go to +∞ and using that g′−(0) ≤ g′+(0) by convexity, we conclude that g is
differentiable at 0 with

g′(0) = Λ.

We now prove item 4. Assume that Λ > 0. Recall that for all ŷ = (y, ξ) ∈ R
d
+×E, Y ŷ

denotes the spatial component of the linear PDMP given by Y ŷ
0 = y and Ẏ ŷ

t = AΞtY ŷ
t .

Assume first that 0 ∈ Γ(Y ). Then, Proposition 3.14 in [12] implies that there exist
δ > 0, a finite open coverage O1, . . . ,Ok of ∆, and positive numbers t1 ≤ . . . ≤ tk such
that, for all ŷ = (y, ξ) ∈ ∆× E,

y ∈ Ok ⇒ P

(

‖Y ŷ
tk
‖ ≤ 1

2

)

≥ δ.

By linearity of y 7→ Y ŷ
t , we deduce that there exists a measurable map T : Rd

+ → R+

such that, for all ŷ ∈ R
d
+ × E,

P

(

‖Y ŷ
T (y)‖ ≤ ‖y‖

2

)

≥ δ. (58)

Moreover, T (y) ∈ {t1, . . . , tk} for all y ∈ R
d
+. Let us fix ŷ ∈ (Rd

+ \ {0})× E, and write
Y = Y ŷ. We construct a increasing sequence of stopping times (Tn)n∈N, defined as
follows :

T0 = 0, Tn+1 = Tn + T (YTn), n ∈ N.
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Note that since T (y) ≥ t1 > 0 for all y ∈ R
d
+, limn→∞ Tn = +∞. We define the event

En =

n−1
⋂

i=0

{

‖YTn+1‖ ≤ ‖YTn‖
2

}

.

The strong Markov property and Equation (58) imply that P(En) ≥ δn.We let (Nt)t∈R+

be the counting process associated to the (Tn)n∈N : Nt = sup{n ∈ N : Tn ≤ t}, and
we set nt = ⌊ t

tk
⌋ and mt = ⌊ t

t1
⌋. For all t ≥ 0 we have nt ≤ Nt ≤ n′

t, and, on the event
En′

t
,

‖Yt‖ ≤ ‖Y0‖2−Nte(t−Nt)‖G0‖∞ ≤ ‖Y0‖2−ntM,

where M = etk‖G0‖∞ . Thus, for all ŷ ∈ ∆× E and all t ≥ 0,

P
(

‖Yt‖ ≤ 2−ntM
)

≥ P(En′
t
) ≥ δn

′
t

This yields
P
(

‖Yt‖ ≤ 2Me−c1t
)

≥ e−c2t,

where c1 = log(2)/tk and c2 = − log(δ)/t1, and thus

E
(

‖Yt‖−p
)

≥ (2M)−pe(c1p−c2)t

This implies that for all p > c2/c1, g(−p) > 0. Thus, item 4 follows from the convexity
of g and the fact that g′(0) = Λ > 0. Moreover, p∗ ≤ c2/c1.

Assume now that 0 does not belong to Γ(Y ). By definition, there exists ε > 0
and ŷ ∈ ∆ × E such that, P-almost surely, ‖Y ŷ

t ‖ ≥ ε for all t ≥ 0. In particular, for
all p > 0, logE(‖Y ŷ

t ‖−p) ≤ −p log(ε). This implies g(−p) ≤ 0 for all p > 0, hence
g(−p) < 0 for all p > 0 due to the convexity of g and the fact that g′(0) > 0. Thus,
p∗ = +∞, which ends the proof of item 4.

The proof of item 5 is very similar, we just give a sketch of it. If ∞ /∈ Γ(Y ), there
exists M > 0 and y ∈ ∆, such that, almost surely, ‖Y ŷ

t ‖ ≤ M . This implies that
g(p) < 0 for all p > 0, hence p∗ = +∞. If ∞ ∈ Γ(Y ), we can adapt the proof of Lemma
3.16 (and thus of Proposition 3.14) in [12] to show that that there exist δ > 0, a finite
open coverage O1, . . . ,Ok of ∆, and positive numbers t1 ≤ . . . ≤ tk such that, for all
ŷ = (y, ξ) ∈ ∆× E,

y ∈ Ok ⇒ P

(

‖Y ŷ
tk
‖ ≥ 2

)

≥ δ.

(just replace the definition of O(i,u, β) in the proof of Lemma 3.16 in [12] by O(i,u, β) =
{x ∈ ∆ : ‖Φi

u
(x)‖ ∈ [3, 4], p(x, i,u) > β}) . As before, we can deduce from this that

for some measurable map T , and some δ > 0, P(‖Y ŷ
T (y)‖ ≥ 2‖y‖) ≥ δ. Reasoning

like in the proof of item 4, we deduce that g(p) > 0 for p large enough, and therefore,
p∗ < +∞.

6.5 Proof of Theorem 4.1

Proposition 6.1. Let p ∈ R such that g(p) < 0. Let T > 0 and η > 0 be given by
Proposition 3.6. There exist γ ∈ (0, 1), a > 0 and K0 ∈ N

∗ such that for all K ≥ K0

and all x̂ = (x, ξ) ∈ X̂K
+ satisfying a/K ≤ ‖x‖ ≤ η, we have

E
x̂
[

‖XK
T ‖p1{T<τK0 }

]

≤ γ ‖x‖p. (59)
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Proof. We first make the proof in the case where p > 0 is such that g(−p) < 0. Let
T, γ0, η be given by Proposition 3.6. Let CT , εT be given by Lemma 2.1, set M = 2eCF T

and m = e−CF T/2 and let C ′ and K0 be given by Lemma 2.4. Let K ≥ K0 and
x̂ = (x, ξ) ∈ X̂K

+ such that ‖x‖ ≤ η. For all ε ∈ (0, εT ], we have, combining Proposition
3.6, Lemma 2.1 and Lemma 2.4,

E
x̂
[

‖XK
T ‖−p1{T<τK0 }

]

= E
x̂
[

‖XK
T ‖−p1{T<σKε }

]

+ E
x̂

[

‖XK
T ‖−p1{

σKε ≤T<τK
M‖x‖

∧τK
m‖x‖

}

]

+ E
x̂

[

‖XK
T ‖−p1{

σKε ∨
(

τK
M‖x‖

∧τK
m‖x‖

)

≤T<τK0
}

]

≤ (1− ε)−pEx̂
[

‖XT‖−p
]

+ (m‖x‖)−pPx̂
[

σKε ≤ T
]

+ (1/K)−pPx̂
[

τKM‖x‖ ∧ τKm‖x‖ ≤ T
]

≤ ‖x‖−p
(

(1− ε)−pγ0 + 2m−pde−CTK‖x‖ε2

+m−pT |E| sup
ξ1 6=ξ2, ‖z−y‖≤dε

|q(z, ξ1, ξ2)− q(y, ξ1, ξ2)|+ 2(K‖x‖)pe−C′K‖x‖

)

.

Since the functions q(·, ξ1, ξ2) are uniformly continuous, we can choose ε > 0 small
enough so that

γ1 := (1− ε)−pγ0 +m−pT |E| sup
ξ1 6=ξ2, ‖z−y‖≤dε

|q(z, ξ1, ξ2)− q(y, ξ1, ξ2)| < 1,

and then, we can choose a > 0 large enough so that

γ := γ1 + 2m−pde−CT aε
2

+ sup
y≥a

(

2ype−C
′y
)

< 1.

We can conclude : for all K ≥ K0 and all x̂ = (x, ξ) ∈ X̂K
+ such that a/K ≤ ‖x‖ ≤ η,

E
x̂
[

‖XK
T ‖−p1{T<τK0 }

]

≤ γx−p.

In the case where p > 0 is such that g(p) < 0, the proof is similar, and even simpler,
with the use of the bound

E
x̂
[

‖XK
T ‖p1{T<τK0 }

]

≤(1 + ε)pEx̂ [‖XT‖p] + (M‖x‖)pPx̂
[

σKε ≤ T
]

+ dpPx̂
[

τKM‖x‖ ∧ τKm‖x‖ ≤ T
]

.

�

Lemma 6.2. Assume that Λ > 0 and let p ∈ (0, p∗). Let η > 0 be given by Proposition
3.6, item 1. There exist a′ > 0, C5 ≥ 1 and K0 ∈ N

∗ such that for all K ≥ K0, ρ > 0
and x̂ = (x, ξ) ∈ X̂K

+ such that a′/K ≤ ρ ≤ ‖x‖ ≤ η, we have

P
x̂
(

τKρ < τKη
)

≤ C5(‖x‖/ρ)−p.
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Proof. Let p ∈ (0, p∗). Let T, η be given by Proposition 3.6 and γ, a,K0 be given by
Proposition 6.1 respectively. Let K ≥ K0 and set, for all n ∈ N,

ZK
n =

∥

∥XK
nT

∥

∥

−p
1{nT<τK0 }.

Let a′ ≥ a, which remains to be fixed later in the proof. Let ρ > 0 and an initial
condition x̂ = (x, ξ) ∈ X̂K

+ be given for X̂K , such that a′/K ≤ ρ ≤ ‖x‖ ≤ η. Set

T
K =

⌈

τKη ∧ τKρ
T

⌉

.

Then the process (ZK
T K∧n)n∈N is a non-negative, bounded supermartingale, with respect

to the filtration (FnT )n∈N. Indeed,

E
x̂
[

ZK
T K∧(n+1)

∣

∣FnT

]

= ZK
T K1{T K≤n} + E

x̂
[

ZK
n+11{T K>n}

∣

∣FnT

]

= ZK
T K1{T K≤n} + 1{T K>n}E

X̂K
nT

[

∥

∥XK
T

∥

∥

−p
1{T<τK0 }

]

≤ ZK
T K1{T K≤n} + 1{T K>n}Z

K
n

= ZK
T K∧n,

where the second equality comes from the Markov property of X̂K and the inequality
comes from (59). Consequently,

E
x̂
[

ZK
T K1{T K<∞}

]

≤ ZK
0 = ‖x‖−p. (60)

Set M = 2eCF T and m = e−CF T/2 and let C ′ > 0 be given by Lemma 2.4. We may
assume that K0 is large enough so that mini∈J1,dK Ki(K)/K ≥ α/2 for all K ≥ K0,
which implies that ‖XK

τKρ
‖ ≥ ρ − 2/(αK) P

x̂-almost surely. Using the strong Markov

property of the process XK at τKη ∧ τKρ and Lemma 2.4, we get, for K ≥ K0,

E
x̂
[

ZK
T K1{τKρ <τKη }

]

≥ P
x̂
(

τKρ < τKη
)

inf
(y,ζ)∈X̂K

ρ−2/(αK)≤‖y‖≤ρ

E
(y,ζ)

[

inf
0≤t<T

(

‖XK
t ‖−p1{t<τK0 }

)

]

≥ P
x̂
(

τKρ < τKη
)

(Mρ)−p






1− sup

(y,ζ)∈X̂K

‖y‖≥(a′−2/α)/K

P
(y,ζ)

(

τKMρ < T
)







≥ P
x̂
(

τKy < τKη
)

(Mρ)−p(1− 2e−C
′(a′−2/α)). (61)

Choosing a′ large enough so that 1 − 2e−C
′(a′−2/α) ≥ 1/2 and combining (60) with

(61), we obtain
P
x̂
(

τKρ < τKη
)

≤ 2Mp(‖x‖/ρ)−p,
which ends the proof.

�

For all ρ ≥ 0, we set X̂K
ρ =

{

(x, ξ) ∈ X̂K : ‖x‖ ≥ ρ
}

.
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Lemma 6.3. Assume that Λ > 0, and let p ∈ (0, p∗). Let η > 0 and a′ > 0 be given
by Proposition 3.6 and Lemma 6.2 respectively. There exist T ′, c1 > 0, δ ∈ (0, η) and
K0 ∈ N

∗ such that for all K ≥ K0, ρ ∈ [a′/K, δ], x̂ ∈ X̂K
η and t ≥ 0, we have

P
x̂
(

τKρ > t
)

≥ e−c1ρ
p⌈t/T ′⌉.

Proof. Let p ∈ (0, p∗). Let T > 0, η > 0 be given by Proposition 3.6 and let a′ > 0,
K0 ∈ N

∗ and C5 ≥ 1 be given by Lemma 6.2. Set M = 2eCF T . Let K ≥ K0 and set

σK = inf
{

t ≥ τKη/M : ‖XK
t ‖ ≥ η

}

.

Let ρ ∈ [a′/K, η/(2M)] and define φKρ : R+ → [0, 1] by

φK(t) = inf
x̂∈X̂K

η

P
x̂
(

τKρ > t
)

.

Let x̂ = (x, ξ) ∈ X̂K
η and t ≥ 0. We have

P
x̂
(

τKρ > t
)

≥ P
x̂
(

σK < τKρ , τ
K
ρ − σK > t− σK

)

≥ P
x̂
(

σK < τKρ , σ
K ≥ 2T, τKρ − σK > t− 2T

)

+P
x̂
(

σK < τKρ , σ
K < 2T, τKρ − σK > t

)

.

Using the strong Markov property of XK at time σK and the definition of φK , we get

P
x̂
(

τKρ > t
)

≥ P
x̂
(

σK < τKρ , σ
K ≥ 2T

)

φK(t− 2T ) +P
x̂
(

σK < τKρ , σ
K < 2T

)

φK(t)

= P
x̂
(

σK < τKρ
)

φK(t− 2T ) +P
x̂
(

σK < τKρ , σ
K < 2T

) (

φK(t)− φK(t− 2T )
)

.

(62)

Let C ′ > 0 be given by Lemma 2.4. We may assume that K0 is large enough so that for
all K ≥ K0, 2e

−C′Kη/(2M) ≤ 1/4 and mini∈J1,dK (η/M − 1/Ki) ≥ η/(2M), which implies
that ‖XK

τK
η/M

‖ ≥ η/(2M) Px̂-almost surely. Using the strong Markov property at time

τKη/M and Lemma 6.2, we obtain

P
x̂
(

σK < τKρ
)

≥ inf
(y,ζ)∈X̂K

+ , ‖y‖≥η/(2M)
P

(y,ζ)
(

τKη < τKρ
)

≥ 1− C ′
5ρ
p

where C ′
5 = C5 (η/(2M))−p and, using Lemma 2.4,

P
x̂
(

σK < τKy , σ
K < 2T

)

≤ P
x̂
(

σK < 2T
)

≤ P
x̂
(

τKη/M < T
)

+P
x̂
(

σK − τKη/M < T
)

≤ 2e−C
′Kη + 2e−C

′Kη/(2M)

≤ 1/2.

Since the function φKρ is non-decreasing, plugging these inequalities into (62) and taking

the infimum on x̂ ∈ X̂K
η yields

φKρ (t) ≥ (1− C ′
5ρ
p)φKρ (t− 2T ) + (1/2)

(

φKρ (t)− φKρ (t− 2T )
)

,
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hence
φKρ (t) ≥ (1− 2C ′

5ρ
p)φKρ (t− 2T ).

Now, let us fix δ ∈ (0, η/(2M)] small enough so that so that 2C ′
5δ
p ≤ 1/2. For all

ρ ∈ [a′/K, δ], given that φKρ (0) = 1 and that φKρ is non-increasing, we obtain

φKρ (t) ≥ φKρ

(

2T

⌈

t

2T

⌉)

≥ (1− 2C ′
5ρ
p)

⌈t/(2T )⌉

≥ e−4C′
5ρ

p⌈t/(2T )⌉,

where we used that log(1− h/2) ≥ −h for 0 ≤ h ≤ 1 in the last step. �

We now turn to the proof of Theorem 4.1. Let η, T ′, c1, K0 be given by Lemma 6.3.
For all K ≥ K0, applying this proposition with ρ = a′/K yields, for all x̂ ∈ X̂K

η and all
t ≥ 0,

P
x̂
(

τK0 > t
)

≥ P
x̂
(

τKa′/K > t
)

≥ exp

(

−c1
a′p

Kp

⌈

t

T ′

⌉)

≥ exp

(

−c1a
′p

Kp

)

exp

(

−C1t

Kp

)

where C1 = c1a
′p/T ′. For a general initial condition x̂ ∈ X̂K

+ , the strong Markov
property at time τ̄Kη then yields, for all t ≥ 0,

P
x̂
(

τK0 > t
)

≥ P
x̂
(

τKη < τK0
)

exp

(

−c1a
′p

Kp

)

exp

(

−C1t

Kp

)

. (63)

Let C5 be given by Lemma 6.2 and a′′ > a′ be large enough so that C5(a
′′/a′)−p ≤ 1/2.

Let K ≥ K0 and let x̂ = (x, ξ) ∈ X̂K
+ . First, if ‖x‖ ≥ a′′/K, then Lemma 6.2 yields

P
x̂
(

τKη < τK0
)

≥ P
x̂
(

τKη < τKa′/K
)

≥ 1− C5

( ‖x‖
a′/K

)−p
≥ exp

(

− 2C5a
′p

(K‖x‖)p
)

, (64)

using that 1− h ≥ e−2h for all 0 ≤ h ≤ 1/2. Second, if ‖x‖ ≤ a′′/K, then

P
x̂
(

τKη < τK0
)

≥ P
x̂
(

τKa′′/K < τK0
)

inf
ŷ∈X̂K

a′′/K

P
ŷ
(

τKη < τK0
)

.

It follows from Lemma 2.5 that one can bound from below the first factor in the right
handside by a constant c′ > 0 independent of x. As for the second factor, it is greater
than or equal to 1/2, hence

P
x̂
(

τKη < τK0
)

≥ c′/2. (65)

Let us choose C ′′
1 large enough so that C ′′

1 ≥ 2C5a
′p and exp(−C ′′

1 /(a
′′p)) ≤ c′/2. Comb-

ing (64) and (65), we obtain that for all x̂ ∈ X̂K
+ ,

P
x̂
(

τKη < τK0
)

≥ exp

(

− C ′′
1

(K‖x‖)p
)

. (66)
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We can conclude by plugging this into (63). Using that ‖x‖ ≤ d for all x ∈ X and
setting C ′

1 = C ′′
1 + C1(da

′)p, we obtain, for all K ≥ K0, all x̂ = (x, ξ) ∈ X̂K
+ and all

t ≥ 0,

P
x̂
(

τK0 > t
)

≥ exp

(

− C ′
1

(K‖x‖)p
)

exp

(

−C1t

Kp

)

.

Finally, by integrating over time, we obtain, since K‖x‖ ≥ 1,

E
x̂
(

τK0
)

=

∫

R+

P
x̂
(

τK0 > t
)

dt ≥ e−C
′
1

∫

R+

exp

(

−C1t

Kp

)

dt = e−C
′
1
Kp

C1
,

which ends the proof. �

6.6 Proof of Theorem 4.6

Proposition 6.4. Assume that Λ > 0 and 0 ∈ Γ(Y ), and let p > p∗. Let T > 0 and
η > 0 be given by item 2 of Proposition 3.6 applied to −p. There exist γ̃ > 1, a > 0 and
K0 ∈ N

∗ such that for all K ≥ K0 and all x̂ = (x, ξ) ∈ X̂K
+ satisfying a/K ≤ ‖x‖ ≤ η,

E
x̂
[

‖XK
T ‖−p1{T<τK0 }

]

≥ γ̃ ‖x‖−p. (67)

Proof. The proof is similar to the proof of Proposition 6.1. Let p ∈ (p∗,+∞), and let
T, γ̃0, η be given by item 2 of Proposition 3.6 applied to −p. Let CT , εT be given by
Lemma 2.1, set M = 2eCF T and m = e−CF T/2 and let C ′ and K0 be given by Lemma
2.4. Let K ≥ K0 and x̂ = (x, ξ) ∈ X̂K

+ such that ‖x‖ ≤ η. For all ε ∈ (0, εT ], we have,
combining Proposition 3.6, Lemma 2.1 and Lemma 2.4,

E
x̂
[

‖XK
T ‖−p1{T<τK0 }

]

≥ E
x̂
[

‖XK
T ‖−p1{T<σKε }

]

≥ (1 + ε)−pEx̂
[

‖XT‖−p1{T<σKε }
]

= (1 + ε)−p
(

E
x̂
[

‖XT‖−p
]

− E
x̂
[

‖XT‖−p1{σKε ≤T}
])

≥ (1 + ε)−p
(

γ̃0‖x‖−p − (‖x‖e−‖G‖∞T )−pPx̂
[

σKε ≤ T
])

≥ ‖x‖−p
(

(1 + ε)−pγ̃0 − 2dep‖G‖∞T e−CTK‖x‖ε2

− ep‖G‖∞TT |E| sup
ξ1 6=ξ2, ‖z−y‖≤dε

|q(z, ξ1, ξ2)− q(y, ξ1, ξ2)|
)

Since the functions q(·, ξ1, ξ2) are uniformly continuous, we can choose ε > 0 small
enough so that

γ̃1 := (1 + ε)−pγ̃0 − ep‖G‖∞TT |E| sup
ξ1 6=ξ2, ‖z−y‖≤dε

|q(z, ξ1, ξ2)− q(y, ξ1, ξ2)| > 1,

and then, we can choose a > 0 large enough so that

γ̃ := γ̃1 − 2dep‖G‖∞T e−CT aε
2

> 1.

50



We can conclude : for all K ≥ K0 and all x̂ = (x, ξ) ∈ X̂K
+ such that a/K ≤ ‖x‖ ≤ η,

E
x̂
[

‖XK
T ‖−p1{T<τK0 }

]

≥ γ̃‖x‖−p.

�

We now turn to the proof of Theorem 4.6. Let p > p∗. Let T, η, γ̃, a,K0 be given
by Proposition 6.4. Let K ≥ K0 and set, for all n ∈ N,

ZK
n = γ−n‖XK

nT‖−p1{nT<τK0 },

and T K =
⌈

(τKη ∧ τKa/K)/T
⌉

. Let x̂ = (x, ξ) ∈ XK
+ such that a/K ≤ ‖x‖ ≤ η. Using

(67), we see that under P
x̂ the process (ZK

n∧T K )n∈N is a bounded submartingale with
respect to the filtration (FnT )n∈N (see the proof of Lemma 6.2 for the details of a
similar argument). Moreover, P

x̂
(

T K < +∞
)

= 1 due to the irreductibility of the

chain X̂K on X̂K
+ . Consequently, the optional sampling theorem yields

E
x̂
[

ZK
T K

]

≥ E
[

ZK
0

]

= ‖x‖−p. (68)

Let m be defined as in Lemma 2.4, and let C ′ be given by the same lemma. We have

E
x̂
[

ZK
T K

]

= E

[

ZK
T K1

{

τK
a/K

<τKη

}

]

+ E

[

ZK
T K1

{

τKη <τ
K
a/K

}

]

≤ Kp
E
x̂
[

γ̃−τ
K
a/K

/T
]

+ E
x̂

[

1{

τKη <τ
K
a/K

} sup
0≤s<T

(

‖XK
τKη +s‖−p1{τKη +s<τK0 }

)

]

≤ Kp
E
x̂
[

γ̃
−τK

a/K
/T
]

+ sup
ŷ=(y,ζ)∈X̂K

‖y‖≥η

E
ŷ

[

sup
0≤s<T

(

‖XK
s ‖−p1{s<τK0 }

)

(

1{

T<τK
m‖y‖

}+1{

τK
m‖y‖

≤T
}

)]

≤ Kp
E
x̂
[

γ̃−τ
K
a/K

/T
]

+ (mη)−p + 2Kpe−C
′Kη, (69)

using the strong Markov property of XK at time τKη and Lemma 2.4. Let K ′
0 ≥ K0

such that supK≥K0
(2Kpe−C

′Kη) ≤ (mη)−p, and fix η′ > 0 small enough so that c1 :=
η′−p − 2(mη)−p > 0. Let us suppose that K ≥ K ′

0 and ‖x‖ ≤ η′. Combining (69) with
(68), we obtain that

E
x̂
[

γ̃−τ
K
a/K

/T
]

≥ c1K
−p.

This enables us to bound stochastically τKa/K from below. For all t > 0, using that

γ̃
−τK

a/K
/T ≤ 1{

τK
a/K

≤t
} + γ̃−t/T yields

P
x̂
[

τKa/K ≤ t
]

≥ c1K
−p − γ̃−t/T .

Set t(K) = (T/ log(γ̃)) (p log(K)− log(c1) + log(2))+, so that γ̃−t(K)/T ≤ c1K
−p/2. We

obtain that for all K large enough and x̂ = (x, ξ) ∈ X̂K
+ with ‖x‖ ≤ η′,

P
x̂
[

τKa/K ≤ t(K)
]

≥ c1K
−p/2. (70)

Moreover we claim that there exists constants c2, c3, T
′ > 0 such that, for K large

enough : all x̂ = (x, ξ) ∈ X̂K
+ :
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(a) for all x̂ = (x, ξ) ∈ X̂K
+ such that ‖x‖ ≤ a/K, we have P

x̂
[

τK0 ≤ 1
]

≥ c2;

(b) for all x̂ ∈ X̂K
+ such that ‖x‖ > η′, Px̂

[

τKη′ ≤ T ′] ≥ c3.

Item (a) is a consequence of Lemma 2.5. As for (b), by Lemma 3.3 we have 0 ∈ Γ(X),
hence [12, Proposition 3.14] entails that there exists c′, T ′ > 0 such that, for all x̂ ∈ X̂K

+

with ‖x‖ > η′,
P
x̂ (∃t ∈ [0, T ′], ‖Xt‖ < η′/2) ≥ c′.

Let CT ′, εT ′ > 0 be given by Lemma 2.1, and choose ε ∈ (0, εT ′ ∧ (η′/2d)] small enough
so that

T ′|E| sup
ξ1 6=ξ2, ‖z−y‖≤dε

|q(z, ξ1, ξ2)− q(y, ξ1, ξ2)| ≤ c′/3.

Then, using Equation (16) we obtain that, for all K large enough and all x̂ = (x, ξ) ∈
X̂K

+ such that ‖x‖ > η′,

P
x̂
[

τKη′ ≤ T ′]≥ P
x̂

(

∃t∈ [0, T ′], ‖Xt‖ <
η′

2

)

−P
x̂
[

σKε ≤ T ′]≥ 2c′

3
− 2de−CT ′Kη′ε2 ≥ c′

3
,

which ends the proof of (b) with c3 = c′/3.
Combining (a), (b) and (70), we obtain that, for all K large enough and x̂ ∈ X̂K

+ ,

P
x̂
[

τK0 ≤ t(K) + T ′ + 1
]

≥ c4K
−p

where c4 = c1c2c3/2. Let us assume that K is large enough so that t(K) ≤ c5 log(K)
with c5 = T (p+1)/ log(γ̃). Then, for all n ∈ N, the Markov property at time nc5 log(K)
entails, for all x̂ ∈ X̂K

+ ,

P
x̂
[

τK0 > (n+ 1)c5 log(K)
]

≤ P
x̂
[

τK0 > nc5 log(K)
]

sup
ŷ∈X̂K

+

P
ŷ
[

τK0 > c5 log(K)
]

≤ P
x̂
[

τK0 > nc5 log(K)
] (

1− c4K
−p) .

By induction we deduce that, for all K large enough, all x̂ ∈ X̂K
+ and all t ≥ 0,

P
x̂
(

τK0 > t
)

≤
(

1− c4K
−p)⌊t/(c5 log(K))⌋ ≤ exp

(

− c4
Kp

(

t

c5 log(K)
− 1

))

.

Since this holds for all p > p∗, we easily deduce Theorem 4.6. The majoration of
E
x̂
(

τK0
)

follows by integrating the upper bound on the survival function over time. �

6.7 Proof of Theorem 4.9

The proof is similar to the proof of Theorem 4.6, but is based on the use of a super-
martingale instead of a submartingale. Since g′(0) = Λ < 0 (see Theorem 3.4), we can
choose p > 0 such that g(p) < 0. Then, let T, η > 0 be given by Proposition 3.6 and
a > 0, γ ∈ (0, 1), K0 ∈ N

∗ be given by Proposition 6.1, for this choice of p. Let a′ > a,
which remains to be fixed later in the proof. Let K ≥ K0, set

ZK
n = γ−n‖XK

nT‖p1{nT<τK0 },
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for all n ∈ N, and set T K =
⌈

(τKη ∧ τKa′/K)/T
⌉

. Let x̂ = (x, ξ) ∈ XK
+ be such that

a′/K ≤ ‖x‖ ≤ η. Using (59), we see that under P
x̂ the process (ZK

n∧T K )n∈N is a
supermartingale with respect to the filtration (FnT )n∈N. Hence, the optional sampling
theorem yields

E
x̂
[

ZK
T K

]

≤ E
x̂
[

ZK
0

]

= ‖x‖p. (71)

First, we can use this inequality to get a lower bound on the probability that τKa′/K < τKη .
Let m be defined as in Lemma 2.4, and let C ′ be given by the same lemma. Using the
strong Markov property of the process XK at time τKη and Lemma 2.4 we get

E
x̂
[

ZK
T K

]

≥ E
x̂

[

1{

τKη <τ
K
a′/K

} inf
0≤t<T

(

‖XK
τKη +t‖p

)

1{τKη +T<τK0 }
]

≥ P
x̂
(

τKη < τKa′/K
)

inf
(y,ζ)∈X̂K , ‖y‖≥η

E
(y,ζ)

[

inf
0≤t<T

‖XK
t ‖p1{T<τK0 }

]

≥ P
x̂
(

τKη < τKa′/K
)

(mη)p
(

1− 2eC
′Kη
)

. (72)

We may assume that K0 is large enough so that 1 − 2eC
′K0η ≥ 1/2. Combining (72)

with (71), we obtain

P
x̂
(

τKη < τKa′/K
)

≤ 2(mη)−p‖x‖p. (73)

Then, we can use (71) again to bound stochastically τKa′/K from below. We may assume

that K0 is large enough so that mini∈J1,dK Ki(K)/K ≥ α/2 for all K ≥ K0, which
implies that ‖XK

τK
a′/K

‖ ≥ (a′− 2/α)/K. We now fix the value of a′, large enough so that

a′′ := a′ − 2/α > 0 and 1− 2e−C
′a′′ ≥ 1/2. Using (71) we obtain

‖x‖p ≥ E
x̂

[

ZK
T K1

{

τK
a′/K

<τKη

}

]

≥ E
x̂

[

γ
−τK

a′/K
/T
1{

τK
a′/K

<τKη

}

]

(ma′′/K)
p
(1− 2e−C

′a′′),

hence

E
x̂

[

γ
−τK

a′/K
/T
1{

τK
a′/K

<τKη

}

]

≤ CKp

with C = 2(ma′′)−pdp. Combining this bound with (73) and using that

P
x̂
({

τKa′/K < τKη
}

∪
{

τKη < τKa′/K
})

= 1

due to the irreducibility of XK on X̂K
+ yields, for all t ≥ 0,

P
x̂
(

τKa′/K > t
)

≤ P
x̂
(

τKa′/K > t, τKa′/K < τKη
)

+P
x̂
(

τKη < τKa′/K
)

≤ CKpγt/T + 2(mη)−p‖x‖p.

Let η′ ∈ (0, η) be small enough so that 2(mη)−pη′p ≤ 1/4, and set

t(K) = (Tp/ log(γ−1)) log(4CK),
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so that CKpγt(K)/T = 1/4. Then, the above inequality yields, for all x̂ = (x, ξ) ∈ X̂K
+

such that a′′/K ≤ ‖x‖ ≤ η′ :

P
x̂
(

τKa′/K ≤ t(K)
)

≥ 1/2.

The end of the proof is similar to the one of Theorem 4.6, after obtaining (70) : the
same arguments entail that there exists C3, C

′
3 > 0 such that for K large enough and

for all x̂ ∈ X̂K
+ ,

P
x̂
(

τK0 > t
)

≤ C ′
3 exp

(

− C3t

log(K)

)

.

The fact that 0 ∈ Γ(X) is justified by Lemma 3.3. �

6.8 Proof of Theorem 4.11

As explained in Section 4.2, the first main ingredient in the proof of Theorem 4.11 is
given by Proposition 4.12, which we state here again.

Proposition 6.5. Assume that Λ > 0 and let p ∈ (0, p∗). Let T, a > 0 be given by
Proposition 6.1 applied to −p, and for all K ≥ d, let ϕK : X̂K

+ → R
∗
+ be defined by

ϕK(x, ξ) = ‖x‖−p ∧ (a/K)−p. There exist θ ∈ (0, 1) and C6 > 0 such that :

i) for all K large enough,

P̃K
T ϕ

K ≤ θ1ϕ
K + C6 ; (74)

ii) lim supK→+∞ µKϕK1 ≤ C6/(1− θ1).

Proof. We start by the proof of i). Let p ∈ (0, p∗). Let T, η, γ, a be given by Proposition
6.1 applied to −p. Set M = 2eCF T and m = e−CF T/2, and let C ′ be given by Lemma
2.4. Let K ≥ d and define ϕK : X̂K

+ → R
∗
+ by ϕK(x, ξ) = ‖x‖−p ∧ (a/K)−p. Let

x̂ = (x, ξ) ∈ X̂K
+ . There are three cases to consider. In the following, "K large enough"

means K greater than some K0 independent of x̂.
First, suppose that a/K ≤ ‖x‖ ≤ η. Then, using Proposition 6.1 and Lemma 2.4,

we get, for K large enough,

P̃K
T ϕ

K(x̂) = E
x̂
[

(

‖XK
T ‖−p ∧ (a/K)−p

)

1{T<τK0 }
]

≤ E
x̂
[

‖XK
T ‖−p1{T<τK0 }

]

≤ γϕK(x̂). (75)

Second, consider the case ‖x‖ > η. We have

P̃K
T ϕ

K(x̂) ≤ P
x̂
(

τKmη ≤ T
)

(a/K)−p +P
x̂
(

τKmη > T
)

(mη)−p

≤ 2e−C
′Kη(a/K)−p + (mη)−p

≤ C6 (76)
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where C6 := 2a−p supn∈N∗

(

npe−C
′nη
)

+ (mη)−p <∞.
Finally, we treat the case ‖x‖ < a/K. Letting c > 0 be given by Lemma 2.5, we

have, for K large enough,

P̃K
T ϕ

K(x̂) ≤ P
x̂
(

T < τK0
)

(a/K)−p ≤ (1− c)ϕK(x̂). (77)

Thus we can end the proof of i) by combining (75), (76) and (77) : for K large
enough,

P̃K
T ϕ

K ≤ θ1ϕ
K + C6

with θ1 := γ ∨ (1− c) < 1.
Finally, let us prove ii). Integrating (74) against µK yields

e−λ
KTµKϕK1 = µKP̃K

T ϕ
K ≤ θ1µ

KϕK + C6.

Now, by Proposition 4.10 we have λK → 0 hence

lim sup
K→+∞

µKϕK ≤ lim sup
K→+∞

C6

e−λKT − θ1
=

C6

1− θ1
.

�

The other important result for the proof of Theorem 4.11 is the following. It is a
consequence of [44, Lemma 6.3], but for completeness we give the proof here.

Proposition 6.6. If Λ > 0, every limit point of (µK)K≥d is a stationary distribution
of X̂.

Proof. Let f ∈ C(X̂ ) and let ε > 0. By compacity of X̂ , there exists δ > 0 such that
for all x, y ∈ X and ξ ∈ E, ‖x − y‖ ≤ δ implies that ‖f(x, ξ) − f(y, ξ)‖ ≤ ε. Let

(Pt)t∈R+ = (P X̂
t )t∈R+ and (PK

t )t∈R+ denote the semi-group associated to X̂ and X̂K

respectively. Recall that (P̃K
t )t∈R+ denotes the killed semi-group of X̂K . Fix t ∈ R+.

For all K ≥ d, we have

|µKPtf − µKf | ≤ |µKPtf − µKPK
t f |+ |µKPK

t f − µKf |.

The second term of the right handside satisfies

|µKPK
t f − µKf | ≤ |µKPK

t f − µKP̃K
t f |+ |µKP̃K

t f − µKf |
≤
∣

∣

∣
E
µK
[

f(X̂K
t )(1− 1{τK0 >t})

]∣

∣

∣
+ |(e−λK t − 1)µKf |

≤ 2‖f‖∞(1− e−λ
K t).

As for the first term,

|µKPtf − µKPK
t f | ≤

∫

X̂K

E
x̂
[

|f(Xt,Ξt)− f(XK
t ,Ξ

K
t )|
]

µK(dx̂)

≤ 2‖f‖∞ sup
x̂∈X̂K

P
x̂(σKδ ∧ ηK ≤ t) + ε
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where σKδ = inf{s ≥ 0 : ‖XK
s − Xs‖ > δ} and ηK = inf{s ≥ 0 : ΞKs 6= Ξs}. Now, by

Proposition 4.10 and Proposition 2.2 respectively we have

λK →
K→+∞

0 and sup
x̂∈X̂K

P
x̂(σKδ ∧ ηK ≤ t) →

K→+∞
0.

This implies that lim supK→+∞ |µKPtf − µKf | ≤ ε. Since this holds for all ε > 0, we
obtain that |µKPtf − µKf | → 0 as K → +∞.

By the Feller property of (Ps)s∈R+, we have Ptf ∈ C(X̂). Hence, for every weak
limit point µ of (µK)K≥d, we have µPtf = µf . Since this holds for all t ∈ R+ and

f ∈ C(X̂), µ is stationary for (Pt)t∈R+ . �

Now let us prove Theorem 4.11. Since Λ > 0, p∗ is positive and we let p ∈ (0, p∗).
By Proposition 6.5, ii) we have

lim sup
K→+∞

µKϕK1 ≤ C6/(1− θ1)

for some θ1 ∈ (0, 1) and C6 > 0, where for all K ≥ d, ϕK : X̂+ → R
∗
+ is defined by

ϕK(x, ξ) = ‖x‖−p ∧ (a/K)−p, for some a > 0. Therefore, for all ε ∈ (0, d], we have

lim sup
K→+∞

µK{(x, ξ) ∈ X̂+ : ‖x‖ < ε} ≤ lim sup
K→+∞

µK
(

ϕK

ε−p ∧ (a/K)−p

)

≤ εpC6/(1− θ1).

Since the right handside vanishes as ε → 0, the sequence (µK)K≥d is persistent, i.e. it

is tight on X̂+.
Therefore, if we let µ ∈ L , then µ ∈ P(X̂+). Moreover, Proposition 6.6 entails that

µ is a stationary distribution of X̂, which proves item 2. Let K1 ≥ d. Given that ϕK1

is continuous and bounded on X̂+ and that ϕK ≥ ϕK1 for all K ≥ K1, we have

µϕK1 ≤ lim sup
K→+∞

µKϕK1 ≤ lim sup
K→+∞

µKϕK ≤ C6/(1− θ).

Furthermore, since ϕK1 converges increasingly to (x, ξ) 7→ ‖x‖−p as K1 goes to infinity,
we deduce by monotone convergence that

∫

X̂+

‖x‖−pµ(dx, dξ) ≤ C6/(1− θ),

which ends the proof of item 1.
Finally, let us prove item 3. We assume that C holds and that x 7→ Q(x) is constant.

Then, by Theorem 3.2 there exists a unique persistent stationary distribution µ∗ of X̂.
Hence, L = {µ∗}, which implies that µK converges weakly to µ∗ as K goes to +∞, by
compacity of P(X̂ ) for the weak topology. �

7 Appendix

7.1 Trajectorial representations with Poisson random measures

In this section we justify the construction of the continuous-time Markov chains X̂K

and the PDMP X̂ given in Section 2.2.
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Construction of X̂K. Let us fix K ≥ d and x̂ = (x, ξ) ∈ X̂ . The SDE (7)-(8) can
be written compactly as

X̂K,x̂
t = (⌊x⌋K , ξ) +

∫

(0,t]×R+×Y
GK(u, y, X̂K,x̂

s− )N (ds, du, dy) (78)

where Y = (J1, dK × {−1, 1})⊔E and GK : R+ × Y ×XK ×E → R
d×R is defined by

GK(u, y, z, ζ) =

{

1{u≤Kiβhei(z,ζ)}K
−1
i h(ei, 0) if y = (i, h) ∈ J1, dK × {−1, 1}

1{ξ′ 6=ζ}1{u≤q(z,ζ,ξ′)}(0, ξ
′ − ζ) if y = ξ′ ∈ E

.

Setting ν = Leb ⊗
∑

z∈(J1,dK×{−1,1})⊔E δz, we can check that ẑ + GK(u, y, ẑ) ∈ XK

for all (u, y, ẑ) ∈ R+ × Y × X̂K and that ν
({

(u, y) ∈ R+ × Y : GK(u, y, ẑ) = ẑ′
})

=

LK(ẑ, ẑ′) for all distinct ẑ, ẑ′ ∈ X̂K , where we recall that LK denotes the desired
transition rate matrix for X̂K . Recall that ν is such that Leb ⊗ ν is the intensity
measure of N .

Let † be a cemetery point. We can define inductively a sequence of random variables

(ẐK,x̂
n , TK,x̂n )n∈N with values in

(

X̂K ×R+

)

∪ {(†,+∞)} by setting (ẐK,x̂
0 , TK,x̂0 ) =

(⌊x⌋K , ξ, 0) and then for all n ∈ N, omitting the exponent x̂ :

• on
{

(ẐK
n , T

K
n ) 6= (†,+∞)

}

,

TKn+1 := inf

{

t ≥ TKn :

∫

(TK
n ,t]×R+×Y

GK(u, y, ẐK
n )N (ds, du, dy) 6= 0

}

and then

− on
{

TKn+1 < +∞
}

,

ẐK
n+1 := ẐK

n +

∫

(TK
n ,TK

n+1]×R+×Y
GK(u, y, ẐK

n )N (ds, du, dy);

− on
{

TKn+1 = +∞
}

, ẐK
n+1 := † ;

• on
{

(ẐK
n , T

K
n ) = (†,+∞)

}

, (ẐK
n+1, T

K
n+1) := (†,+∞).

For all n ∈ N, TKn is a (F ◦
t )-stopping time, and ẐK

n is F ◦
TK
n

-measurable. By strong

Markov property of N , conditional on {TKn < +∞} the random measure θTK
n

N (·) :=
N
({

(TKn + s, u, y), (s, u, y) ∈ ·
})

is a Poisson random measure of the same intensity
as N with respect to the filtration (F ◦

TK
n +t)t∈R+ , independent of F ◦

TK
n

. Hence, using

the definition of (ẐK
n+1, T

K
n+1) we obtain, for all t ∈ R+ and ẑ ∈ X̂K ,

P

(

ẐK
n+1 = ẑ, TKn+1 − TKn > t |F ◦

TK
n

)

=
LK(ẐK

n , ẑ)
∣

∣

∣
LK(ẐK

n , Ẑ
K
n )
∣

∣

∣

e−|LK(ẐK
n ,ẐK

n )|t (79)
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almost surely on {TKn <∞}. There is not division by zero because for all ẑ = (z, ζ) ∈
X̂K , |LK(ẑ, ẑ)| ≥ |q(z, ζ, ζ)| > 0 by irreducibility of Q(z). Equation (79) shows that
the sequence (ZK

n , T
K
n )n∈N is distributed as the embedded chain of a continuous-time

Markov chain of rate matrix LK . In particular supn∈N T
K
n = +∞ almost surely. Hence,

setting NK,x̂
t = sup

{

n ∈ N : TK,x̂n ≤ t
}

, the process (X̂K,x̂
t )t∈R+ defined by

X̂K,x̂
t = ẐK,x̂

NK,x̂
t

(80)

is a continuous-time Markov chain of rate matrix LK , which is (F ◦
t )-adapted. By

construction, it solves (78). It is straightforward to see that the embedded chain of any
other solution must coincide with (ZK,x̂

n , TK,x̂n )n∈N almost surely, hence the uniqueness
of the solution up to indistinguishability. Finally, the strong Markov property of X̂K,x̂

with respect to (F ◦
t )0≤t≤∞ follows from the strong Markov property of N and the

uniqueness of solutions of (78).

Contruction of X̂. The justification of the construction of the PDMP is very similar
to the previous one. To begin with, modifying NΞ on a P-negligible set if necessary,
we may assume that for all ω◦ ∈ Ω◦ and all t ∈ R+, NΞ(ω

◦)({t} ×R+ × E) ≤ 1 and
N (ω◦)((0, t]× [0, q]× E) < +∞ where q = sup(z,ζ)∈X̂ |q(z, ζ, ζ)| <∞.

Let x̂ = (x, ξ) ∈ X̂ . We define inductively the sequence (Z x̂
n , Ξ̃

x̂
n, T

x̂
n )n∈N with values

in (X × E × R+) ∪ {(†, †,+∞)} by (Z x̂
0 , Ξ̃

x̂
0 , T

x̂
0 ) = (x, ξ, 0) and then, for all n ∈ N,

omitting the exponent x̂ :

• on
{

(Zn, Ξ̃n, Tn) 6= (†, †,+∞)
}

,

Tn+1 := inf

{

t ≥ Tn :

∫

(Tn,t]×R+×E
(ξ′ − Ξ̃n)1{

u≤q
(

ψΞ̃n
s−Tn

(Zn),Ξ̃n,ξ′
)}NΞ(ds, du, dξ

′) 6= 0

}

and then

− on {Tn+1 < +∞},

Zn+1 := ψΞ̃n
Tn+1−Tn(Zn),

Ξ̃n+1 := Ξ̃n +

∫

(Tn,Tn+1]×R+×E
(ξ′ − Ξ̃n)1{

u≤q
(

ψΞ̃n
s−Tn

(Zn),Ξ̃n,ξ′
)}NΞ(ds, du, dξ

′);

− on {Tn+1 = +∞}, (Zn+1, Ξ̃n+1) := (†, †) ;

• on
{

(Zn, Ξ̃n, Tn) = (†, †,+∞)
}

, (Zn+1, Ξ̃n+1, Tn+1) := (†, †,+∞).

The sequence (Tn)n∈N is an increasing sequence of (F ◦
t )-stopping times which tends to

+∞ on all Ω◦ (thanks to the modification of NΞ). Setting Nt = sup {n ∈ N : Tn ≤ t},
the process defined by

(X x̂
t ,Ξ

x̂
t ) =

(

ϕ
Ξ̃Nt
t−TNt

(ZNt), Ξ̃Nt

)

(81)
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for all t ∈ R+ is càdlàg, (F ◦
t )-adapted, and solution of the SDE

X x̂
t = x+

∫ t

0

F (X̂ x̂
s )ds (82)

Ξx̂t = ξ +

∫

(0,t]×R+×E
1{ξ′ 6=Ξx̂

s−}
(

ξ′ − Ξx̂s−
)

1{u≤q(X̂x̂
s−,ξ

′)}NΞ (ds, du, dξ
′) . (83)

Regarding the uniqueness, it is straightforward to see that if (Y x̂
t , J

x̂
t )t∈R+ is an-

other càdlàg solution of this SDE, then its embedded chain (Ỹn, J̃n, Sn)n∈N must co-
incide almost surely with (Zn, Ξ̃n, Tn). By embedded chain, we mean that (Sn)n∈N is
the sequence of jump times of (Jt)t∈R+ and for all n ∈ N, (Ỹn, J̃n) equals (YSn, JSn)
if Sn < ∞ and (†, †) otherwise. Hence, the solution of (82)-(83) is unique (up to
indistinguishability).

The recurrence relations on the embedded chain can be written under the form

(X̃n+1, Ĩn+1, Tn+1) = H(X̃n+1, Ĩn+1, Tn+1, θTnN ),

where H is a measurable map from ((X × E ×R+) ∪ {(†, †,+∞)}) × Π to (X × E ×
R+)∪{(†, †,+∞)}, with Π denoting the set of measures on (R2

+×E,B(R+)
⊗2⊗P(E))

taking values in N∪{+∞}, equipped with the sigma-algebra G generated by the maps
π 7→ π(A), A ∈ B(R+)

⊗2 ⊗ P(E). Given that (Z0, Ξ̃0, T0) = (x, ξ, 0), we deduce that
we can write

X̂ x̂ = Φ(x̂,NΞ)

for some measurable map Φ : X̂ × Π → D(R+, X̂ ). What’s more, by construction, for
all τ ∈ R+ we have (X x̂

τ+t)t∈R+ = Φ(X x̂
τ , θτNΞ).

It remains to show that X̂ x̂ is a switched dynamical system of local characteristics
((F ξ)ξ∈E, Q). By construction of the embedded chain, almost surely on {Tn < +∞} we
have

P
(

Tn+1 − Tn > t |F ◦
Tn

)

= exp

(

−
∫ t

0

∣

∣

∣
q
(

ψΞ̃n
s (Zn), Ξ̃n, Ξ̃n

)∣

∣

∣
ds

)

.

Then, almost surely on {Tn+1 < +∞} we have

Zn+1 = ψΞ̃n
Tn+1−Tn(Zn) and P

(

Ξ̃n+1 = · |F ◦
Tn, Tn+1

)

=
q(Zn+1, Ξ̃n, ·)

|q(Zn+1, Ξ̃n, Ξ̃n)|
,

while on {Tn+1 = +∞}, (Zn+1, Ξ̃n+1) = (†, †). This implies that X̂ x̂ is a switched
dynamical system of local characteristics ((F ξ)ξ∈E, Q), see the construction based on the

embedded chain in [22]. Since for all finite (F ◦
t )-stopping time τ we have (X̂ x̂

τ+t)t∈R+ =

Φ(X̂ x̂
τ , θτNΞ), the strong Markov property of N implies the strong Markov property

of X̂ x̂, with respect to the filtration (F ◦
t )0≤t≤∞.
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7.2 A Chernoff bound for Poisson-driven martingales

Lemma 7.1. Let (U,B(U)) be a Polish space equipped with its Borel sigma-field, and
let µ be a σ-finite measure on (U,B(U)). Let (Ω,F , (Ft)0≤t≤∞,P) be a filtered proba-
bility space satisfying the usual conditions, equipped with a Poisson random measure N

on R+×U of intensity Leb⊗µ. Let P denote the (Ft)-predictable sigma-field on Ω×R+

and let G : (ω, s, u) → Gs,u(ω) be a measurable function from (Ω×R+×U,P ⊗B(U))
to (R,B(R)). Let A,C, T > 0, let B ∈ B(U) such that µ(B) < ∞, and assume that
P-almost surely,

|Gs,u| ≤ C1B(u) (84)

for all (s, u) ∈ [0, T ]× U . Then, setting Ñ = N − Leb⊗ µ we have

P

(

sup
0≤t≤T

∫

(0,t]×U
Gs,u Ñ (ds, du) ≥ A

)

≤ exp

(

−A
2

(

A

2C2µ(B)T
∧ log(2)

C

))

. (85)

Proof. Let (Mt)0≤t≤T be defined by

Mt =

∫

(0,t]×U
Gs,u Ñ (ds, du) .

Let τ = inf {t ∈ [0, T ] :Mt ≥ A} and setM ′
t =Mt∧τ . Note that (84) entailsM ′ ≤ A+C.

For all λ ≥ 0, eλM
′
is a bounded (Ft)-local submartingale, hence it is a submartingale

and Doob’s maximal inequality yields

P

(

sup
0≤t≤T

Mt ≥ A

)

= P

(

sup
0≤t≤T

eλM
′
t ≥ eλA

)

≤ E

(

eλM
′
T

)

e−λA. (86)

Fix 0 ≤ λ ≤ log(2)/C. For all 0 ≤ t ≤ T , we have

eλM
′
t = 1 + λ

∫ t

0

eλM
′
s−dM ′

s +
∑

0<s≤t
eλM

′
s−(eλ∆M

′
s − 1− λ∆M ′

s)

≤ 1 + λ

∫ t

0

eλM
′
s−dM ′

s +
∑

0<s≤t
eλM

′
s−λ2(∆M ′

s)
2 (87)

using (84). Let (Lt)0≤t≤T denote the local-martingale term of the above right handside.
Its oblique bracket is given by

〈L〉t = λ2
∫ t∧τ

0

e2λM
′
s−G2

s,udsµ(du) ≤ λ2C2e2λAµ(B)T,

hence (Lt) is a square-integrable martingale. Taking the expectation in (87) yields

eλM
′
t ≤ 1 + λ2E

(
∫

(0,t]×U
1{s≤τ}e

λMs−G2
s,uN(ds, du)

)

≤ 1 + λ2C2µ(B)E

(
∫ t

0

eλM
′
sds

)

.
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Using Fubini’s theorem and Grönwall’s lemma, we get eλM
′
T ≤ eλ

2C2µ(B)T , and after
plugging this into (86) we obtain

P

(

sup
0≤t≤T

Mt ≥ A

)

≤ eλ(λC
2µ(B)T−A).

The right handside is minimized at

λ =
A

2C2µ(B)T
∧ log(2)

C
,

and (85) follows easily. �
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