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Abstract  13 

Engineered soils provide numerous ecosystem services in urban landscapes, such as water 14 

regulation and plant growth. They are constructed to optimize soil physicochemical properties 15 

but their biological properties are given little consideration. In particular, earthworm 16 

communities may be highly impacted by soil engineering processes and soil isolation caused 17 

by asphalted surfaces separating soils, and in particular roadside soils, from pseudo-natural 18 

soils. In this context, this study aimed to evaluate (i) the effects of soil engineering processes 19 

applied to construct roadside soils, and (ii) the effects of soil isolation from pseudo-natural 20 

soils by asphalted surfaces on earthworm communities. The study was conducted in an urban 21 

landscape in the suburbs of Paris, France. We sampled earthworms in roadside soils from two 22 

distinct soil engineering processes: basic engineering (BER) associated with shallow stripping 23 

depth and advanced engineering (AER) associated with deep stripping depth and organic 24 

amendment. Within each soil engineering process, two levels of soil isolation were defined 25 

depending on the asphalted surface separating roadside soils from pseudo-natural soils: light 26 

isolation (LI) in case of a narrow cycle path, and high isolation (HI) in case of a wide road. 27 

Soil engineering did not affect the total earthworm abundance whereas the total species 28 

richness was negatively impacted in comparison to nearby pseudo-natural soils. High soil 29 

isolation differently impacted earthworm communities depending on the engineering process. 30 

Regarding AER, earthworm abundance and species richness were significantly lower in HI 31 

than in LI while no differences were observed between BER-LI and BER-HI. Overall, 32 

engineering processes define the soil's ability to host earthworms, and soil isolation defines 33 

soil ability to be colonized from nearby environments. Considering the contribution of 34 

earthworms to the provision of ecosystem services, both soil engineering and soil isolation 35 

should be taken into account in urban projects to optimize their development in urban 36 

landscapes.   37 
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1. Introduction 42 

In response to global changes, urban landscapes integrate climate-resilient engineered 43 

soils (e.g., parks, roundabouts, roadsides), especially to balance water flows and provide 44 

thermal comfort through vegetation (Demuzere et al., 2014; Kim et al., 2016). Many 45 

ecosystem services such as water regulation or support for plant growth are mainly provided 46 

by urban soils depending on their physical, chemical, and biological properties (Dominati et 47 

al., 2010). Engineered soil properties result from processes which include, among others, soil 48 

stripping, transportation, and implementation in one or several layers (Marié and Rossignol, 49 

1997; Vidal-Beaudet and Rossignol, 2018). Therefore, the construction of engineered soils in 50 

the urban landscape is a key element to maintain functional soils and address urban issues 51 

(Morel et al., 2015; Blanchart et al., 2018; Calzolari et al., 2020). If the physical and chemical 52 

components of engineered soils have been studied (Damas and Coulon, 2016; Séré et al., 53 

2017), the biological component, despite being a key player in soil processes (Balser and 54 

Firestone, 2005; Ernst et al., 2009), remains largely unexplored. 55 

Among soil biological actors, earthworms are widespread in temperate climates and are 56 

involved in numerous ecosystem services (Lavelle et al., 2006; Blouin et al., 2013; Bertrand 57 

et al., 2015), acting in particular on water regulation (Ernst et al., 2009; Pelíšek, 2018) and 58 

plant growth (Scheu, 2003; van Groenigen et al., 2014). They are usually classified into four 59 

main categories (Bouché, 1972, 1977; Jégou et al., 1998): epigeic earthworms live and feed 60 

on organic matter of the soil surface, endogeic earthworms create horizontal burrows and feed 61 

on soil organic matter, epi-anecic earthworms rather feed on fresh surface organic matter 62 
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whereas strict-anecic earthworms preferentially feed on aged organic matter already 63 

incorporated into the soil (Bouché, 1977; Jégou et al., 1998). Earthworm communities of 64 

urban soils are poorly described and the few studies available highlighted the effects of soil 65 

physicochemical properties (Amossé et al., 2016; Audusseau et al., 2020), land-uses (Li et al., 66 

2020; Tóth et al., 2020), and land management (Smetak et al., 2007; Vergnes et al., 2017). For 67 

example, Smetak et al. (2007) observed that additions of nitrogenous fertilizer in urban parks 68 

were associated with an increase of an anecic species abundance. However, to our knowledge, 69 

there is no study on the effect of engineering processes on earthworm communities in urban 70 

landscapes. 71 

Several studies have been undertaken at a large scale to evaluate the impact of landscape 72 

diversity on earthworm communities (Joschko et al., 2006; Frazão et al., 2017; Hoeffner et al., 73 

2021). For example, Vanbergen et al. (2007) highlighted a positive correlation between 74 

earthworm diversity and habitat richness at landscape-scale (1 km²); between earthworm 75 

abundance and plant species richness at a local scale (200 m²). In the urban context, Xie et al. 76 

(2018) observed that the ratio of asphalted surface and green space surface within different 77 

buffers from 200 m to 1 km was negatively correlated with an anecic species. However, the 78 

majority of the previous studies did not report the impact of landscape on earthworm 79 

communities at a very fine scale (Vanbergen et al., 2007; Lüscher et al., 2014; Frazao et al., 80 

2017; Xie et al., 2018). In particular, the effect of asphalted surfaces such as roads or cycle 81 

paths surrounding roadside soils on earthworm communities remains unclear. Tiho and Josens 82 

(2000) highlighted similar earthworm communities between soils surrounded by two roads 83 

and soils of local urban parks, whereas Dupont et al. (2017) reported that for two endogeic 84 

species roads could constitute barriers to earthworm dispersal at a regional scale (∼130 km²). 85 

Thus, earthworm communities of roadside soils and the effect of surrounding landscapes at a 86 

very fine scale are still to be explored.  87 
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The first objective of the present study was to evaluate the effects of soil engineering 88 

processes applied to construct roadside soils on earthworm communities (total abundance, 89 

total species richness, evenness index, and abundance within each earthworm ecological 90 

category). We hypothesized that the more steps the engineering process includes, the more 91 

degraded earthworm communities are likely to be. The second objective was to evaluate the 92 

effects of soil isolation by asphalted surfaces on earthworm communities. We hypothesized 93 

that earthworm communities in highly isolated roadside soils (i.e., separated from pseudo-94 

natural soils by a wide road) are likely to be more degraded than earthworm communities in 95 

lightly isolated roadside soils (i.e., separated from pseudo-natural soils by a narrow cycle 96 

path). We conducted a study in an urban landscape of Paris’ suburbs, France. Earthworms 97 

were sampled in pseudo-natural grassland soils (controls) and along linear roadside soils from 98 

two different soil engineering processes: basic engineering involving shallow soil stripping 99 

and the addition of a single unmodified soil layer; advanced engineering involving deep soil 100 

stripping, the addition of two soil layers and an organic amendment in the surface soil layer. 101 

Within each engineering process, we studied soil isolation by comparing lightly and highly 102 

isolated roadside soils. 103 

 104 

2. Materials and methods  105 

2.1. Study sites and sampling design 106 

The study area is located around the city of Paris (France), in the commune of 107 

Guyancourt (48° 76’ 18’’ N; 2° 07’ 23’’ E) which belongs to the urban community of Saint-108 

Quentin-en-Yvelines, built as a “new city” in the 1970s to avoid urban concentration in Paris. 109 

The city expands on large agricultural parcels where the substrate is characterized by fine 110 

loess deposits more than 3 metres deep (Mégnien, 1989). Guyancourt is structured by three 111 

main avenues: two from north-east to south-west, and one from west to east. The climate is 112 
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temperate, with a mean annual precipitation of 563 mm and a mean annual temperature of 113 

11.2°C, a monthly minimum of -2.3°C and a monthly maximum of 26.4 °C (data from Météo 114 

France, 2008-2018 Trappes station).  115 

Two linear roadside soils made by following distinct engineering processes were 116 

selected: (i) basic soil engineering process (Léon Blum Avenue) which is commonly used in 117 

the urban context and (ii) advanced soil engineering process (Europe Avenue) which is rarely 118 

used in the urban context. These roadside soils were selected for the detailed historical 119 

knowledge available (Table S1), their proximity (less than 2 km apart), their great age (30 and 120 

20 years old respectively), and the presence of adjacent pseudo-natural grassland soils. Basic 121 

engineered roadside soils (BER) were implemented at the end of the 1980s. The existing soil 122 

was stripped to a depth of 30 cm to reach the desired road level. The topsoil was reconstituted 123 

with an addition of 20 to 30 cm of organo-mineral material (silty topsoil). Advanced 124 

engineered roadside soils (AER) were implemented at the end of the 1990s. The existing soil 125 

was stripped to a depth of 150 cm. The soil was reconstituted from bottom to top with 125 cm 126 

of organo-mineral material (silty topsoil), 25 cm of a mixture of organo-mineral material and 127 

compost from green waste, and finally a thin layer of pine bark mulch (Table S1). In both 128 

cases, the organo-mineral material came from the perimeter of the urban project and 129 

corresponds to topsoil stripped down to 30 cm, stored in a windrow, and then transported to 130 

the roadside location. Six soil profile descriptions per engineering process (BER and AER) 131 

were performed in 110 cm deep pedological pits (NF EN ISO 25177; AFNOR, 2019). Soils 132 

were identified according to the IUSS Working Group (WRB, 2015). In addition, for each 133 

roadside soil, nearby pseudo-natural grasslands soils (BER-PNG and AER-PNG, respectively) 134 

left untouched by urban engineering at least for 30 and 20 years old respectively were 135 

selected. 136 
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Within each of the two types of engineered roadside soils, two levels of isolation from 137 

adjacent pseudo-natural grassland soils were selected: (i) lightly isolated roadside soils (BER-138 

LI and AER-LI, respectively) between a 6 m wide asphalt road with a 20 cm high curb and a 139 

3 m wide asphalt cycle path with no curb; (ii) highly isolated roadside soils (BER-HI and 140 

AER-HI, respectively) between two asphalt roads, each 6 m wide with a 20 cm high curb 141 

(Fig. S1). Details concerning land use and management of each group are shown in Table S1. 142 

Earthworms and soil were sampled in order to cover all of the selected avenue portions. Each 143 

replicate was separated from 60 m and the number of replicates for each group varied 144 

depending on the avenue’s layouts (i.e., intersections) and length. Thus, 6 groups were 145 

studied: (i) BER-PNG (n=10), (ii) BER-LI (n=10), (iii) BER-HI (n=5), (iv) AER-PNG (n=7), 146 

(v) AER-LI (n=7), and (vi) AER-HI (n=7). 147 

  148 

2.2. Earthworm sampling and laboratory analyses 149 

Each earthworm sampling consisted of extracting 6 blocks of soil (20 cm × 20 cm × 25 150 

cm, length × width × depth) and hand-sorting to collect earthworms. Sampling of soil blocks 151 

was undertaken at a distance of 2 m from a tree and equidistant from the edge of the tree 152 

trench. Earthworms were stored in ethanol (96% solution). In the laboratory, earthworms were 153 

counted, assigned to a stage of development (juvenile, sub-adult and adult), identified at the 154 

sub-species level and assigned to its ecological categories: epigeic, epi-anecic (genus 155 

Lumbricus), anecic-strict (genus Aporrectodea) and endogeic (Bouché, 1972, 1977; Jégou et 156 

al., 1998; Hoeffner et al., 2019). For juveniles that could not be determined at the sub-species, 157 

they were first assigned to a genus and an ecological category, then distributed in proportion 158 

of sub-adults and adults identified at the sub-species level in each group. The number of hand-159 

sorted earthworms was multiplied by 25 to obtain an estimation per square metre. Earthworm 160 

diversity was analysed by calculating the total species richness, and the evenness index. The 161 
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evenness index (J’) was calculated as follows:  �� =
��

�	
�
� , where H’ is the Shannon diversity 162 

index. Abundance was also analysed at the scale of ecological categories. 163 

 164 

2.3. Soil sampling and physicochemical analyses 165 

Soil samples were taken for analysis from the soil where earthworms had been 166 

collected. Six sub-samples of soil (between 0 and 25 cm) were pooled and homogenized to 167 

consider one composite sample per site. Composites were analysed by the analytical 168 

laboratory AUREA AgroSciences (Orléans, France) for particle-size distribution (clay <2 µm; 169 

silt 2<µm<50; sand 50<µm<200, %; NFX 31-107 without decarbonatation; AFNOR, 2003), 170 

soil organic matter (SOM; NF ISO 14235; AFNOR, 1998) and pH (water; NF ISO 10390; 171 

AFNOR, 2005).  172 

 173 

2.4. Statistical analyses 174 

Wilcoxon tests were applied to compare total abundance, total species richness, evenness 175 

index, and abundance of ecological categories between BER-PNG and BER, and between 176 

AER-PNG and AER. Two-ways ANOVAs for parametric data were applied to test the factors 177 

“soil engineering”, “soil isolation”, and their interaction on total abundance, total species 178 

richness, and evenness index between BER-LI, BER-HI, AER-LI, and AER-HI. We used a 179 

type III sum of squares ANOVA because the sampling design was unbalanced. In case of 180 

significant interaction, one-way ANOVA, and pairwise multiple comparisons were performed 181 

to highlight the significant differences between mean variables of BER-LI, BER-HI, AER-LI, 182 

and AER-HI. Given the large contrasts of abundance between groups at the scale of 183 

ecological categories, Kruskal-Wallis tests for non-parametric data were applied, followed by 184 

Dunn tests for post-hoc pairwise comparisons to identify the significant differences between 185 

BER-LI, BER-HI, AER-LI, and AER-HI. 186 



9 

 

The species composition of earthworm communities among BER-PNG, BER-LI, BER-HI, 187 

AER-PNG, AER-LI, and AER-HI was compared thanks to a data matrix of pairwise 188 

comparisons among samples calculated using the Bray-Curtis distance index. Non-Metric 189 

multidiDimensional Scaling (NMDS) was then used to find the best low-dimensional 190 

representation of the distance matrix. The null hypothesis of no difference in patterns of 191 

earthworm community structure was tested with a permutational multivariate analysis of 192 

variance (PERMANOVA). PERMANOVAs were run on the Bray-Curtis distance with 1000 193 

permutations per analysis. 194 

All statistical analyses were performed on R software (R Core Team, 2019). Significance 195 

was evaluated in all cases at P < 0.05.  196 

 197 

3. Results  198 

3.1. Physicochemical characteristics of soils  199 

BER-PNG and AER-PNG were identified as Haplic Luvisols, with a silt content of 63 % 200 

± 3.5 (± SD), a pH of 7.8 ± 0.3 and an organic matter content of 1.8 % ± 0.4. BER and AER 201 

were similar in pH (7.4 ± 0.6 and 7.2 ± 0.2, respectively) and soil texture, with a dominant 202 

percentage of silt (71 % ± 4.0 and 67 % ± 2.4 respectively), while the percentage of organic 203 

matter was higher AER in than in BER (6.4 % ± 1.0 and 1.8 % ± 0.3, respectively) (Table 204 

S2). BER were identified as Terric Luvisols (Transportic, Siltic) and AER were identified as 205 

Hortic Anthrosols (Organotransportic, Siltic) (Table S1).  206 

 207 

3.2. Earthworm communities of the study area 208 

Over the whole study area, the mean earthworm abundance and species richness were 369 209 

± 190 individuals m-² and 5.6 ± 1.8 species, respectively (Table 1, Table S3). Fourteen species 210 

were observed (Table S4): three epigeic (dominated by Lumbricus castaneus), two epi-anecic 211 
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(Lumbricus rubellus rubellus and Lumbricus terrestris), two strict-anecic (Aporrectodea 212 

giardi and Aporrectodea longa longa), and seven endogeic earthworms (dominated by 213 

Aporrectodea icterica). 214 

Regarding both pseudo-natural grassland soils, earthworm abundance was 377 ± 150 215 

individuals m-² and 485 ± 163 individuals m-² in BER-PNG and AER-PNG respectively, and 216 

was not different to their respective engineered roadside soils (W = 59.0 and 29.0 217 

respectively, P > 0.05; Table S3). Earthworm species richness was significantly higher in both 218 

pseudo-natural grassland soils compared to their respective engineered roadside soils (at least 219 

+34 %; W = 6.0 and 12.5 respectively, P < 0.05; Table S3), especially concerning epi-anecic 220 

species in BER and strict-anecic species in AER. In addition, evenness index was 221 

significantly higher in BER-PNG than in BER (+14 %, W = 31.0, P = 0.016; Table S3) while 222 

no difference was observed between AER-PNG and AER (W = 36.5, P > 0.05; Table S3). 223 

Among ecological categories, epi-anecic abundance was significantly higher in BER-PNG 224 

than in BER (+93 %, W = 35.0, P = 0.006; Table S3), strict-anecic abundance was 225 

significantly higher in AER-PNG than in AER (+72 %, W = 15.5, P = 0.011; Table S3) while 226 

no differences were observed between grassland soils and their respective engineered roadside 227 

soils regarding epigeic and endogeic abundance (W < 39.0, P > 0.05; Table S3). 228 

Regarding lightly isolated roadside soils (LI), earthworm species richness and evenness 229 

index were significantly lower in BER-LI than in AER-LI (at least +31 %, F = 24.4 and 10.3, 230 

respectively, P < 0.004) while earthworm abundance was not affected by the engineering 231 

process (Table 1). Among ecological categories, epigeic and epi-anecic abundances were 232 

significantly lower in BER-LI than in AER-LI (at least +88 %, K = 12.9 and 15.8, 233 

respectively, P < 0.005; Table 2) while strict-anecic and endogeic abundance were not 234 

affected by the engineering process. In addition, earthworm communities were different in 235 

BER-LI and AER-LI (Fig. 1). Regarding highly isolated roadside soils (HI), strict-anecic 236 
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abundance was significantly higher in BER-HI than in AER-HI (+100 %, K = 15.1, P = 237 

0.002; Table 2) while earthworm abundance, species richness, evenness index, as well as 238 

epigeic, epi-anecic and endogeic abundance were similar between BER-HI and AER-HI 239 

(Table 1, Table 2).  240 

In basic engineered roadside soils (BER) no differences were observed in both BER-LI or 241 

BER-HI regarding earthworm abundance, species richness, evenness index, structure of 242 

communities, as well as epigeic, epi-anecic, strict-anecic and endogeic abundance (Table 1, 243 

Table 2, Fig.1). Regarding advanced engineered roadside soils (AER), earthworm abundance 244 

and species richness were significantly higher in AER-LI than in AER-HI (at least +54 %, F = 245 

10.8 and 24.4 respectively, P < 0.003) while evenness index was not affected by soil isolation 246 

(Table 1). Among ecological categories, epi-anecic and endogeic abundance were 247 

significantly higher in AER-LI than in AER-HI (+at least 64 %, K = 11.6 and 15.8, P < 248 

0.009). In addition, earthworm communities were different between AER-LI and AER-HI 249 

(Fig. 1) in particular due to the absence of epigeic and strict-anecic earthworms in AER-HI 250 

(Table 1). 251 

 252 

4. Discussion 253 

In the present study, mean earthworm abundance and species richness ranged from 153 to 254 

538 individuals m-² and from 3.1 to 7.7 species. The lowest mean earthworm abundance and 255 

species richness observed are close to those observed in previous urban studies (Amossé et 256 

al., 2016; Xie et al., 2018), for example Vergnes et al. (2017) found a mean of 93.4 257 

individuals m-2 and 4.6 species in 20 urban parks of two districts of Paris. The highest mean 258 

earthworm abundance observed in the present study is higher than those observed in 259 

grasslands where earthworms are generally the most abundant in temperate climates (Decaëns 260 

et al., 2008), while the highest mean earthworm species richness observed is lower than those 261 
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observed in grasslands. For examples, Didden (2001) found a mean of 384 individuals m-2 and 262 

10 species in 20 grasslands in the Netherlands, and Cluzeau et al. (2012) found a mean of 350 263 

individuals m-2 and 9.6 species among 47 grasslands in Brittany. These results underline the 264 

high variability of earthworm communities within a single city as observed in previous studies 265 

(Smetak et al., 2007; Xie et al., 2018). Indeed, urban landscapes are strongly influenced by 266 

numerous anthropogenic factors (e.g., historical land-use, local soil management, urban 267 

shapes) which differently affect earthworm communities at multiple spatial urban scales 268 

(Swan et al., 2011; Aronson et al., 2016) such as city, district or neighbourhood. Thus, 269 

earthworm communities of urban soils can be highly degraded as well as preserved, 270 

modifying their level of contribution to ecosystem services (Lavelle et al., 2006; Blouin et al., 271 

2013). 272 

Soil engineering did not affect the total earthworm abundance, as compared to their 273 

respective pseudo-natural grassland soils, earthworm abundance was similar in basic and 274 

advanced engineered roadsides soils. Thus, despite soil disturbances caused by engineering 275 

processes (e.g., soil stripping, soil transport) and regardless of engineering intensity (e.g., 276 

stripping depth, soil addition), earthworm abundance reached comparable levels to pseudo-277 

natural soils after 20 and 30 years. This similar earthworm abundance between engineered 278 

roadside soils and nearby pseudo-natural grassland soils can be explained by the absence of 279 

soil disturbance in recent decades such as pedestrian activity or soil manipulation, which 280 

favours earthworm development (Pižl and Schlaghamerský, 2007; Peigné et al., 2009). 281 

Besides, the presence of a permanent cover in both engineered roadsides soils could also be a 282 

favourable factor for earthworm development as it provides food resources and increases 283 

protection against climatic hazards (Pélosi et al., 2009; Schreck et al., 2012). However, soil 284 

engineering negatively affected total earthworm species richness which reinforces a previous 285 

study that showed in urban landscapes that earthworm species richness declines due to soil 286 
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disturbance (i.e., soil engineering) and the loss of habitats due to urbanisation (Xie et al., 287 

2018). Given this erosion of earthworm diversity, engineering processes could include 288 

population transfers from nearby pseudo-natural soils to engineered soils thanks to inoculation 289 

techniques that would compensate for losses due to constructions (Butt et al., 1997; Butt, 290 

1999).  291 

Soil isolation differently impacted earthworm communities in both engineered roadside 292 

soils. Regarding advanced engineered roadside soils, earthworm abundance was the highest in 293 

lightly isolated roadsides among all the roadside soils considered. This result highlights a 294 

particularly suitable environment for earthworm communities in advanced engineered 295 

roadside soils. Although the entire soil profile has been reconstituted to a depth of 150 cm, the 296 

use of topsoil and the organic amendment in the surface soil layer, highlighted by a high 297 

percentage of organic matter, allowed a high level of earthworm development by providing 298 

abundant trophic resources (Lapied et al., 2009; Ashwood et al., 2017). High levels of organic 299 

matter in advanced engineered soils could explain the high abundance of the geophagous 300 

endogeic earthworm Aporrectodea caliginosa caliginosa, which was almost two times more 301 

abundant in lightly isolated soils than in nearby pseudo-natural soils (Bouché, 1972; Doube et 302 

al., 1997). Earthworm abundance and species richness were in contrast the lowest in highly 303 

isolated advanced roadside soils which shows, despite highly suitable habitats provided by the 304 

advanced engineering process, that roads have a negative effect on earthworm communities. 305 

This result could be explained by high mortality rates caused by cars and drought when 306 

earthworms remain on asphalt surfaces, added to their probable difficulty to climb the 20 cm-307 

high curbs to access the soils. Besides, highly isolated advanced roadside soils are surrounded 308 

by roads on both sides and are elevated from them which can limit water runoff and soil 309 

moisture, considered as an essential factor to earthworm survival (Lee, 1985). Thus, resulting 310 

isolated earthworm communities were almost exclusively composed of endogeic species that 311 
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are particularly tolerant to soil disturbances (Rosas-Medina et al., 2010; Briones and Schmidt, 312 

2017). Overall, the absence of two ecological categories (epigeic and anecic earthworms) can 313 

negatively affect the development of other earthworm species in terms of trophic relations, as 314 

shown by Keith et al. (2018) who highlighted for example that the surface foraging activity of 315 

anecics was beneficial for a soil-feeding endogeic species. More globally, the lack of several 316 

earthworm ecological categories may be very damaging for the maintenance of soil functions 317 

in which they are involved such as organic matter decomposition (especially epigeic species) 318 

or water infiltration (especially anecic species) (Bastardie et al., 2003; Sharma et al., 2017). 319 

Regarding soil from basic engineering processes, no differences were observed between 320 

communities of lightly and highly isolated roadside soils, and both were very similar to 321 

nearby pseudo-natural grassland soils. Similar observations were made in Brussels by Tiho 322 

and Josens (2000), who observed similar earthworm communities between highly isolated 323 

roadside soils of Roosevelt Avenue and 19 pseudo-natural soils of local urban parks. 324 

Considering that basic roadside soils were stripped at shallow depth, it can be assumed that, as 325 

suggested by Tiho and Josens (2000), earthworm communities could have developed from a 326 

relict of the earthworm communities present before the road construction and have been 327 

preserved under the modified layer of the soil. Thus, the issue of soil isolation should be taken 328 

into account in urban projects, in particular if initial habitats and pool of species are likely to 329 

be highly impacted along the construction process. 330 

 331 

5. Conclusion  332 

This study highlights the combined effects of soil engineering and soil isolation on 333 

earthworm communities in urban landscapes. Soil engineering did not modify earthworm 334 

abundance 20 or 30 years after roadside construction while earthworm species richness was 335 

negatively impacted. Earthworm communities of highly isolated advanced roadside soils (i.e., 336 
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surrounded by roads) were strongly negatively impacted while soil isolation did not impact 337 

basic engineered soils. In the context of growing urbanisation and landscape fragmentation, 338 

our results shows that urban soil biodiversity has to be taken into account all along the 339 

different steps of urban projects. From the start, soil and biodiversity diagnostics could help to 340 

define the quality of the habitat and identify the species already present on site; low impacting 341 

engineering processes could limit the degradation of earthworm populations during the 342 

project; the preservation of reservoir areas and the maintaining of connections between green 343 

spaces could help the colonisation process; adapted soil management (e.g., ensuring sufficient 344 

soil moisture) could maintain long-term high-quality habitats for soil biodiversity. To specify 345 

and confirm technical recommendations, further studies should be conducted on other urban 346 

shapes than more or less isolated roadsides, and different urban scales from the city to the 347 

neighbourhood should be explored.  348 
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FIGURES 550 

Fig. 1 Non-metric multidimensional scaling ordinations showing similarities, based on Bray-551 

Curtis distance index, of earthworm communities of each group. Significant dissimilarities 552 

between groups were assessed by PERMANOVA. Pseudo-F values and associated P-values 553 

are indicated. Ellipses correspond to groups (BER-PNG = pseudo-natural grassland soils 554 

nearby basic engineered roadside soils; BER-LI = lightly isolated basic engineered roadside 555 

soils; BER-HI = highly isolated basic engineered roadside soils; AER-PNG = pseudo-natural 556 

grassland soils nearby advanced engineered roadside soils; AER-LI = lightly isolated 557 

advanced engineered roadside soils; AER-HI = highly isolated advanced engineered roadside 558 

soils).   559 
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TABLES 560 

Table 1 Effects of soil engineering and soil isolation on earthworm communities. Values are mean ± standard deviation. F-values and 561 

P-values from Anova type III were given for total abundance, total species richness, and evenness index (Eng = Engineering; Iso = 562 

Isolation). Different letters denote significant differences regarding the interaction Eng*Iso among groups, with a > b > c (post-hoc 563 

Tukey test results).  564 

   
Basic engineered  
roadside soils (BER) 

Advanced engineered  
roadside soils (AER) 

Light  
isolation 
(BER-LI,  
n = 10) 

High  
isolation 
(BER-HI,

  
n = 5) 

Light  
isolation 
(AER-LI, 
 n = 7) 

High  
isolation 
(AER- 
HI, n = 7) 

Eng 
Anova p-value 

Iso 
Anova p-value 

Eng * Iso 

Anova p-value 
Total abundance (ind.m

-2

) 327 ± 104 ab 340 ± 181 ab 538 ± 239 a 153 ± 92 b F = 0.0 0.848 F = 9.5 0.005 F = 10.8 0.003 
Total species richness 4.6 ± 0.5 b 4.4 ± 1.1 bc 6.7 ± 1.0 a 3.1 ± 1.1 c F = 1.6 0.221 F = 30.5 9.6e-06 F = 24.4 4.4e-06 
Evenness index 0.5 ± 0.1 b 0.7 ± 0.1 ab 0.8 ± 0.1 a 0.6 ± 0.2 ab F = 3.5 0.073 F = 0.3 0.570 F = 10.3 0.004 
  565 
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Table 2 Effects of soil engineering and soil isolation on earthworm abundance per ecological categories. Values are mean ± standard 566 

deviation. K-values and P-values from Kruskal-Wallis test were given for epigeic, epi-anecic, strict-anecic, and endogeic abundance. 567 

Different letters denote significant differences among groups with a > b (post-hoc Dunn test results). 568 

   
Basic engineered  
roadside soils (BER) 

Advanced engineered  
roadside soils (AER) 

Light isolation 
(BER-LI, n = 10) 

High isolation 
(BER-HI, n = 5) 

Light isolation 
(AER-LI, n = 7) 

High isolation 
(AER-HI, n = 7) Kruskal-Wallis p-value 

Epigeic abundance (ind.m
-2

) 6 ± 5 b 28 ± 31 ab 50 ± 69 a 0 ± 0 b K = 12.9 0.005 
Epi-anecic abundance (ind.m

-2

) 1 ± 3 b 0 ± 0 b 28 ± 40 a 2 ± 2 b K = 15.8 0.001 
Strict-anecic abundance (ind.m

-2

) 41 ± 33 a 60 ± 57 a 38 ± 37 a 0 ± 0 b K = 15.1 0.002 
Endogeic abundance (ind.m

-2

) 280 ± 96 a 252 ± 122 ab 422 ± 157 a 151 ± 92 b K = 11.6 0.009 
 569 




