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Abstract In a discrete time setting, we study the central problem of giving a
fair price to some financial product. This problem has been mostly treated using
martingale measures and no-arbitrage conditions. We propose a different approach
based on convex duality instead of martingale measures duality: The prices are
expressed using Fenchel conjugate and bi-conjugate without using any no-arbitrage
condition. The super-hedging problem resolution leads endogenously to a weak
no-arbitrage condition called Absence of Instantaneous Profit (AIP) under which
prices are finite. We study this condition in detail, propose several characterizations
and compare it to the usual no-arbitrage condition NA.
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Conditional support · Essential supremum.
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1 Introduction

Giving a fair price to a financial asset G is a major question in the economic and
financial theory. A selling price should be an amount which is enough to initiate
a hedging strategy for G, i.e., a strategy whose value at maturity is always above
G. It seems also natural to ask for the infimum of such amount. This is the so
called super-replication price and it has been introduced in the binomial setup for
transaction costs by [5]. Characterizing and computing the super-replication price
has become one of the central issue in the mathematical finance theory, see, [24],
[14] and the references therein. It has mainly be addressed assuming that some
no arbitrage condition holds true. Roughly speaking, this condition means that
we cannot hope to make a profit without taking some risk. This condition has a
good mathematical characterization in terms of existence of martingale measures,
which is called the fundamental theorem of asset pricing (FTAP in short). The
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and Laboratoire de Mathématiques de Reims, UMR9008 CNRS et Université de Reims
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Maréchal De Lattre De Tassigny, 75775 Paris cedex 16, France.
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FTAP was initially formalised in [17, 18, 25], while [9] established it in a general
discrete-time setting, and [10] did so in continuous-time models. The literature on
the subject is vast, and we refer to [11, 14] for a general overview. The FTAP is
essential for pricing issues as it allows the characterisation of the super-replication
price using the martingale measures. This is the so called dual formulation of the
super-replication price or superhedging theorem. We refer to [33] and [13] and the
references therein. In more recent years, a parallel theory has been developed in
continuous-time based on the no-arbitrage condition named No Unbounded Profit
with Bounded Risk and which allows for super-replication prices based on deflators
rather than martingale measures, see [12] and [20].

In this paper, a discrete time model without frictions is considered where all
the no-arbitrage conditions are equivalent. So, from now on, we call it NA. Our
goal is to compute a super-hedging (or super-replicating) prices of a European
claim without assuming any normative condition such as NA on the financial
market. To do so, we analyse from scratch the set of super-hedging prices and
its infimum value which will be called the infimum super-hedging cost. Instead of
the usual financial duality based on martingale measures under NA, we compute
the super-hedging cost using convex duality without postulating any condition
on the market. Indeed, we express the one-step set of super-hedging prices using
Fenchel-Legendre conjugate and the infimum super-replication cost is obtained
by the Fenchel-Legendre biconjugate. To do so, we use the notion of conditional
essential supremum and, through measurable selection techniques, we prove that
the conditional essential supremum of a function of a random variable Y is equal
to the usual supremum of the function evaluated on the conditional support of Y
(see Proposition 2.7).

The pricing formula that we obtain (see (2.10)) shows that, if 0 does not
belong to the convex hull of the conditional support of the price increment, then
the super-hedging cost is equal to −∞. To exclude this unrealistic possibility we
postulate the condition of Absence of Instantaneous Profit (AIP). So AIP condition
is indeed the minimal requirement in order to get a financial market where pricing
is possible. The AIP is very weak : If the initial information is trivial, a one period
instantaneous profit is a strategy starting from 0 and leading to a terminal wealth
larger than some strictly positive constant. So the adjective instantaneous means
that the gain is realized at time 0. The AIP condition is easy to check in practice :
it suffices to verify that the cost of some non negative Call option is non negative.

As the set of payoffs that may be super-replicated from 0 is not closed under
AIP, we introduce an asymptotic version of the AIP condition called Absence of
Weak Instantaneous Profit (AWIP) in the spirit of the No Free Lunch condition.
We show that NA implies AWIP which implies AIP but that the reverse implica-
tions may not hold true. We also show that AWIP is equivalent to the existence
of absolutely continuous martingale measures.

Assuming AIP, we obtain that the one-step infimum super-hedging cost is finite
and is the concave envelop of the payoff relatively to the convex envelop of the
conditional support. Fenchel-Legendre duality have already been used to obtain
a dual representation of the super-replication price thanks to deflators (see [28,
Exemple 4.2] and [29, Theorem 10 and Corollary 15]). In [29, Theorem 10] the
result is shown under the assumption that the set of claims that can be super-
replicated from 0 is closed, which holds true under NA. Here, our approach is
different as we do not postulate any no-arbitrage assumptions on the market and
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we do not seek for a dual representation of the super-hedging price. So, our main
result shows that NA is not necessary to solve the super-hedging problem and
that AIP is the condition that ensures finite prices. Moreover, we show that if a
market satisfies AIP and is extended with a contingent claim priced with its super-
replication cost, the extended market is still AIP free. This is not true changing
AIP with NA as soon as the market is incomplete. Note that AIP condition is
tailor made for pricing issues but is not sufficient to solve the problem of expected
utility maximization, where NA is required to obtain a well-posed problem.

The paper is organized as follows. In Section 2, we study the one-period frame-
work while in Section 3 we study the multi-period one. The proofs of technical
results are postponed to the appendix.

In the remaining part of this introduction, we present our framework and
notations. Let (Ω, (Ft)t∈{0,...,T}FT , P ) be a complete filtered probability space,
where T is the time horizon. For any σ-algebra H and any k ≥ 1, we denote by
L0(Rk,H) the set of H-measurable and Rk-valued random variables. We consider
a non-negative process S := {St, t ∈ {0, . . . , T}} such that St ∈ L0(Rd,Ft) for all
t ∈ {0, . . . , T}. The vector St represents the prices at time t of d risky assets in
the financial market of consideration. Trading strategies are given by processes
θ := {θt, t ∈ {0, . . . , T − 1}} such that θt ∈ L0(Rd,Ft) for all t ∈ {0, . . . , T − 1}.
The vector θt represents the investor’s holding in the d risky assets between times
t and t + 1. We assume that trading is self-financing and that the riskless asset’s
price is a constant equal to 1. The value at time t of a portfolio θ starting from
initial capital x ∈ R is then given by

V x,θt = x+
t∑

u=1

θu−1∆Su,

where ∆Su = Su − Su−1 for u ≥ 1 and xy is the scalar product of x and y.

2 The one-period framework

Let H and F be two complete sub-σ-algebras of FT such that H ⊆ F and which
represent respectively the initial and the final information. Let y ∈ L0(Rd,H) and
Y ∈ L0(Rd,F) be two non-negative random variables. They represent the initial
and the final prices of the d risky assets. We also consider a contingent claim
Z ∈ L0(R,F). We will be particularly interested by derivatives on Y i.e., Z = g(Y )
with g : Ω ×Rd → R and g(Y ) : ω 7→ g(Y )(ω) = g(ω, Y (ω)).
The objective of the section is to obtain a characterization of P(Z) the one-step set
of super-hedging (or super-replicating) prices of Z and of its infimum value. The
setting will be applied in Section 3 with the choices H = Ft, F = Ft+1, Y = St+1

and y = St.

Definition 2.1. The set P(Z) of super-hedging prices of the contingent claim Z ∈
L0(R,F) consists in the initial values of super-hedging strategies θ

P(Z) = {x ∈ L0(R,H), ∃ θ ∈ L0(Rd,H), x+ θ(Y − y) ≥ Z a.s.}.

The infimum super-hedging cost of Z is defined by p(Z) := ess infP(Z).

When Z = g(Y ) we write P(g) = P(Z) and p(g) = p(Z).
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The notions of essential infimum and, more generally, conditional essential
infimum, denoted by ess infH, and conditional essential supremum, denoted by
ess supH, are at the heart of this study and are defined in Proposition 2.5 below.
We also use the notion of conditional support of Y, denoted by suppHY, which is
introduced in Definition 2.2 below. In Section 2.2, we derive the characterization
of the super-hedging prices and cost from the following steps :

1. Observe that the set of super-hedging prices can be rewritten using a condi-
tional essential supremum (see (2.5) and (2.7)).

2. Under mild conditions, show that the conditional essential supremum of a
function of Y is equal to the usual supremum of the function evaluated on the
random set suppHY (see Proposition 2.7).

3. When Z = g(Y ), recognize that a super-hedging price can be written using a
Fenchel-Legendre conjugate (see (2.8)).

4. Take the essential infimum of the set of super-hedging prices and go through
the steps 2. and 3. to recognize the Fenchel-Legendre biconjugate (see (2.10)).

5. Use the classical convex biconjugate theorem to evaluate the infimum super-
hedging cost.

With this pricing formula in hand (see (2.10)) the Absence of Instantaneous Profit
(AIP) condition appears as the necessary and sufficient condition to get finite
super-hedging costs. In Section 2.3, we develop the concept of AIP and propose
several characterizations of the AIP condition. In Section 2.4 we compare it with
the classical no-arbitrage condition NA.

2.1 Conditional support and conditional essential infimum

This section is the toolbox of the paper. The proofs are postponed to the appendix.
We recall some results and notations that will be used without further references
in the rest of the paper. Let h : Ω × Rd → R. The effective domain of h(ω, ·) is
defined by

domh(ω, ·) := {x ∈ Rd, h(ω, x) <∞}

and h(ω, ·) is proper if dom h(ω, ·) 6= ∅ and h(ω, x) > −∞ for all x ∈ Rd. Next, if h
is H-normal integrand (see Definition 14.27 in [31]) then h is H⊗B(Rd)-measurable
and is lower semi-continuous (l.s.c. in the sequel, see [31, Definition 1.5]) in x and
the converse holds true if H is complete for some measure, see [31, Corollary 14.34].
Note that if z ∈ L0(Rd,H) and h is H⊗ B(Rd)-measurable, then h(z) ∈ L0(R,H).
A random set K : Ω � Rd is H-measurable if for all open set O of Rd, the subset
{ω ∈ Ω, O ∩ K(ω) 6= ∅} ∈ H. If K is a H-measurable and closed-valued random
set of Rd, then K admits a Castaing representation (ηn)n∈N (see [31, Theorem
14.5 ]). This means that K(ω) = cl{ηn(ω), n ∈ N} for all ω ∈ domK := {ω ∈
Ω, K(ω) ∩Rd 6= ∅} where the closure is taken in Rd.

We introduce the conditional support of X ∈ L0(Rd,F) with respect to H.

Definition 2.2. Let µ be a H-stochastic kernel i.e., for all ω ∈ Ω, µ(·, ω) is a proba-

bility measure on B(Rd) and µ(A, ·) is H-measurable for all A ∈ B(Rd). We define the

random set Dµ : Ω � Rd by

Dµ(ω) :=
⋂{

A ⊂ Rd, closed, µ(A,ω) = 1
}
. (2.1)
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For ω ∈ Ω, Dµ(ω) ⊂ Rd is called the support of µ(·, ω). Let X ∈ L0(Rd,F), we denote

by suppHX the set defined in (2.1) when µ(A,ω) = P (X ∈ A|H)(ω) is a regular

version of the conditional law of X knowing H. The random set suppHX is called the

conditional support of X with respect to H.

Remark 2.3. When H is the trivial sigma-algebra, suppHX is just the usual
support of X (see p 441 of [1]). Theorems 12.7 and 12.14 of [1] show that P (X ∈ .|H)
admits a unique support suppHX ⊂ Rd such that P (X ∈ suppHX|H) = 1 a.s. i.e.,
suppHX is a.s. non-empty.
For simplicity we will assume that Y (ω) ∈ suppHY (ω) for all ω ∈ Ω. Moreover, as
0 ≤ Y <∞, Dom supp HY = Ω.

Lemma 2.4. Let µ be as in Definition 2.2. Dµ is non-empty, closed-valued and H-

measurable.

It is possible to incorporate measurability in the definition of the essential
supremum (see [22, Section 5.3.1] for the definition and the proof of existence of
the classical essential supremum). This has been done by [3] for a single real-valued
random variable and by [23] for a family of vector-valued random variables and
with respect to a random partial order (see [23, Definition 3.1 and Lemma 3.9]).
Proposition 2.5 is given and proved for sake of completeness and for pedagogical
purpose. The authors thanks T. Jeulin who suggested this (elegant) proof.

Proposition 2.5. Let H and F be complete σ-algebras such that H ⊆ F and let

Γ = (γi)i∈I be a family of real-valued F-measurable random variables. There exists a

unique H-measurable random variable γH ∈ L0(R ∪ {∞},H), denoted by ess supHΓ,
which satisfies the following properties

1. For every i ∈ I, γH ≥ γi a.s.

2. If ζ ∈ L0(R ∪ {∞},H) satisfies ζ ≥ γi a.s. ∀i ∈ I, then ζ ≥ γH a.s.

The conditional essential infimum ess infHΓ is defined symmetrically.

Proof of Proposition 2.5. Considering the homeomorphism arctan we can restrict
our-self to γi taking values in [0, 1]. We denote by Pγi|H a regular version of the

conditional law of γi knowing H. Let ζ ∈ L0(R ∪ {∞},H) such that ζ ≥ γi a.s.
∀i ∈ I. This is equivalent to Pγi|H(]−∞, x])|x=ζ = 1 a.s. and suppHγi ⊂]−∞, ζ]
a.s. follows from Definition 2.2. Let

Λγi|H = sup{x ∈ [0, 1], x ∈ suppHγi}. (2.2)

Then Λγi|H ≤ ζ a.s. and it is easy to see that Λγi|H is H-measurable. So taking the
classical essential supremum, we get that ess sup{Λγi|H, i ∈ I} ≤ ζ a.s. and that
ess sup{Λγi|H, i ∈ I} isH-measurable. We conclude that γH = ess sup{Λγi|H, i ∈ I}
a.s. since for every i ∈ I, P (γi ∈ suppHγi|H) = 1 (see Remark 2.3). 2

Lemma 2.6. Assume that d = 1 and consider X ∈ L0(R,F). Then, we have a.s. that

ess infHX = inf suppHX, ess supHX = sup suppHX,

ess infHX ∈ suppHX on the set {ess infHX > −∞},
ess supHX ∈ suppHX on the set {ess supHX <∞},

convsuppHX = [ess infHX, ess supHX] ∩R, (2.3)

where convsuppHX is the convex envelop of suppHX i.e., the smallest convex set that

contains suppHX.
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The following proposition is one of the main ingredient of the paper. It extends
the fact that ess supHX = supx∈suppHX x a.s. (see (2.2)) and allows to compute a
conditional essential supremum as a classical supremum but on a random set. A
generalization is given in [26], see e.g. [27].

Proposition 2.7. Let X ∈ L0(Rd,F) be such that dom suppHX = Ω and let h :
Ω ×Rd → R be a H⊗ B(Rd)-measurable function which is l.s.c. in x. Then,

ess supHh(X) = sup
x∈suppHX

h(x) a.s. (2.4)

2.2 Fenchel-Legendre conjugate and bi-conjugate to express super-replication
prices and cost

We are now in position to perform the program announced in the beginning of the
section. Let Z ∈ L0(R,F). As x ∈ P(Z) if and only if there exists θ ∈ L0(Rd,H)
such that x ≥ Z − θ(Y − y) a.s., we get by definition of the conditional essential
supremum (see Proposition 2.5) that

P(Z) =
{

ess supH (Z − θ(Y − y)) , θ ∈ L0(Rd,H)
}

+ L0(R+,H), (2.5)

p(Z) = ess inf
{

ess supH (Z − θ(Y − y)) , θ ∈ L0(Rd,H)
}
. (2.6)

In the case where Z = g(Y ) we are able to perform an explicit computation
of p(Z). To do so we recall that the (upper) closure h of h is the smallest u.s.c.
function which dominates h, i.e., h(x) = lim supy→x h(y). The lower closure is
defined symmetrically.

Theorem 2.8. The set P(g) of Definition 2.1 can be express as follows

P(g) =
{

ess supH (g(Y )− θY ) + θy, θ ∈ L0(Rd,H)
}

+ L0(R+,H). (2.7)

Suppose that g is a H-normal integrand. Then, for θ ∈ L0(Rd,H), we get that

ess supH (g(Y )− θY ) = sup
z∈suppHY

(g(z)− θz) = f∗(−θ) a.s. (2.8)

where f and f∗, its Fenchel-Legendre conjugate, are given by

f(ω, z) = −g(ω, z) + δsuppHY (ω)(ω, z)

f∗(ω, x) = sup
z∈Rd

(xz − f(ω, z)) , (2.9)

and δC(ω)(ω, z) = 0 if z ∈ C(ω) and +∞ else. Moreover suppose that g is proper and

that there exists some concave function ϕ such that g ≤ ϕ <∞ on convsuppHY
1. We

have that a.s.

p(g) = −f∗∗(y) = conc(g, suppHY )(y)− δconvsuppHY (y) (2.10)

= inf {αy + β, α ∈ Rd, β ∈ R, αx+ β ≥ g(x), ∀x ∈ suppHY } − δconvsuppHY (y),

1 This is equivalent to assume that there exists α, β ∈ R, such that g(x) ≤ αx + β for all
x ∈ convsuppHY .
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where f∗∗ is the Fenchel-Legendre biconjugate of f, i.e., f∗∗(ω, x) = supz∈Rd (xz − f∗(ω, z))
and the relative concave envelop of g with respect to suppHY is given by

conc(g, suppHY )(x) = inf{v(x), v is concave and v(z) ≥ g(z), ∀z ∈ suppHY }.

Notice that the infimum super-hedging cost is not a priori a price, i.e., an
element of P(g), as the later may be an open interval. Note also that [7] and
[4] have represented the super-hedging price as a concave envelop but this was
formulated under the no-arbitrage condition using the dual representation of the
super-replication price through martingale measures.

Remark 2.9. Fenchel-Legendre duality have already been used many times in fi-
nancial mathematics. In particular, Pennanen obtains a dual representation of the
super-replication price thanks to deflators (see [28, Example 4.2] and [29, Theorem
10 and Corollary 15]). The proof of [29, Theorem 10] is also based on the (convex)
biconjugate theorem but the result is shown under the assumption that the set R
of claims that can be super-replicated from 0 (see (2.14)) is closed, which holds
true under the no-arbitrage condition NA. In [30], the existence and the absence
of duality gap in a general stochastic optimization problem is proved through dy-
namic programming and under a condition (that does not rely on inf-compactness)
of linearity on sets constructed with recession functions. This condition in classi-
cal mathematical finance problems is equivalent to the no-arbitrage condition (see
[30, Exemple 1]). Our approach is different as we do not postulate any assumption
on the market and we obtain from the biconjugate representation a formula for
the infimum super-hedging cost (see (2.10)). We then deduce the condition under
which the market prices are finite (see Proposition 2.11). Importantly, our goal is
not to obtain a dual representation thanks to deflator or martingale measures.

Proof of Theorem 2.8. First (2.7) follows from (2.5). Lemma 2.4 will be in
force. Under the assumption that g is a H-normal integrand, (2.8) follows from
Proposition 2.7. Under the additionnal assumptions that g is proper and that there
exists some concave function ϕ such that g ≤ ϕ < ∞ on convsuppHY , we show
first that conv f satisfies (2.11) below and is proper, where conv f is the convex
envelop of f i.e., the greatest convex function dominated by f. It can be written
as follows (see [31, Proposition 2.31])

conv f(x) = inf
{∑n

i=1 λif(xi), n ≥ 1, (λi)i∈{1,...,n} ∈ Rn+, (xi)i∈{1,...,n} ∈ Rd×n,

x =
∑n
i=1 λixi,

∑n
i=1 λi = 1

}
.

Let x =
∑n
i=1 λixi for some n ≥ 1, (λi)i∈{1,...,n} ∈ Rn+ such that

∑n
i=1 λi = 1 and

(xi)i∈{1,...,n} ∈ Rd×n. Assume that x /∈ convsuppHY . Then (see [31, Proposition
2.27, Theorem 2.29]), there exists at least one xi /∈ suppHY and f(xi) = +∞ and
also conv f(x) = +∞. If x ∈ convsuppHY , conv f(x) = −conc(g, suppHY )(x) by
definition. Moreover, for all x ∈ convsuppHY , x =

∑n
i=1 λixi, with n ≥ 1 and

(λi)i∈{1,...,n} ∈ Rn+, and (xi)i∈{1,...,n} ⊂ suppHY such that
∑n
i=1 λi = 1, we have

conc(g, suppHY )(x) ≥
n∑
i=1

λiconc(g, suppHY )(xi) ≥
n∑
i=1

λig(xi) > −∞.
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Moreover, conc(g, suppHY ) ≤ ϕ <∞ on convsuppHY. Thus, for all x ∈ convsuppHY ,
conc(g, suppHY )(x) ∈ R and one may write that

conv f = −conc(g, suppHY ) + δconvsuppHY a.s. (2.11)

As convsuppHY is non-empty, conv f is proper and [31, Theorem 11.1] implies
that f∗ is proper, l.s.c and convex and that f∗∗(y) = conv f(y). Moreover, using
Lemma 4.2, f∗(ω, x) = supz∈suppHY (ω) (xz + g(ω, z)) is H⊗B(Rd)-measurable. We
obtain that a.s.

p(g) = ess inf{f∗(−θ) + θy, θ ∈ L0(Rd,H)} = −ess sup{θy − f∗(θ), θ ∈ L0(Rd,H)},

using (2.7). Assume for a moment that

ess sup{θy − f∗(θ), θ ∈ L0(Rd,H)} = sup
z∈Rd

(
zy − f∗(z)

)
a.s. (2.12)

is proved. Then (2.11) implies that

p(g) = −f∗∗(y) = −conv f(y) = conc(g, suppHY )(y)− δconvsuppHY (y) a.s.

and the equality below (2.10) follows easily.

For any z ∈ Rd, ess sup{θy − f∗(θ), θ ∈ L0(Rd,H)} ≥ zy − f∗(z) a.s. and
ess sup{θy − f∗(θ), θ ∈ L0(Rd,H)} ≥ supz∈Rd (zy − f∗(z)) a.s. follows.

Conversely, for all θ ∈ L0(Rd,H), we have θy − f∗(θ) ≤ supz∈Rd (zy − f∗(z)) a.s.

If supz∈Rd (zy − f∗(z)) is H-measurable, (2.12) holds true. As f∗ is H ⊗ B(Rd)-
measurable, graph dom f∗ = {(ω, x) ∈ Ω × Rd, f∗(ω, x) < ∞} ∈ H ⊗ B(Rd) and
dom f∗ is H-measurable (see [31, Theorem 14.8]). As f∗ is proper, domf∗(ω, ·) 6= ∅.
By measurable selection argument, we obtain the existence of a H-measurable
selector a such that a ∈ dom(f∗) a.s.

On dom(f∗) = {a}, we have supz∈Rd (zy − f∗(z)) = ay − f∗(a) which is H-
measurable. Otherwise, on dom(f∗) 6= {a}, ri dom(f∗) 6= ∅ and z 7→ zy − f∗(z) is
concave hence continuous on this set and we show below that a.s.

sup
z∈Rd

(
zy − f∗(z)

)
= sup

z∈ri domf∗

(
zy − f∗(z)

)
= sup
z∈Γ̂

(
zy − f∗(z)

)
(2.13)

where Γ̂ is a countable H-measurable dense subset of Rd. So supz∈Rd (zy − f∗(z))
is H-measurable, which allows to conclude. Let us prove (2.13). The first equality
is classical (see for example Lemma A.32 of [6]). As dom(f∗) is H-measurable so
is its affine hull H (see [31, Exercice 14.12]). Let (qn)n≥1 be a dense subset of Rd
and let us denote by pH(qn) the projection of qn onto H, n ≥ 1. By [31, Exercice
14.17], pH(qn) is H-measurable for all n ≥ 1 and it is well known that (pH(qn))n≥1

is dense in H. So any z ∈ ri dom(f∗) ⊆ H is the limit of a countable (with ran-
dom index) family (zn)n≥1, which is a subfamily of the larger countable family

Γ̂ (·) = (pH(qn)(·))n≥1. By continuity on the relative interior, we then deduce
that supz∈ri domf∗ (zy − f∗(z)) ≤ supz∈Γ̂ (zy − f∗(z)) hence the second equality in
(2.13) holds by the first one. 2



Pricing without no-arbitrage condition 9

2.3 The AIP condition

Theorem 2.8 shows that if y /∈ convsuppHY the infimum super-hedging cost of
a European claim p(g) equals −∞. Avoiding this situation leads to the notion
of absence of instantaneous profit that we present now. Let R be the set of all
F-measurable claims that can be super-replicate from 0:

R :=
{
θ(Y − y)− ε+, θ ∈ L0(Rd,H), ε+ ∈ L0(R+,F)

}
. (2.14)

Then

P(0) = {x ∈ L0(R,H), ∃ θ ∈ L0(Rd,H), x+ θ(Y − y) ≥ 0 a.s.} = (−R) ∩ L0(R,H).

Note that 0 ∈ P(0), so p(0) ≤ 0. We say that there is an instantaneous profit when
P (p(0) < 0) > 0 i.e., if it is possible to super-replicate the contingent claim 0 at a
negative super-hedging price.

Definition 2.10. There is an instantaneous profit (IP) if P (p(0) < 0) > 0. On the

contrary case if p(0) = 0 a.s. we say that the Absence of Instantaneous Profit (AIP)

condition holds.
We know propose several characterisations of the AIP condition.

Proposition 2.11. AIP holds if and only if one of the following condition holds true.

1. y ∈ convsuppHY a.s. or 0 ∈ convsuppH(Y − y) a.s.

2. σsuppH(Y−y) ≥ 0 a.s. where σD(z) = supx∈D(−xz) is the support function of −D
3. P(0) ∩ L0(R−,H) = {0} or R∩ L0(R+,H) = {0}.

By the third statement above, we see that X is an instantaneous profit if
X ∈ L0(R+,H)\{0} and if there exists some θ ∈ L0(Rd,H) such that θ(Y −y) ≥ X.
The term instantaneous means that the profit is realized at t = 0 since X is H-
measurable, see also Remark 2.13.

Remark 2.12. In the case d = 1, (2.3) implies that the previous conditions are
equivalent to y ∈ [ess infHY, ess supHY ] ∩R a.s.

Remark 2.13. The AIP condition is tailor-made for pricing purposes. It allows to
give a finite super-hedging cost even in case of arbitrage opportunity (see Example
2.24 below). Note that an IP is a very strong strategy. Assume that H is trivial,
then an IP corresponds to some θ ∈ Rd such that θ(Y −y) ≥ c for some deterministic
constant c > 0. Set p0 = −c, p0 is a super-hedging price that allows to get the
zero payoff at time 1, i.e., p0 + θ(Y − y) ≥ 0 a.s. It is clear that 2p0 is still a
super-hedging price for the zero claim using the strategy 2θ. As

p0 + 2θ(Y − y) = 2p0 + 2θ(Y − y) + (−p0) ≥ c,

it is indeed possible to get a terminal portfolio value larger than a deterministic
strictly positive quantity.

Proof of Proposition 2.11. The assumptions of Theorem 2.8 are satisfied for
g = 0 and we get that p(0) = −δconvsuppHY (y) a.s. Hence, AIP holds true if and
only if y ∈ convsuppHY a.s. or equivalently 0 ∈ convsuppH(Y − y) a.s. and AIP is
equivalent to 1. Using Theorem 2.8, we get that

P(0) =
{

ess supH (−θ(Y − y)) , θ ∈ L0(Rd,H)
}

+ L0(R+,H).
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Proposition 2.7 implies that for θ ∈ L0(Rd,H),

ess supH (−θ(Y − y)) = sup
x∈suppH(Y−y)

(−θx) = σsuppH(Y−y)(θ).

So, P(0) ∩ L0(R−,H) = {0} if and only if σsuppH(Y−y) ≥ 0 a.s. and 2. and 3.
are equivalent. To finish the proof, it remains to prove that 2. is equivalent to 1.
First remark that σsuppH(Y−y) = σconvsuppH(Y−y). So, it remains to prove that,

for any closed convex set D of Rd, σD ≥ 0 if and only if 0 ∈ D. If 0 ∈ D it is
clear that σD ≥ 0. Assume that 0 /∈ D. Then, by Hahn-Banach theorem, there
exists some β > 0 and some θ0 ∈ Rd \ {0} such that −xθ0 ≤ −β for all x ∈ D and
σD(θ0) ≤ −β < 0 follows. 2

Corollary 2.14. The AIP condition holds true if and only if p(g) ≥ 0 a.s. for some

non-negative H-normal integrand g such that there exists some concave function ϕ

verifying that g ≤ ϕ <∞.

In particular, the AIP condition holds true if and only if the infimum super-
hedging cost of some European call option is non-negative. Note that, under AIP,
the price of some non-zero payoff call option may be zero, see Example 2.24 below
and [32].

Proof of Corollary 2.14. Assume AIP holds true. Then, by Definition 2.10, we get
that p(0) = 0 a.s. As g ≥ 0, it is clear that p(g) ≥ p(0) = 0 a.s. Conversely, assume
that there exists an IP and let g be some non-negative H-normal integrand such
that there exists some concave function ϕ verifying that g ≤ ϕ < ∞, Proposition
2.11 leads to P (y ∈ convsuppHY ) < 1 and, since conc(g, suppHY )(y) ≤ ϕ < ∞,
(2.10) implies that P (p(g) = −∞) > 0. The converse is proved. 2

2.4 Comparison between AIP and NA

Definition 2.15. The no-arbitrage (NA) condition holds true if θ(Y − y) ≥ 0 a.s. for

some θ ∈ L0(Rd,H) implies that θ(Y−y) = 0 a.s. or equivalently R∩L0(R+,F) = {0}.

Recall that in discrete time financial models without frictions, NA is equivalent
to other definitions of no-arbitrage used in the literature: the No Unbounded Profit
with Bounded Risk (NUPBR), the No Arbitrage of First Kind (NA1), the No free
Lunch with Vanishing Risk (NFLVR) and the No Unbounded Increasing Profit
(NUIP), see [11], [21], [20], [15] and Remark 2.3 in [16]. So, we only have to
compare AIP to NA.

Lemma 2.16. The NA condition implies AIP and the reverse may not hold true.

Proof of Lemma 2.16. Assume that there exists an instantaneous profit i.e.,
some X ∈ L0(R+,H) such that P (X > 0) > 0 and some θ ∈ L0(Rd,H) such
that θ(Y − y) ≥ X. Then, the strategy θ leads clearly to an arbitrage opportunity
according to NA. On the contrary, AIP may hold while NA fails. Fix d = 1,
H = {∅, Ω}, y = 0 and Y follows an uniform distribution on [0, 1]. Then P (Y − y >
0) = 1 and the constant strategy equal to 1 leads to an arbitrage opportunity.
Nevertheless y = 0 ∈ convsuppHY = [0, 1] and AIP holds true. 2

We now provide a necessary and sufficient condition for the equivalence between
AIP and NA.
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Proposition 2.17. AIP and NA are equivalent if and only if

0 ∈ convsuppH(Y − y) a.s.⇔ 0 ∈ ri (convsuppH(Y − y)) a.s. (2.15)

This last condition is satisfied if

P (0 /∈ convsuppH(Y − y) \ ri (convsuppH(Y − y))) = 1. (2.16)

Proof of Proposition 2.17. Proposition 2.11 shows that AIP is equivalent to 0 ∈
convsuppH(Y − y) a.s. On the other hand, [19, Theorem 3g)] shows that NA is
equivalent to 0 ∈ ri (suppH(Y − y)) a.s. So AIP is equivalent to NA if and only if
(2.15) holds true. This last condition is implied by (2.16). 2

Remark 2.18. The proof of Proposition 2.17 when d = 1 enlightens the difference
between AIP and NA and is given for pedagogical purpose. Assume that AIP
holds true and that P (ess infHY = y) = P (ess supHY = y) = 0. Using Remark
2.12, y ∈ [ess infHY, ess supHY ] ∩ R a.s. Let θ ∈ L0(R,H) such that θ(Y − y) ≥ 0.
On the set {θ > 0} ∈ H, we have that Y ≥ y hence ess infHY ≥ y ≥ ess infHY . We
deduce that P (θ > 0) = 0. Similarly, we get that P (θ < 0) = 0. Finally θ = 0, NA
holds true and the proposition is proved as

convsuppH(Y − y) \ ri (convsuppH(Y − y)) = {ess infHY − y, ess supHY − y}.

We finish this section with the following interesting result: Contrary to NA, AIP
makes it possible to obtain super-hedging cost which are AIP free. We adopt the
definition and concepts of [14, Section 1]. Let Z ∈ L0(R,F) be a fixed contingent
claim and let p(Z) be defined in Definition 2.1. We show that if the initial market
(y, Y ), satisfying AIP, is extended with (p(Z), Z), we obtain a market which is
still free of instantaneous profits. We say that p(Z) is instantaneous profit-free,
in the spirit of [14, Definition 1.30] where the concept was introduced for the no-
arbitrage condition NA and the super-replication price. This problem naturally
arises in the models under NA but also, more generally, for other types of no-
arbitrage condition, as in [34].

As in Definition 2.10, AIP in the extended market holds true if pY,Z(0) = 0
where pY,Z(0) is the super-hedging cost of 0 in the extended market, i.e.,

pY,Z(0) =

ess inf
{
x ∈ L0(R,H), ∃α ∈ L0(R,H), θ ∈ L0(Rd,H), x+ α(Z − p(Z)) + θ(Y − y) ≥ 0 a.s.

}
.

Theorem 2.19. The AIP condition holds if and only if it holds true in the extended

market, i.e., the market with the additional asset (p(Z), Z).

Proof of Theorem 2.19. If the extended market satisfies AIP, then Proposition
2.11 implies that 0R2 ∈ convsuppH(Ŷ − ŷ) a.s. where ŷ = (y, p(Z)) and Ŷ = (Y,Z).
As

suppH(Ŷ − ŷ) ⊂ suppH(Y − y)× suppH(Z − p(Z)), (2.17)

0 ∈ convsuppH(Y −y) a.s. and the initial market satisfies AIP as well. Reciprocally,
suppose that the initial market satisfies AIP. Consider a super-hedging price x ∈
L0(R,H) in the extended market for the zero claim at time 1, i.e., such that
x + α(Z − p(Z)) + θ(Y − y) ≥ 0 a.s. where α ∈ L0(R,H) and θ ∈ L0(Rd,H). We
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show below that x ≥ 0 a.s. which will imply that pY,Z(0) = 0 and thus AIP holds
in the extended market. Let A1 = {α < 0} ∈ H. Then, a.s.(

x

−α + p(Z)
)

1A1 +
θ1A1

−α (Y − y) ≥ Z1A1 .

Let x̄ ∈ P(Z) and θ̄ ∈ L0(Rd,H) such that x̄+ θ̄(Y − y) ≥ Z a.s. Then, a.s.(
x̄1Ω\A1 +

(
x

−α + p(Z)
)

1A1

)
+

(
θ̄1Ω\A1 +

θ1A1

−α

)
(Y − y) ≥ Z,

x̄1Ω\A1 +
(
x
−α + p(Z)

)
1A1 ≥ p(Z) and we conclude that x ≥ 0 on {α < 0}.

On the set A2 = {α = 0} ∈ H, we have x1A2 + θ1A2(Y − y) ≥ 0 a.s. Therefore,
x1A2 ≥ p(0) = 0 since AIP holds true for the initial market defined only by (y, Y ).
We deduce that x ≥ 0 on {α = 0}.

At last, before analysing the problem on the set A3 = {α > 0} ∈ H, let
us recall that, as P(Z) is downward-directed, there exists zn ∈ P(Z), for all n
such that p(Z) = limn ↓ zn. Fix n > 0. Let kn = inf{k, zk < p(Z) + n−1}.
Then, by a measurable selection argument one may assume that kn ∈ L0(R,H).
Let rn =

∑
l≥0 z

l1{kn=l}. As {kn = l} ∈ H and zl ∈ P(Z), rn ∈ P(Z) and

rn + θn(Y − y) ≥ Z a.s. for some θn ∈ L0(Rd,H). Hence p(Z) ≤ rn ≤ p(Z) + n−1

and Z − p(Z) ≤ θn(Y − y) + n−1. Therefore, on the set A3, we have that a.s.

x

α
+ n−1 +

(
θn +

θ

α

)
(Y − y) ≥ x

α
+ (Z − p(Z)) +

θ

α
(Y − y) ≥ 0

and ( xα +n−1)1A3 ≥ p(0) = 0 as AIP holds for the initial market defined by (y, Y ).
Therefore, when n→∞, we deduce that x ≥ 0 on {α > 0}. The conclusion follows.
2

Corollary 2.20. Suppose that AIP holds. Then, p(Z) ∈ [ess infHZ, ess supHZ]∩R a.s.

Proof of Corollary 2.20. Suppose that AIP holds true. Then the extended mar-
ket i.e., the market with the additional asset (p(Z), Z) satisfies the AIP condition
by the theorem above. Thus (2.17) shows that 0 ∈ convsuppH(Z − p(Z)) a.s. and
Remark 2.12 implies that p(Z) ∈ [ess infHZ, ess supHZ] ∩R a.s. 2

Remark 2.21. Observe that Theorem 2.19 does not hold true in an incomplete
market for the super-replication price and NA. Indeed, let us consider a one step
incomplete market. Let Z ∈ L0(R,F) be a non replicable contingent claim. Then
[14, Theorem 1.32] implies that there exists θ ∈ Rd such that z+ θ(Y − y) ≥ Z a.s.
where z = inf{x ∈ R, ∃θ ∈ Rd, x+ θ(Y − y) ≥ Z a.s.} is the super-replication price
of Z. As Z is not replicable P (z + θ(Y − y) > Z) > 0 and θ(Y − y)− (Z − z) is a.s.
non negative and strictly positive with strictly positive probability. Therefore, NA
fails in the extended market ((y, Y ), (z, Z)).

2.5 Super-hedging cost under AIP

We now provide the characterization of the infimum super-hedging cost under the
AIP condition.
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Corollary 2.22. Suppose that AIP holds true. Let g be a proper H-normal inte-

grand such that there exists some concave function ϕ verifying that g ≤ ϕ < ∞ on

convsuppHY . Then, a.s.

p(g) = conc(g, suppHY )(y)

= inf {αy + β, α ∈ Rd, β ∈ R, αx+ β ≥ g(x), ∀x ∈ suppHY }.
(2.18)

If g is concave and u.s.c., p(g) = g(y) a.s.

Proof of Corollary 2.22. The two equalities are direct consequence of Theorem
2.8. If g is concave and u.s.c., the result is trivial. 2

We finish the one-period analysis with the computation of the infimum super-
hedging cost of a convex derivative when d = 1. In this case, the cost is in fact a
super-hedging price and we get the super-hedging strategy explicitly.

Corollary 2.23. Suppose that AIP holds true and that d = 1. Let g : R → R be a

non-negative convex function with dom g = R and limx→∞ x−1g(x) = M ∈ [0,∞),

then a.s.

p(g) = θ∗y + β∗ = g(ess infHY ) + θ∗ (y − ess infHY ) , (2.19)

θ∗ =
g(ess supHY )− g(ess infHY )

ess supHY − ess infHY
, (2.20)

where we use the conventions θ∗ = 0
0 = 0 in the case ess supHY = ess infHY a.s. and

θ∗ = g(∞)
∞ = M if ess infHY < ess supHY = +∞ a.s. Moreover, p(g) ∈ P(g).

Proof of Corollary 2.23. As g is convex, the relative concave envelop of g with
respect to suppHY is the affine function that coincides with g on the extreme
points of the interval convsuppHY and (2.19) and (2.20) follow from (2.18) and
Remark 2.12. Then using (2.18) and (2.19), we get that (recall that Y ∈ suppHY )

p(g) + θ∗(Y − y) = θ∗Y + β∗ ≥ g(Y ) a.s. (2.21)

and p(g) ∈ P(g) follows. 2

Example 2.24. We compute the price of a call option under AIP in the case d = 1.
Let G = g(Y ) = (Y −K)+ for some K ≥ 0.

– If K ≥ ess supHY then Y −K ≤ ess supHY −K and G = 0. As AIP condition
holds true, p(g) = p(0) = 0.

– If K ≤ ess infHY then Y −K ≥ ess infHY −K and G = Y −K. As g is concave
and u.s.c., p(g) = g(y) = y −K a.s.

– If ess infHY ≤ K ≤ ess supHY. Then, (2.20) and (2.19) imply that

p(g) =
ess supHY −K

ess supHY − ess infHY
(y − ess infHY )

on {ess supHY 6= ess infHY } and 0 else. So p(g) = 0 if and only if y = ess infHY
or ess supHY = ess infHY . A non-negative call option can have a zero price,
see also [32].

We finish with an example of computation for a call price under AIP when NA
fails. We assume a.s. that for y > 0, ess infHY = dy and ess supHY = uy for two
constants u and d. By Remark 2.12, AIP is equivalent to d ≤ 1 ≤ u. If (d = 1 and
u > 1) or (u = 1 and d < 1), AIP holds true but NA fails. Suppose that d = 1 and
u > 1. If K ≥ y, the super-replication price under AIP is zero and if K ≤ y, it is
y −K. The same holds true if u = 1 and d < 1.
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3 The multi-period framework

3.1 Multi-period super-hedging prices

For every t ∈ {0, . . . , T}, the set RTt of all claims that can be super-replicated from
the zero initial endowment at time t is defined by

RTt :=

{
T∑

u=t+1

θu−1∆Su − ε+T , θu−1 ∈ L0(Rd,Fu−1), ε+T ∈ L
0(R+,FT )

}
. (3.22)

The set of (multi-period) super-hedging prices and the (multi-period) infimum
super-hedging cost of some contingent claim gT ∈ L0(R,FT ) at time t are given
for all t ∈ {0, . . . , T}, by

PT,T (gT ) = {gT } and πT,T (gT ) = gT

Pt,T (gT ) = {xt ∈ L0(R,Ft), ∃R ∈ RTt , xt +R = gT a.s.} (3.23)

πt,T (gT ) = ess infPt,T (gT ).

As in the one-period case, it is clear that the infimum super-hedging cost is not
necessarily a price in the sense that πt,T (gT ) /∈ Pt,T (gT ) when Pt,T (gT ) is not
closed.

We now define a local version of super-hedging prices. The set of one-step
super-hedging prices of the payoff gt+1 ∈ L0(R,Ft+1) and it associated infimum
super-hedging cost are given by

Pt,t+1(gt+1) =
{
xt ∈ L0(R,Ft), ∃ θt ∈ L0(Rd,Ft), xt + θt∆St+1 ≥ gt+1 a.s.

}
πt,t+1(gt+1) = ess infPt,t+1(gt+1)

= ess inf
{

ess supFt
(gt+1 − θt∆St+1) , θt ∈ L0(Rd,Ft)

}
, (3.24)

see (2.6). In the following, we extend the definition of Pt,u(gu), u ≥ t+ 1, so that
the argument gu may be a subset Gu ⊆ L0(R,Fu). Precisely, we set Pt,u(Gu) =
∪gu∈Gu

Pt,u(gu). The following lemma makes the link between local and global
super-hedging prices. It also provides a dynamic programming principle, meaning
that the prices are time consistent.

Lemma 3.1. Let gT ∈ L0(R,FT ) and t ∈ {0, . . . , T − 1}. Then

Pt,T (gT ) = Pt,t+1(Pt+1,T (gT )) and πt,T (gT ) ≥ πt,t+1(πt+1,T (gT )).

Moreover, assume that πt+1,T (gT ) ∈ Pt+1,T (gT ). Then

Pt,T (gT ) = Pt,t+1(πt+1,T (gT )) and πt,T (gT ) = πt,t+1(πt+1,T (gT )).

Proof of Lemma 3.1. Consider xt ∈ Pt,T (gT ). Then, for all u ∈ {t, . . . , T − 1},
there exist θu ∈ L0(Rd,Fu) such that

xt + θt∆St+1 +
T∑

u=t+2

θu−1∆Su ≥ gT a.s.
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We deduce that xt+1 := xt + θt∆St+1 ∈ Pt+1,T (gT ). Moreover xt ∈ Pt,t+1(xt+1)
and xt ∈ Pt,t+1(Pt+1,T (gT )). Reciprocally, suppose that xt ∈ Pt,t+1(Pt+1,T (gT )),
i.e., xt ∈ Pt,t+1(xt+1) for some xt+1 ∈ Pt+1,T (gT ). Then, xt + θt∆St+1 ≥ xt+1 for

some θt ∈ L0(Rd,Ft) and xt+1 +
∑T
u=t+2 θu−1∆Su ≥ gT where θu ∈ L0(Rd,Fu)

for all u ≥ t+1. It follows that xt+
∑T
u=t+1 θu−1∆Su ≥ gT a.s. and xt ∈ Pt,T (gT ).

Let xt ∈ Pt,T (gT ) = Pt,t+1(Pt+1,T (gT )), then there exists θt ∈ L0(Rd,Ft) and
xt+1 ∈ Pt+1,T (gT ) such that

xt + θt∆St+1 ≥ xt+1 ≥ ess infPt+1,T (gT ) = πt+1,T (gT ) a.s.

Thus xt ∈ Pt,t+1(πt+1,T (gT )) and Pt,T (gT ) ⊂ Pt,t+1(πt+1,T (gT )). Moreover xt ≥
πt,t+1(πt+1,T (gT )) and the first statement follows. If πt+1,T (gT ) ∈ Pt+1,T (gT ),
then Pt,t+1(πt+1,T (gT )) ⊂ Pt,t+1(Pt+1,T (gT )) = Pt,T (gT ). 2

Remark 3.2. Under AIP, if at each step, πt+1,T (gT ) ∈ Pt+1,T (gT ) and if we
have that πt+1,T (gT ) = gt+1(St+1) for some “nice” Ft-normal integrand gt+1, we
will get from Corollary 2.22 that πt,T (gT ) = conc(gt+1, suppFt

St+1)(St) a.s., see
Remark 3.6 for a tangible example.

Note that the super-hedging problem is solved for general claims ξT through
the formula (3.24). For claims of Asian type g((Su)u≤T ) or of American type,
what we propose for European claims could be easily adapted. Consider a general
claim ξT and the natural filtration, i.e., the one generated by the price process S.
Then for any self-financing portfolio θ, VT = x+

∑T
t=1 θt−1∆St ≥ ξT if and only if

VT ≥ ξ̃T where ξ̃T = esssupFT
ξT . Thus ξT and ξ̃T have the same super-replication

cost and as ξ̃T is FT -measurable, it is of the form ξ̃T = g((Su)u≤T ). Of course,
in practice, it is necessary to have an idea about g but the same difficulty arises
under the NA condition.

3.2 Multi-period AIP

Definition 3.3. The AIP condition holds true if for all t ∈ {0, . . . , T}

Pt,T (0) ∩ L0(R−,Ft) = {0}.

We now study the link between global and local instantaneous profits. A global
(resp. local) instantaneous profit means that it is possible to super-replicate from
a negative cost at time t the claim 0 paid at time T (resp. time t + 1). The next
proposition shows that the local and global AIP conditions are equivalent in the
following sense.

Proposition 3.4. The following assertions are equivalent.

1. Pt,T (0) ∩ L0(R−,Ft) = {0} for all t ∈ {0, . . . , T − 1}, i.e., AIP.

2. Pt,t+1(0) ∩ L0(R−,Ft) = {0} for all t ∈ {0, . . . , T − 1}.
3. St ∈ convsuppFt

St+1 (or 0 ∈ convsuppFt
∆St+1) a.s. for all t ∈ {0, . . . , T − 1}.

4. σsuppFt
∆St+1

≥ 0 a.s. for all t ∈ {0, . . . , T − 1}.
5. πt,T (0) = 0 a.s. for all t ∈ {0, . . . , T − 1}.



16 Laurence Carassus, Emmanuel Lépinette

Proof of Proposition 3.4. For some fixed t ∈ {0, . . . , T − 1} we show that

Pt,T (0) ∩ L0(R−,Ft) = {0} ⇐⇒ πt,T (0) = 0. (3.25)

For the implication, note that πt,T (0) ≤ 0 is always true. Let xt ∈ Pt,T (0). Then

there exist θu ∈ L0(Rd,Fu) for u ≥ t such that xt+
∑T
u=t+1 θu−1∆Su ≥ 0 a.s. Thus

xt1xt<0+
∑T
u=t+1 θu−11xt<0∆Su ≥ 0 a.s. If P (xt < 0) > 0 then xt1xt<0 ∈ Pt,T (0)∩

L0(R−,Ft), a contradiction. Thus xt ≥ 0 a.s. and πt,T (0) = ess infPt,T (0) ≥ 0.
For the reverse implication let xt ∈ Pt,T (0) ∩ L0(R−,Ft). If P (xt < 0) > 0 then
xt1xt<0 ∈ Pt,T (0) and xt1xt<0 ≥ πt,T (0) = 0 a.s., a contradiction. Thus xt ≥ 0 a.s.
and xt = 0 a.s. follows.
It is clear that (3.25) implies that 1. is equivalent to 5. Now we show that 1. is
equivalent to 2. Suppose that 1. holds true. Then, πt+1,T (0) = 0 ∈ Pt+1,T (0) and
Lemma 3.1 implies that Pt,T (0) = Pt,t+1(πt+1,T (0)) = Pt,t+1(0). and 2. holds.
Reciprocally suppose that 2. holds true. Then, PT−1,T (0) ∩ L0(R−,FT−1) = {0}.
From (3.25) with t = T − 1 we get that πT−1,T (0) = 0 ∈ PT−1,T (0) and Lemma
3.1 implies that

PT−2,T (0) = PT−2,T−1(πT−1,T (0)) = PT−2,T−1(0) = L0([0,∞),FT−2).

It is trivial that L0([0,∞),FT−2) ⊂ PT−2,T−1(0). The same reasoning as in the
proof of the implication in (3.25) with PT−2,T−1(0) ∩ L0(R−,FT−2) = {0} proves
the reverse inclusion. It follows that PT−2,T (0)∩L0(R−,FT−2) = {0}. Using back-
ward induction, 1. holds true. By Proposition 2.11 and Definition 2.10, we conclude
that 3. and 4. are equivalent to 2. 2

3.3 Comparison with the NA condition

We first recall the classical multiperiod no-arbitrage (NA) condition.

Definition 3.5. The no-arbitrage (NA) condition holds true if for all t ∈ {0, . . . , T},

RTt ∩ L0(R+,FT ) = {0}.

It is easy to see that NA can also be formulated as follows : V 0,θ
T ≥ 0 a.s. implies

that V 0,θ
T = 0 a.s. Recall that the set of all super-hedging prices for the zero claim

at time t is given by Pt,T (0) = (−RTt )∩L0(R,Ft) (see (3.22) and (3.23)). It follows
that (see Definition 3.3)

AIP holds true⇔RTt ∩ L0(R+,Ft) = {0} for all t ∈ {0, . . . , T}. (3.26)

It is clear that NA implies AIP and, as already mentioned, the equivalence does
not hold true: The AIP condition is strictly weaker than the NA one.

Remark 3.6. It is possible to obtain the same computation schemes as in Propo-
sition 2.2 of [8] assuming only AIP and not NA. Suppose ess infFt−1

St = kdt−1St−1

a.s. and ess supFt−1
St = kut−1St−1 a.s. where S0, (kdt−1)t∈{1,...,T} and (kut−1)t∈{1,...,T}

are deterministic non-negative numbers. Then, AIP holds true if and only if
kdt−1 ∈ [0, 1] and kut−1 ∈ [1,+∞] for all t ∈ {1, . . . , T}. Assume that AIP holds
true, let h be a convex function and let H = h(ST ) be some European contingent
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claim. Then, the infimum super-hedging cost of H is the replication price of H
in the binomial model where St ∈ {kdt−1St−1, k

u
t−1St−1} a.s., for all t ∈ {1, . . . , T}.

This is proved in the companion paper [2] where we also give some promising nu-
merical illustrations. Indeed, we calibrate historical data of the French index CAC
40 to this model and implement the super-hedging strategy for a call option. Our
procedure, which is model free and based only on statistical estimations, provides
better results that the one based on implied volatility.

As in the one period case, we are able to prove that the super-hedging cost is
instantaneous profit-free i.e., does not create instantaneous profits in the extended
dynamic market where it is possible to trade the additional asset. In the following,
CT ∈ L0(R,FT ) is fixed and Ct = πt,t+1(Ct+1) is defined recursively for t ≤ T − 1
by (3.24).

Theorem 3.7. The AIP condition holds true if and only if the extended market, i.e.,

the market with the additional asset (Ct)t∈{0,··· ,T} satisfies AIP.

Suppose that AIP holds true. Then, ess infFt
Ct+1 ≤ Ct ≤ ess supFt

Ct+1 a.s. for all

t ∈ {0, . . . , T − 1}.

Proof of Theorem 3.7. Proposition 3.4 implies that AIP holds true if and only
if Pt,t+1(0) ∩ L0(R−,Ft) = {0}, for all t ∈ {0, . . . , T − 1} and Theorem 2.19 shows

that this last condition is equivalent to πS,Ct,t+1(0) = 0 where πS,Ct,t+1(0) is the super-
hedging cost in the extended market of 0, i.e., the essential infimum of all the
pt ∈ L0(R,Ft) such that pt + αt∆Ct+1 + θt∆St+1 ≥ 0 a.s. where αt ∈ L0(R,Ft)
and θt ∈ L0(Rd,Ft). Using again Proposition 3.4 (in the extended market) this is
equivalent to AIP in the extended market. The last assertion follows from Corollary
2.20. 2

We now introduce an asymptotic version of the AIP condition in the spirit of
the No Free Lunch condition (NFL), i.e., considering the closure of the set RTt in
(3.26).

Definition 3.8. The absence of weak instantaneous profit (AWIP) condition holds

true if for all ∈ {0, . . . , T}

RTt ∩ L
0(R+,Ft) = {0},

where the closure of RTt is taken with respect to the convergence in probability.

Recall that under NA, RTt is closed and that NFL and NA are equivalent.
Under AIP, RTt may not be closed and we show in Lemma 3.11 below that NA
implies AWIP, which in turn implies AIP, but that the reverse implications may
not hold true.

Before, in the case d = 1, we provide conditions under which AWIP is equiv-
alent to AIP. We also provide a characterization of AWIP through (absolutely
continuous) martingale measures.

Theorem 3.9. Assume that d = 1. The following statements are equivalent.

1. AWIP holds true.

2. For every t ∈ {0, . . . , T}, there exists Q � P with E(dQ/dP |Ft) = 1 such that

(Su)u∈{t,...,T} is a Q-martingale.

3. AIP holds and RTt ∩ L
0(R,Ft) = RTt ∩ L0(R,Ft) for every t ∈ {0, . . . , T}.
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If P (ess infFt
St+1 = St) = P (ess supFt

St+1 = St) = 0 for all t ∈ {0 . . . , T − 1} then

AWIP, AIP and NA are equivalent.

The proof, which is postponed to the appendix, is based on classical Hahn-
Banach Theorem arguments, see for example the textbooks of [11] and [22].

Remark 3.10. Theorem 3.9 shows that AIP and AWIP are equivalent if RTt is
closed. Therefore, Lemma 3.11 implies that RTt is not necessarily closed under
AIP, which is a key point in the classical theory under NA to obtain dual charac-
terization of super-hedging prices.

Lemma 3.11. The AIP condition is not necessarily equivalent to AWIP and AWIP

is not necessarily equivalent to NA.

Proof of Lemma 3.11. Assume that d = 1. Let us consider a positive process
(S̃t)t∈{0,...,T} which is a P -martingale. We suppose that ess infF0

S̃1 < S̃1 a.s.,

which holds in particular if S̃ a geometric Brownian motion as ess infF0
S̃1 = 0

a.s. Let us define St := S̃t for t ∈ {1, . . . , T} and S0 := ess infF0
S1. We have

ess infF0
S1 ≤ S0 and ess supF0

S1 ≥ ess infF0
S1 = S0. Hence AIP holds true at

time 0 (see Remark 2.12). Moreover, by the martingale property (see Theorem
3.9), AIP and also AWIP hold at any time t ∈ {1, . . . , T}. Let us suppose that
AWIP holds true at t = 0. Using Theorem 3.9, there exists ρT ≥ 0 with E(ρT ) = 1
such that S is a Q-martingale where dQ = ρT dP . Therefore, E(ρT∆S1) = 0. Since
∆S1 > 0 by assumption, we deduce that ρT = 0 hence a contradiction.

Let us consider a one step model where T = 1, S0 = 1 and S1 is a random
variable such that S1 ≥ 1 a.s. and P (S1 = 1) ∈ (0, 1). Let us define Q1 by dQ1/dP =
1{S1=1}/P (S1 = 1). Then, Q1 � P and EQ1(S1) = S0. So (St)t∈{0,1} is a Q1-
martingale and AWIP holds true by Theorem 3.9. As S1 −S0 ≥ 0 a.s. and P (S1 −
S0 > 0) > 0, NA fails. 2

4 Appendix

Proof of Lemma 2.4. It is clear from (2.1) that for all ω ∈ Ω, Dµ(ω) is a non-empty
and closed subset of Rd. We show that Dµ is H-measurable. Let O be a fixed open
set in Rd and µO : ω ∈ Ω 7→ µO(ω) := µ(O,ω). As µ is a stochastic kernel, µO is
H-measurable. By definition of Dµ(ω) we get that {ω ∈ Ω, Dµ(ω)∩O 6= ∅} = {ω ∈
Ω, µO(ω) > 0} ∈ H and Dµ is H-measurable. 2

Proof of Lemma 2.6. The two first statements follow from the construction of
ess supHX in Proposition 2.5 (see (2.2)). Suppose that ess infHX /∈ suppHX on
some non-null measure subset Λ ∈ H of {ess infHX > −∞}. As suppHX is H-
measurable and closed-valued, by a measurable selection argument, we deduce the
existence of r ∈ L0(R+,H) such that r > 0 a.s. and (ess infHX−r, ess infHX+r) ⊆
R \ suppHX on Λ. As X ∈ suppHX a.s. (see Remark 2.3) and X ≥ ess infHX
a.s., we deduce that X ≥ ess infHX + r on Λ, which contradicts the definition of
ess infHX. The next statement is similarly shown and the last one follows. 2

The proof of Proposition 2.7 is based on the two following useful lemmata.
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Lemma 4.1. Let K : Ω � Rd be a H-measurable and closed-valued random set such

that dom K = Ω and let h : Ω ×Rd → R be l.s.c. in x. Then,

sup
x∈K

h(x) = sup
n∈N

h(ηn), (4.27)

where (ηn)n∈N is a Castaing representation of K.

Proof of Lemma 4.1. Let ω ∈ Ω. As (ηn(ω))n∈N ⊂ K(ω), h(ω, ηn(ω)) ≤ supx∈K(ω) h(ω, x)
and thus supn h(ηn) ≤ supx∈K h(x). Let x ∈ K(ω) = cl{ηn(ω), n ∈ N}, by lower
semicontinuity of h, we get that h(ω, x) ≤ lim infn h(ω, ηn(ω)) ≤ supn h(ω, ηn(ω)).
We conclude that supx∈K h(x) ≤ supn h(ηn) and (4.27) is proved. 2

Lemma 4.2. Let K : Ω � Rd be a H-measurable and closed-valued random set such

that dom K = Ω and let h : Ω × Rk × Rd → R be a H ⊗ B(Rk) ⊗ B(Rd)-measurable

function such that h(ω, x, ·) is l.s.c. for all (ω, x) ∈ Ω × Rk. Then (ω, x) ∈ Ω × Rk 7→
s(ω, x) = supz∈K(ω) h(ω, x, z) is H⊗ B(Rk)-measurable.

Proof of Lemma 4.2. Lemma 4.1 implies that s(ω, x) = supn h(ω, x, ηn(ω)), where
(ηn)n∈N is a Castaing representation of K. So for any fixed c ∈ R, we get that

{(ω, x) ∈ Ω ×Rd, s(ω, x) ≤ c} = ∩n{(ω, x) ∈ Ω ×Rd, h(ω, x, ηn(ω)) ≤ c}.

As h isH⊗B(Rk)⊗B(Rd)-measurable and ηn isH-measurable, (ω, x) 7→ h(ω, x, ηn(ω))
is H⊗ B(Rk)-measurable and so is s. 2

Proof of Proposition 2.7. As P (X ∈ suppHX|H) = 1 (see Remark 2.3) we have that
supx∈suppHX h(x) ≥ h(X) a.s. and the definition of ess supHh(X) implies that
supx∈suppHX h(x) ≥ ess supHh(X) a.s. since supx∈suppHX h(x) is H-measurable
by Lemmata 2.4 and 4.2.

Let (γn)n∈N be a Castaing representation of suppHX. Lemmata 2.4 and 4.1
imply that supx∈suppHX h(x) = supn h(γn). Fix some rational number ε > 0 and
some integer n > 0 and set Zε,n = 1B(γn,ε)(X), where B(γn, ε) is the closed ball of
center γn and radius ε. Let Ωε,n = {E(Zε,n|H) > 0}. Then P (Ωε,n) = 1. Otherwise,
P (Ω \Ωε,n) > 0 and on Ω \Ωε,n ∈ H, P (X ∈ Rd \B(γn, ε)|H) = 1 and by definition
2.2, suppHX ⊂ Rd \ B(γn, ε), which contradicts γn ∈ suppHX. By definition of
the conditional essential supremum, we have that ess supHh(X) ≥ h(X) a.s. and
that ess supHh(X) is H-measurable. This implies that, for all fixed ω ∈ Ωε,n,

ess supHh(X)(ω) ≥ E(Zε,nh(X)|H)

E(Zε,n|H)
(ω) =

∫
1B(γn(ω),ε)(x)h(ω, x)PX|H(dx;ω)

E(Zε,n|H)(ω)

≥
∫ (

infy∈B(γn(ω),ε) h(ω, y)
)

1B(γn(ω),ε)(x)PX|H(dx;ω)

E(Zε,n|H)(ω)

≥ inf
y∈B(γn(ω),ε)

h(ω, y).

As h is l.s.c. (recall [31, Definition 1.5, equation 1(2)]), we have that

lim
ε→0

inf
y∈B(γn,ε)

h(y) = lim inf
x→γn

h(x) = h(γn).

So on the full measure set ∩ε∈Q ε>0,n∈NΩe,n, ess supHh(X) ≥ h(γn). Taking the
supremum over all n, we get that

ess supHh(X) ≥ sup
n
h(γn) = sup

x∈suppHX
h(x) ≥ ess supHh(X) a.s. 2
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Proof of Theorem 3.9. First we prove that 1. implies 2. Suppose that AWIP holds
and fix some t ∈ {0, . . . , T}. We may suppose without loss of generality that the

process S is integrable under P . Under AWIP, we then have RTt ∩L
1(R+,Ft) = {0}

where the closure is taken in L1. Therefore, for every nonzero x ∈ L1(R+,Ft),
there exists by the Hahn-Banach theorem a non-zero Zx ∈ L∞(R+,FT ) such that
(recall that RTt is a cone) EZxx > 0 and EZxξ ≤ 0 for every ξ ∈ RTt . Since
−L1(R+,FT ) ⊆ RTt , we deduce that Zx ≥ 0 and we way renormalise Zx so that
‖Zx‖∞ = 1. Let us consider the family

G = {{E(Zx|Ft) > 0}, x ∈ L1(R+,Ft) \ {0}}.

Consider any non-null set Γ ∈ Ft. Taking x = 1Γ ∈ L1(R+,Ft) \ {0}, since
E(Zx1Γ ) > 0, we deduce that Γ has a non-null intersection with {E(Zx|Ft) > 0}.
By [22, Lemma 2.1.3], we deduce an at most countable subfamily (xi)i≥1 such that
the union

⋃
i{E(Zxi |Ft) > 0} is of full measure. Therefore, Z =

∑∞
i=1 2−iZxi ≥ 0

is such that E(Z|Ft) > 0 and we define Q � P such that dQ = (Z/E(Z|Ft))dP .

As the subset {
∑T
u=t+1 θu−1∆Su, θu−1 ∈ L(R,Fu−1)} is a linear vector space

contained in RTt , we deduce that (Su)u∈{t,...,T} is a Q-martingale.
We now prove that 2. implies 3. Suppose that for every t ∈ {0, . . . , T}, there

exists Q � P such that (Su)u∈{t,...,T} is a Q-martingale with E(dQ/dP |Ft) = 1.
Let us define, for u ∈ {t, . . . , T}, ρu = EP(dQ/dP|Fu). Then, ρu ≥ 0 and ρt = 1.
Consider γt ∈ RTt ∩ L0(R+,Ft), i.e., γt is Ft-measurable and is of the form γt =∑T−1
u=t θu∆Su+1 − ε+T . Since θu is Fu-measurable, θu∆Su+1 admits a generalized

conditional expectation under Q, knowing Fu, and we have, by assumption, that
EQ(θu∆Su+1|Fu) = 0. The tower law implies that a.s.

γt = EQ(γt|Ft) =
T−1∑
u=t

EQ(EQ(θu∆Su+1|Fu)|Ft)− EQ(ε+T |Ft) = −EQ(ε+T |Ft).

Hence γt = 0 a.s., i.e., AIP holds. Let us show that RTt ∩ L
0(R,Ft) ⊆ RTt ∩

L0(R,Ft).Consider first a one step model, where (Su)u∈{T−1,T} is a Q-martingale

with ρT ≥ 0 and ρT−1 = 1. Suppose that γn = θnT−1∆ST − εn+T ∈ L0(R,FT )

converges in probability to γ∞ ∈ L0(R,FT−1). We need to show that γ∞ ∈ RTT−1∩
L0(R,FT−1).

On the FT−1-measurable set ΛT−1 := {lim infn |θnT−1| < ∞}, by [22, Lemma

2.1.2], we may assume w.l.o.g. that θnT−1 is convergent to some θ∞T−1 hence εn+T
is also convergent and we can conclude that γ∞1ΛT−1

∈ RTT−1 ∩ L
0(R,FT−1).

Otherwise, on Ω \ ΛT−1, we use the normalized sequences for i ∈ {1, . . . , d}

θ̃n,iT−1 := θn,iT−1/(|θ
n
T−1|+ 1), ε̃n+T := εn+T /(|θnT−1|+ 1).

By [22, Lemma 2.1.2] again, we may assume, taking d+ 1 sub-sequences, that a.s.
θ̃nT−1 → θ̃∞T−1, ε̃n+T → ε̃∞+

T and θ̃∞T−1∆ST − ε̃
∞+
T = 0 a.s. Remark that |θ̃∞T−1| = 1

a.s. First consider the subset Λ2
T−1 := (Ω \ ΛT−1) ∩ {θ̃∞T−1 = 1} ∈ FT−1 on which

∆ST ≥ 0 a.s. Since EQ(∆ST 1Λ2
T−1
|FT−1) = 0 a.s., we get that ρT∆ST 1Λ2

T−1
= 0

a.s. Hence ρT γ
n1Λ2

T−1
= −ρT εn+T 1Λ2

T−1
≤ 0 a.s. Taking the limit, we get that

ρT γ
∞1Λ2

T−1
≤ 0 a.s. and, since γ∞ ∈ L0(R,FT−1), we deduce that ρT−1γ

∞1Λ2
T−1
≤

0 a.s. Recall that ρT−1 = 1 hence γ∞1Λ2
T−1

≤ 0 a.s. and γ∞1Λ2
T−1

∈ RTT−1 ∩
L0(R,FT−1). On the subset (Ω \ ΛT−1) ∩ {θ̃∞T−1 = −1} we may argue similarly
and the conclusion follows in the one step model.
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We now show the result in multi-step models by recursion. Fix some s ∈
{t, . . . , T − 1}. We show that RTs+1 ∩ L

0(R,Fs+1) ⊆ RTs+1 ∩ L0(R,Fs+1) implies
the same property for s instead of s + 1. By assumption (Su)u∈{s,...,T} is a Q-
martingale with EP (dQ/dP |Fu) = ρu ≥ 0 for u ∈ {s, . . . , T} and ρs = 1. Suppose

that γn =
∑T
u=s+1 θ

n
u−1∆Su− εn+T ∈ RTs ∩L0(R,FT ) converges to γ∞ ∈ L0(R,Fs).

If γ∞ = 0 there is nothing to prove. As before on the Fs-measurable set Λs :=
{lim infn |θns | < ∞}, we may assume w.l.o.g. that θns converges to θ∞s . Therefore
on Λs

T∑
u=s+2

θnu−1∆Su − εn+T = γn − θns∆Ss+1 → γ∞ − θ∞s ∆Ss+1

and, by the induction hypothesis,
∑T
u=s+2 θ

n
u−1∆Su − εn+T also converges to an

element of RTs+1 ∩ L0(R,Fs+1) and we conclude that γ∞1Λs
∈ RTs ∩ L0(R,Fs).

On Ω\Λs−1, we use the normalisation procedure as before, and deduce the equality∑T
u=s+1 θ̃

∞
u−1∆Su − ε̃∞+

T = 0 a.s. for some θ̃∞u ∈ L0(R,Fu), u ∈ {s, . . . , T − 1} and

ε̃∞+
T ≥ 0 such that |θ̃∞s | = 1 a.s. We then argue on Λ2

s := (Ω \ Λs−1) ∩ {θ̃∞s = 1} ∈
Fs and Λ3

s := (Ω \ Λs−1)∩{θ̃∞s = −1} ∈ Fs respectively. When θ̃∞s = 1, we deduce
that

∆Ss+1 +
T∑

u=s+2

θ̃∞u−1∆Su − ε̃∞+
T = 0 a.s., i.e., ∆Ss+1 ∈ Ps+1,T (0)

hence ∆Ss+1 ≥ πs+1,T (0) = 0 a.s. under AIP, see Proposition 3.4. Since
EQ(∆Ss+11Λ2

s
|Fs) = 0 a.s., ρs+1∆Ss+11Λ2

s
= 0 a.s. So,

ρs+1γ
n1Λ2

s
=

T∑
u=s+2

θnu−1ρs+11Λ2
s
∆Su − εn+T ρs+11Λ2

s
∈ RTs+1 ∩ L0(R,Fs+1).

Hence, ρs+1γ
∞1Λ2

s
∈ RTs+1 ∩ L0(R,Fs+1) by induction. As ρs+1γ

∞1Λ2
s

admits a
generalized conditional expectation knowing Fs, the tower property implies a.s.

1Λ2
s
E(ρsγ

∞|Fs) = E(ρs+1γ
∞1Λ2

s
|Fs) =

T∑
u=s+2

1Λ2
s
E
(
θ∞u−1E

(
dQ

dP
∆Su|Fu−1

)
|Fs
)

−1Λ2
s
E(ε∞+

T ρs+1|Fs) ≤ 0,

since (Su)u∈{s,...,T} is a Q-martingale. Hence, ρsγ
∞1Λ2

s
≤ 0 a.s. As ρs = 1,

γ∞1Λ2
s
≤ 0 a.s. so that γ∞1Λ2

s
∈ RTs ∩ L0(R,Fs).

Finally, notice that the AIP condition implies AWIP as soon as the equality

RTt ∩ L
0(R+,Ft) = RTt ∩ L0(R+,Ft) holds for every t ∈ {0, . . . , T}.

Suppose now that P (ess infFt
St+1 = St) = P (ess supFt

St+1 = St) = 0. Then,

using Proposition 2.17, AIP is equivalent to NA. Under NA, the set RTt is closed
in probability for every t ∈ {0 . . . , T − 1} and what we have just proved implies
that AWIP, AIP and NA are equivalent conditions. 2
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Additional informations

A former version of the paper was called ”Pricing without martingale measure”
and was co-authored with Julien Baptiste. The paper has been split into two parts.
This paper contains the theoretical study of the superreplication problem while a
second one, with Julien Baptiste, focuses on numerical aspects (see, [2]).
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26. Lépinette E. and El Mansour M. Conditional interior and conditional closure

of a random set. Journal of Optimization and Applications, 187, 356-369, 2020.
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