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Abstract

The number of sub-populations of tumour cells constituting a tumour and the immuno-
genicity of tumour cells are two major components of intra-tumour heterogeneity (ITH),
and play a key role in the immune response against solid tumours. Mathematical models
make it possible to separate these two components of ITH and investigate their influence on
anti-tumour immunity in a controlled manner. Here, we present a spatially explicit stochas-
tic individual-based model of the interaction dynamics between tumour cells and CD8" T
cells. We use this model to investigate how ITH may affect the anti-tumour immune re-
sponse. In our model, ITH can vary both with the number of expressed antigens (i.e. the
number of sub-populations of tumour cells) and with the level of antigen presentation (i.e.
the immunogenicity of the cells). Computational simulations of our model indicate that
both sources of ITH affect the outcome of anti-tumour immune response. First, the number
of sub-populations of tumour cells negatively correlates with the ability of the CD8" T cells
to produce an efficient anti-tumoural response. Second, the fraction of non-immunogenic
cells within a tumour can significantly reduce the effectiveness of the immune response.
These results qualitatively reproduce a broad range of scenarios of successful and unsuc-
cessful immune surveillance reported in experimental studies. Ultimately, our model may
provide a framework to help biologists and clinicians to better understand the prognostic
outcomes of immunotherapy.
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1 Introduction

Recent technological advances have allowed for the design of immunotherapy which, in con-
trast to conventional anti-cancer therapies, targets tumour-immune cell interactions with the
aim of re-boosting the effectiveness of the anti-tumoural immune responses. Although im-
munotherapy has revolutionized anti-tumour treatment, its efficacy remains limited in most
clinical settings [3, 9, 10, 27, 68, 74].

Immune cells, specifically CD8" cytotoxic T cells, are capable of detecting and eliminating
tumour cells by recognising cancer-associated antigens expressed by tumour cells. The effec-
tiveness of the immune response depends on the level of presentation of such antigens by the
major histocompatibility complex 1 (MHC-I) [20, 60]. In particular, CD8" T cells express a
unique repertoire of T cell receptors (TCRs) [65] and, once activated, they migrate via chemo-
taxis in response to concentration gradients of chemical signals toward the tumour cells ex-
pressing the matching antigens [62]. The influx and movement of CD8" T cells are dictated
by the spatial distribution of tumour antigens and by the level of chemokines in the tumour
micro-environment [10]. Upon intratumoural infiltration, CD8" T cells can trigger tumour cell
death by direct interaction with tumour cells, releasing cytotoxic factors (i.e. granzime B, inter-
feron gamma) [44].

Oncogenic mutation-driven cancers harbor neoantigens that can be recognized by CD8"
T cell receptors [35]. A high mutational burden and neoantigen load in tumours have been
associated with an enhanced response to immunotherapy [15, 30, 37, 69, 70, 76]. However,
it has recently been reported that many of these neoantigens arise from sub-clonal branching
mutations and could potentially increase intratumour heterogeneity (ITH) [57, 59, 67]. In par-
ticular, in these tumours, the antigen landscape is composed of clonal antigens, presented by
all tumour cells, and sub-clonal antigens, presented only by sub-populations of tumour cells.
Moreover, such sub-clonal antigens may be associated with decreased level of antigen pre-
sentation by the MHC-I, leading to a weaker antigen-specific CD8" T cell response [29]. In
contrast, more homogeneous tumours express few clonal antigens in all tumour cells and ap-
pear to have a better response to immunotherapy across a wide range of tumour types [26, 59].
Furthermore, CD8™ T cells activated against clonal antigens are more commonly found at the
tumour site than CD8™ T cells reactive to sub-clonal antigens [59]. These findings point to ITH
as a highly relevant determinant of tumour immune surveillance that deserves further consid-
eration.

Mathematical models are useful tools for simulating and investigating biological systems,
and have been increasingly used to investigate the role of tumour antigens and the effect of
ITH on the anti-tumour immune response. Tumour heterogeneity and the role of tumour anti-
gens have been studied using differential equation models [1, 6, 8, 50] and cellular-automaton
(CA) models [11, 31]. A number of mathematical models have also been developed to inves-
tigate the dynamics of tumour development in the presence of adaptive immune response.
Usually, these models are formulated as either ordinary differential equations [21, 45, 47, 51]
or integro-differential equations [23, 46, 49]. Most of these models rely on the assumption that
cells are well-mixed and, as such, do not take into account spatial dynamics of immune cells
and tumour cells. Spatial and temporal dynamics of tumour-immune competition have been
studied through partial differential equation (PDE) models [7, 55, 56]. However, differential
equation models are defined on the basis of population-level phenomenological assumptions,
which may limit the level of biological detail that can be included in the model. By using com-
putational models, such as CA and individual-based models (IBMs), a more direct and precise
mathematical representation of biological phenomena can be achieved. These models can be
posed on a spatial domain (e.g. a grid), where cells interact locally with each other according



to a defined set of probabilistic rules, and can collectively generate global emergent behaviours
of tumour-immune cells interaction. A number of IBMs [19, 41, 52] and hybrid PDE-CA mod-
els [22, 43, 54] have also been used to study the interaction dynamics between tumour and
immune cells. These models take into account different aspects of the anti-tumoural immune
response (e.g. expression of immunosuppressive factors, movement of immune cells) and clar-
ify the conditions for the emergence of a range of situations of successful and failed immune
response. However, they do not take into account the effects of antigen presentation and ITH
on immune surveillance.

In light of these considerations, we present a spatial stochastic individual-based model of
tumour-immune interaction dynamics that can be used to explore the effect of ITH on immune
surveillance. The originality of this model lies in the characterization of antigen presentation
levels by tumour cells, which drive the influx of CD8* T cells in the tumour micro-environment
and their movement toward tumour cells. In our model, the effectiveness of the anti-tumour
immune response directly correlates with the level of presentation of tumour antigens. In addi-
tion, the model takes into account biological phenomena that are driven by stochastic aspects of
the interaction dynamics between tumour cells and CD8" T cells. The effect of ITH on immune
surveillance is investigated at two different levels through computational simulations of this
model. First, we explore the outcomes of the immune response considering different number
of sub-populations of tumour cells constituting the tumour. Then, we asses the efficiency of
the immune response by varying the immunogenicity of tumour cells. We study the impact
of these two characteristics on tumour progression independently and together, assessing their
influence on anti-tumour immunity in a controlled manner.

The paper is organised as follows. In Section 2, we present the individual-based model
and the mathematical description of each biological process included in the model. Section
3 summarises the set-up of computational simulations. Full details of model implementation
and model parametrisation are provided in A and B, respectively. In Section 4 we present the
main computational results and we discuss them in view of previous biological works. Finally,
Section 5 concludes the paper and provides a brief overview of possible research perspectives.

2 Model and methods

We consider two cell types in our model: tumour cells, characterized by an antigen profile and
a level of antigen presentation, and antigen-specific CD8" T cells. To describe the interactions
occurring between the two cell types we use an on-lattice individual-based model posed on
a 2D spatial domain partitioned into square elements of side Az. In our model, this domain
biologically represents the tumour micro-environment. At each time step of length At, the
states of the cells are updated according to the probabilistic and deterministic rules described
below.

In the remainder of this section, we first present the modelling framework in a general setting,
along with the underlying biological hypotheses and assumptions. Then, we detail how each
biological mechanism is mathematically described. A detailed description of the computational
implementation of the model, which relies on a Cellular Potts approach, can be found in A.

2.1 Modelling framework

To include different level of immunogenicity in the tumour, two different subtypes of tumour
cells are considered: immunogenic cells and non-immunogenic cells. On the one hand, we de-
fine immunogenic cells as cells expressing one or more clonal antigens, considered as immun-
odominant, and presented at a normal level by the MHC-I. On the other hand, we assume that



non-immunogenic cells have experienced, through mutations, a deterioration of their level of
antigen presentation, and have acquired new antigens, presented only by a subset of tumour
cells, to which we refer as sub-clonal antigens [59]. Therefore, we define non-immunogenic
cells as cells expressing clonal and sub-clonal antigens, both presented at a low level by the
MHC-L

The system is initially composed of tumour cells only, which grow and proliferate through mi-
tosis. Tumour cells secrete different chemoattractants that trigger the influx of specific CD8" T
cells into the domain. When they arrive in the domain, CD8* T cells move via chemotaxis to-
ward tumour cells expressing the matching antigens and, upon contact, try to eliminate them.
The modelling strategies used to reproduce these dynamics are described in detail in the fol-
lowing subsections, and are also schematically illustrated with an example in Figure 1 and
Figure 2.

2.1.1 Dynamics of tumour cells

Antigen expression We let Ny (t) denote the number of tumour cells in the system at time
t = hAt, with h € Ng, and we label each cell by an indexn = 1,..., Ny (t). We let each tumour
cell express one or more antigens, and we characterize the antigen profile of the tumour by
means of a vector

A=(ai,...,ar), ai,...,ar €N, 2.1)

where a; denotes an antigen and f is the total number of antigens expressed by the tumour
[see Figure 1(a)]. Using phylogenetic tree representations [see Figure 1(b)-(c)], we define each
antigena; € A,i =1,..., f, of the tumour as clonal if it belongs to the trunk of the phylogenetic
tree, or sub-clonal if it belongs to one of the branches of the phylogenetic tree. We let Ac and
Agsc denote the sets of clonal and the sub-clonal antigens, whereby:

Ac,Asc CA, AcUAsc=A and AcnNAse =0. (2.2)

Then, based on the phylogenetic tree representation, we divide the tumour in f different sub-
populations of tumour cells labelled by the last antigen a; € A acquired [see Figure 1(d)]. In
each sub-population, cells express the same antigens. Moreover, if a; € Ac, cells in the sub-
population labelled by the antigen a; express only clonal antigens, whereas if a; € Agc, cells
in the sub-population labelled by the antigen a; express both clonal and sub-clonal antigens.
Therefore, we define cells in sub-populations labelled by a clonal antigen a; € A¢ as immuno-
genic cells, whereas cells in sub-populations labelled by a sub-clonal antigen a; € Agc are
defined as non-immunogenic cells.

Antigen presentation by MHC-I We incorporate antigen presentation into our model by let-
ting each tumour cell present its antigens at a certain level. There can be high variability in each
antigen’s presentation between patients with the same type of tumour and even within tumour
cell samples from the same patient [3, 59]. Therefore, for the n tumour cell, we characterize
the level of presentation of each one of its antigens a; € A by the normalized variable

e [0,1] (2.3)

whereby the value [j}, = 0 corresponds to a tumour cell that lost the expression of the antigen
a;, while [}, = 1 corresponds to a tumour cell presenting the antigen a; at the highest level.

To capture the idea that immunogenic cells present their antigens at a higher level than non-
immunogenic cells, we introduce the discrete sets

L= {rn], o ,M[} C [0, 1] and Lyy = {mN[, .. ,MN]} C [0, 1], with Mpy7 < Mj. (2.4)

They characterize the range of different values that can be taken by the variable [;;, [see Figure
1(d)]. In particular, if the n'* tumour cell is an immunogenic cell, it presents each antigen a;
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at a normal level [}, € L, whereas if the nt" tumour cell is a non-immunogenic cell, all of its
antigens a; are presented at a low level ;. € L.

Tumour cell growth and division At each time-step, we let tumour cells grow at a random
rate drawn from a uniform distribution; the parameters of the bounds of the uniform distribu-
tion are chosen to match the mean duration of a tumour cell cycle length. Mitosis occurs when
a tumour cell grows to a critical size and then divides along a randomly orientated axis. Upon
division at the time ¢, the n'* tumour cell is replaced by two cells [see Figure 1(e)], one labelled
by the parent index n and the other one labelled by the index Nr(¢) + 1. Note that the total
number of tumour cells Ny (t) is updated as soon as a cell divides, and before looping on the
next proliferating cell. The daughter cell will inherit most of the properties of the parent cell,
including the antigens expressed by the parent cell, so the fact that the cell is immunogenic
or not [see Figure 1(e)]. For each antigen a; expressed by the daughter cell, a random level of

antigen presentation lé\iT(t)H will be chosen. Another property not inherited by the daughter
cell is the intrinsic lifespan of the cell, which is randomly drawn from a uniform distribution.

Tumour cell death If a tumour cell exhausts its lifespan (which is drawn when the cell is
created), it dies (i.e. it undergoes apoptosis) at the end of the time-step and it is removed
from the domain. A tumour cell can also die due to intra-tumour competition, with a rate
proportional to the total number of tumour cells, or because of the cytotoxic action of CD8" T
cells. More details about tumour cell death due to the cytotoxic action of CD8™ T cells will be
given in Section 2.1.2.

Secretion of chemoattractants We let tumour cells at the border of the tumour (the region
where cytokines and immune cells are more abundant [10]) secrete different chemoattractants
for each expressed antigen a; € A. The secretion of a chemoattractant by a tumour cell ex-
pressing antigen a; is proportional to the level of presentation of such antigen a,. Therefore, we
model the chemoattractant secretion rate s/, by the n'” tumour cell expressing antigen a; using
the following definition:

8, = C1ly,, (2.5)

where C; € R is a scaling factor of units %, where [mol], [time] and [space] denote re-

spectively the number of chemoattractant molecules and the units of time and of the size of a
grid site, and [7 is the level of presentation of antigen a; by the n'" tumour cell.

The total amount of chemoattractant secreted by tumour cells expressing antigen a; induces
the arrival of CD8™ T cells specific to antigen a; into the domain. More details about the math-
ematical modelling of the different chemoattractants will be discussed in Section 2.1.3.

2.1.2 Dynamics of CD8* T cells

Influx of CD8" T cells Following Gong et al. [32], to model the tumour vessels that allow
the arrival of CD8" T cells in the tumour micro-environment, we generate a set of points in
the domain. In order not to rely on a detailed angioarchitecture, we generate 5 entry points,
equidistant from each other and from the centre of the domain. At each time step, a CD8" T
cell specific to antigen a; € A can be supplied to the domain from one of the 5 entry points,
provided that the entry point is not occupied by other cells. The probability 0 < p(t) < 1 of
influx of a CD8™ T cell specific to antigen a; into the domain is proportional to the total amount
Siot(t) of chemoattractant associated to antigen a; secreted at time ¢. Therefore, we define p(t)
as
p(t) = C S,
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Figure 1: Schematic representation of the modelling assumptions for tumour cells. (a) Purple
circles represent tumour cells. In this example, the antigen profile of the tumour is character-
ized by 4 different antigens, each one represented by a specific color and shape. (b) Phylo-
genetic tree illustrating the mutations leading to the different antigens expressed by tumour
cells. The clonal and sub-clonal antigens are represented as the phylogenetic tree trunk and
branches, respectively. (c¢) In this example, 4 antigens are expressed by the tumour, each one
characterized by a different color and shape. Based on the phylogenetic tree (b), we denote
a; and as as clonal antigens, whereas a3 and a4 are denoted as sub-clonal antigens. (d) The
tumour is divided in 4 sub-populations of tumour cells, labelled by the last antigen acquired
by each cell. Here, the color of each antigen represents its level of antigen presentation. Cells in
the sub-populations labelled by the antigens a; and as express only clonal antigens and are de-
fined as immunogenic cells. They present their antigens at a normal level, with values chosen
from the discrete set L; = {my,...,M;}. Cells in the sub-populations labelled by the anti-
gens a3 and a4 express clonal and sub-clonal antigens and are defined as non-immunogenic
cells. They present all their antigens at a low level, with values chosen from the discrete set
Lyr ={mpy,...,Mnr}. (e) A tumour cell divides when it reaches a certain target volume. An
immunogenic (respectively non-immunogenic) cell divide in two immunogenic (respectively
non-immunogenic) cells. The daughter cell has the same antigens of the parent cell, but with a
new random level of antigen presentation.




with Cy € R a scaling factor of units [[Zf;le}] )

Since the secretion of chemoattractants by tumour cells is proportional to the level of antigen
presentation (see Eq. (2.5)), the total amount of chemoattractants secreted by non-immunogenic
cells is lower than the total amount of chemoattractants secreted by immunogenic cells. There-
fore, the influx of CD8" T cells targeted to sub-clonal antigens, which are expressed only by
non-immunogenic cells, is lower than the influx of CD8" T cells targeted to clonal antigens.

TCR expression and T cell death We denote by N¢(t) the number of CD8" T cells in the
system at time ¢, and we label each of them by an index m = 1, ..., N¢(t). Every CD8™ T cell has
a unique TCR [see Figure 2(a)], and we suppose that each TCR is specific to a unique tumour
antigen [see Figure 2(b)]. When the m'* CD8* T cell with a TCR targeted against antigen a; € A
arrives into the domain it undergoes chemotactic movement toward tumour cells expressing
the matching antigen a;.

As CD8™ T cell division occurs mostly in the lymph nodes [24], we omit the effects of CD8" T
cell proliferation in the tumour micro-environment. A CD8* T cell undergoes apoptosis when
it reaches the end of its intrinsic lifespan, which is drawn from a uniform distribution upon its
arrival in the domain.

Elimination of tumour cells by CD8" T cells Upon contact, CD8" T cells can interact only
with tumour cells expressing the matching antigen [see Figure 2(c)], and can induce their death,
on the condition that the matching antigen is presented at a sufficiently high level. If a CD8" T
cell is in contact with more than one tumour cell expressing the matching antigen, it will try to
eliminate the one presenting the antigen at the highest level. In particular, when the m‘* CD8*
T cell interacts with the n'* tumour cell expressing the matching antigen a;, we let the tumour
cell be removed from the system, provided that

ply, > (1 —r). (2.6)

Here 41 is a random variable drawn from the standard uniform distribution, [j;; is the level of
presentation of antigen a; by the n'" tumour cell and 0 < r < 1 is the intrinsic TCR-recognition
probability, which we suppose to be equal for every CD8" T cell. If the tumour cell satisfies the
conditions to be eliminated, it undergoes apoptosis. The parameter  determines the range of
tumour cells the CD8™ T cell population can interact with: large values of r representa CD8" T
cell population able to eliminate tumour cells presenting their antigens at a low level, whereas
low values of » model the scenario where the CD8* T cells can only eliminate tumour cells
presenting their antigens at a high level.

Tumour cell elimination by CD8" T cells takes approximately 6 hours to be completed in vitro
[14] and in vivo [12]. Accordingly, we require that an elimination event keeps a CD8* T cell
engaged for 6 hours and only after this time the CD8* T cell can eliminate again [41].

2.1.3 Chemoattractant field

As mentioned earlier, we let the n*" tumour cell at the border of the tumour secrete a different
chemoattractant for each antigen a; that it expresses. Denoting by c¢,, the concentration of the
chemoattractant secreted by tumour cells expressing antigen a;, we let the dynamic of ¢,, be
described by the following reaction-diffusion equation:

Jca,
ot

= DAcy;, — YCa; + Z Sq;,  a; € A (2.7)
nENT(t)

In Eq. (2.7), D is the diffusion constant and 7 is the rate of natural decay; these two parameters
are assumed to have the same value for each chemoattractant. On the other hand, we recall
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Figure 2: Schematic representation of the modelling assumptions for CD8" T cells and their
interaction with tumour cells. (a) Red circles represent CD8" T cells, which express a unique
TCR. (b) TCR are represented with different shapes and colors. Each TCR is able to recognize
a particular tumour antigen. In the model, the number of TCRs is equal to the number of ex-
pressed tumour antigens. (c) Purple circles represent tumour cells. CD8" T cells can eliminate
tumour cells, upon contact, under certain conditions. A tumour cell is eliminated if it presents
the antigen matching the CD8 T cell receptor at a sufficiently high level. In this example,
a tumour cell expressing antigen a; and as cannot be eliminated by a CD8" T cell with TCR
matching antigen a4. On the other hand, the same tumour cell may be eliminated by a CD8"
T cell expressing the TCR matching antigen ap, under a condition on the level [,, of presenta-
tion of such antigen ay. The parameter r is the intrinsic TCR-recognition probability and . is a
random variable drawn from a standard uniform distribution.

that the secretion rate s, is specific to the n'" tumour cell, because it is proportional to the level
of presentation of antigen a; by the tumour cell (see Eq. (2.5)).

We add to Eq. (2.7) zero-flux boundary conditions and an initial concentration ¢! which is set
to be zero everywhere in the domain but at the border of the tumour.

3 Numerical simulations

3.1 Set-up of simulations

For numerical simulations of our individual-based model, we use a Cellular Potts approach on
a 2D spatial grid with a total of 400 x 400 lattice sites. Simulations were developed and run us-
ing the software CompuCell3D [39] on a standard workstation (Intel i7 Processor, 4 cores, 16 GB
RAM, macOS 11.2.2), with one time-step chosen to be At = 1 min. The computational imple-
mentation of Cellular Potts models is described in A, while full details of the model parametri-
sation are provided in B. Files to run a simulation example with Compucell3D software [39] are
available at: https://plmlab.math.cnrs.fr/audebert/cc3dmodeltumourcds.

At the initial time point of the simulation, a certain number of tumour cells are already present
in the domain, while CD8" T cells arrive only when the simulation starts. At the beginning
of simulations there is a total of 400 tumour cells, tightly packed in a circular configuration
positioned at the centre of the domain, reproducing the geometry of a solid tumour.

All quantities we report in Section 4 are obtained by averaging over the results of 10 simula-
tions. Unless otherwise explicitly stated, we carry out numerical simulations for 28800 time-
steps, corresponding to 20 days.

3.2 Initial composition of the tumour

To explore the effects of ITH on immune response, we consider different initial antigenic com-
positions of the tumour, corresponding to different degrees of ITH. In particular, we dissect out
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Figure 3: Phylogenetic tree representations of the antigens considered for the two tumours.
(a) Tumour-3a expresses three antigens. Antigen 5 is the only clonal antigen (in yellow) and
antigens 4 and 7 are two sub-clonal antigens (in orange). As a results, tumour-3a is composed
of 3 sub-populations of tumour cells. (b) Tumour-7a expresses seven antigens. Antigens 1 and 5
are clonal antigens (in yellow) and antigens 4, 6, 7, 8 and 10 are sub-clonal antigens (in orange).
Hence, tumour-7a is composed of 7 sub-populations of tumour cells. The phylogenetic tree
representations of the two tumours are inspired by Wolf et al. [78].

two characteristics of ITH: the number of sub-populations of tumour cells constituting a tu-
mour and the fraction of immunogenic and non-immunogenic cells within it. With our model,
we wish to investigate the effect of these two sources of ITH on tumour aggressiveness inde-
pendently and together, evaluating their influence on anti-tumour immunity in a controlled
manner. To this end, first we generate two tumours with different number of sub-populations
of tumour cells. For simplicity, we denote the first tumour as tumour-3a and the second one as
tumour-7a. The antigenic composition of the two tumours and their corresponding phyloge-
netic tree representation are inspired by Wolf et al. [78]. More details about the two tumours
are given in the next paragraphs. Next, for each tumour we consider different initial fractions
of immunogenic and non-immunogenic cells. When different sub-populations of immuno-
genic (or non-immunogenic) cells are considered, the total fraction of immunogenic (or non-
immunogenic) cells is equally distributed in each sub-population. This enables us to decouple
antigen heterogeneity and antigen immunogenicity, and study their influence on tumour ag-
gressiveness in a causal, systematic manner.

Tumour-3a The first tumour we consider expresses three different antigens, one of which
is clonal and the other two are sub-clonal (see Figure 3(a)). With the notation introduced in
Section 2.1.1, we denote respectively by

A= {4, 5, 7}, AC = {5} and ASC’ = {4, 7} (3.1)

the antigen profile of the tumour, the clonal antigens and the sub-clonal antigens.

Based on the phylogenetic tree representation of Figure 3(a), we divide tumour-3a in 3 sub-
populations of tumour cells labelled by the last antigen acquired by each cell. Cells in the
sub-population labelled by antigen 5 carry only this antigen, while cells in sub-populations
labelled by antigens 4 and 7 express, respectively, antigens 5 and 4 or antigens 5 and 7.

As cells in the sub-population labelled by antigen 5 are immunogenic, their level of antigen
presentation by the MHC-I is assumed to be normal and randomly chosen from the discrete set



L;, which is defined as
12345
D S 14, .
L[ {6767676767 } (32)
On the other hand, as cells in sub-populations labelled by antigens 4 and 7 are non-immunogenic,
their level of antigen presentation by the MHC-I is deteriorated and, therefore, randomly cho-
sen from the discrete set Ly, which is defined as

5 10 15 20 25 30
Iny =42 . 2 = = 2L _
N {100’ 100" 100” 100" 100’ 100} (5.3)

Tumour-7a The second tumour expresses seven different antigens, two of which are clonal
and five are sub-clonal (see Figure 3(b)). We denote respectively by

A={1,4,56,7,810}, Ac={1,5} and Agc = {4,6,7,8,610} (3.4)

the antigen profile of the tumour, the clonal antigens and the sub-clonal antigens.

Based on the phylogenetic tree representation of Figure 3(b), we divide tumour-7a in 7 sub-
populations of tumour cells. Cells in sub-populations labelled by antigens 1 and 5 are immuno-
genic, and present their antigens at a level randomly chosen from set L;, which is defined in
(3.2). On the other hand, cells in sub-populations labelled by antigens 4, 6, 7, 8 and 10 are non-
immunogenic, and present all their antigens at a lower level randomly chosen from set Ly,
which is defined in (3.3).

4 Results and discussion

4.1 Baseline scenario: tumour development in the absence of CD8" T cells

We first establish a baseline scenario where tumour cells grow, divide and die via the modelling
rules described in Section 2.1.1, in the absence of CD8" T cells. For this case, we carry out
numerical simulations for 36000 MCS, corresponding to 25 days. Figure 4 shows the growth
over time of the number of tumour cells. The growth of the tumour cell number is of logistic
type. Logistic growth has been used by a number of authors to model the temporal evolution
of the size of solid tumours [25, 45, 47]. The carrying capacity, i.e. the saturation value reached
by the number of tumour cells due to intra-population competition, is numerically estimated
to be of about 1100 cells.

In the next subsections, we investigate the effects of CD8™ T cell response to different tumours
characterized by different levels of ITH. The obtained dynamics are compared with the baseline
scenario. In the next simulations, we consider different compositions of the initial tumour,
while the other parameters are kept constant to the values listed in Table 1 and Table 2.

4.2 The number of sub-populations of tumour cells constituting a tumour corre-
lates with the effectiveness of the immune response

To investigate how the immune response is affected by different degrees of heterogeneity, we
start by comparing two situations in which the initial tumours are characterized by different
number of sub-populations of tumour cells. We consider as initial conditions tumour-3a, with
3 different sub-populations of tumour cells, and tumour-7a, with 7 different sub-populations of
tumour cells, defined as in Section 3.2. For each tumour, we consider the same initial fraction
of immunogenic and non-immunogenic cells, corresponding to 75% of immunogenic cells and
25% of non-immunogenic cells.
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Figure 4: Baseline scenario: tumour development in the absence of CD8" T cells. Time
evolution of the tumour cell number in the absence of CD8™ T cells. The shaded area indicates
+/— standard deviation between 10 simulations. The black dotted line highlights a numerical
estimation of the tumour cell carrying capacity.

Figure 5(a)-(c) show the time evolution of the total number of tumour cells, along with the
corresponding time evolution of immunogenic and non-immunogenic cell number. Figures
5(d)-(f) also display the spatial cell distributions observed at different times of two simulations.
As shown by Figure 5(a), the two tumours have similar dynamics from the beginning of sim-
ulations until day 10, with an initial increase of the cell number followed by a steep decrease.
After day 10, in tumour-3a, the number of tumour cells continues to decrease until it reaches
a low, almost constant level. Figure 5(b) and (c), along with the corresponding panel of Fig-
ure 5(f), show that, at the end of simulations, all the immunogenic cells are eliminated by the
CD8™ T cells, and only few non-immunogenic cells remain in the system. On the other hand,
for tumour-7a, after day 10 the tumour cell number increases steadily over time. This dynamic
leads to a final tumour size similar to the initial one. Moreover, as shown by Figure 5(b), the
number of immunogenic cells decreases over time, whereas the number of non-immunogenic
cells, after being initially kept under control by immune cells, increases steeply (Figure 5(c)).
The related panels of Figure 5(d)-(f) show the progressive colonisation of the tumour by non-
immunogenic cells.

Comparing these results with the baseline scenario of Section 4.1, for both tumours we clearly
see the effects of the action of immune cells on tumour growth, which is no longer simply lo-
gistic and saturating to carrying capacity. However, the effectiveness of the immune response
depends on the tumour considered. For tumour-3a, the immune response is efficient and almost
eliminates all tumour cells. On the other hand, for tumour-7a, the higher heterogeneity leads to
a less effective immune response and the tumour eventually grows again. These results sug-
gest that, even if characterized by equal fractions of immunogenic and non-immunogenic cells,
tumours with larger number of sub-populations of tumour cells (i.e. antigens) are more aggres-
sive. This indicates that the number of sub-populations of tumour cells and antigens impact on
the effectiveness of the immune response. Our outcomes are in agreement with experimental
results observed in murine melanoma models presented in [78]. In this study, the induction of
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Figure 5: The number of sub-populations constituting a tumour impacts on the effectiveness
of the immune response. Plots in panels (a)-(c) display the time evolution of the total tumour
cell number, and the corresponding evolution of the number of immunogenic cells and non-
immunogenic cells for tumour-3a (in red) and tumour-7a (in blue). Shaded areas indicate +/—
standard deviation between 10 simulations. For these simulations, an equal initial fraction
of 75% of immunogenic cells and 25% of non-immunogenic cells was considered. Insets in
panels (d)-(f) display an example of the spatial distribution of cells for tumour-3a (first row)
and tumour-7a (second row) at different times of the simulation. Purple cells are immunogenic
cells, green cells are non-immunogenic cells and red cells are CD8" T cells.

UVB-derived mutations, which lead to an increase in the number of sub-populations of tumour
cells, results in aggressive tumours with decreased anti-tumour immune activity. However,
when different single-cell-clone derived tumours (characterized by a unique sub-population of
tumour cells) are considered, the immune system is able to effectively eradicate them.

The outcomes of our model indicate that in tumour-3a the presence of a low number of
antigens leads to a better immune detection, enhancing the ability of the immune system to
eliminate the tumour. In both tumours the immune system rapidly targets and eliminates
immunogenic cells, giving a competitive advantage to non-immunogenic cells. In fact, we
initially observe a reduction in the number of tumour cells. However, in tumour-7a, as more
sub-populations of tumour cells are present, non-immunogenic cells have a better chance of
escaping immune surveillance. The outcome is a weaker anti-tumour immune response. Over-
all, our results are in agreement with the recent hypothesis by Wolf et al. [78] that, because
of increased antigenic variability, the relative expression of each antigen is weaker in tumours
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composed of a larger number of sub-populations of tumour cells. In particular, clonal antigens
undergo “dilution” within the tumour, and, therefore, the chance for CD8* T cells to identify
immunogenic cells is reduced. This leads to a diminished ability of CD8" T cells to mount a
sufficient cytotoxic response.

4.3 Differentinitial fractions of immunogenic and non-immunogenic cells can cause
variations in anti-tumour immune response

The results discussed in the previous subsection illustrate how the effectiveness of the immune
response can decreases in tumours with larger number of sub-populations of tumour cells. We
investigate the effects of ITH further, focusing on the role of the fraction of immunogenic and
non-immunogenic cells. We fix the number of sub-populations of tumour cells considering
only tumour-3a, and vary the initial fraction of immunogenic and non-immunogenic cells.

The plot in Figure 6 displays the number of tumour cells remaining at the end of simulations
(after 20 days), for different initial fractions of immunogenic and non-immunogenic cells. For
low fractions of non-immunogenic cells (< 25%), none or very few tumour cells survive after 20
days. On the contrary, for tumours initially composed of more than 50% of non-immunogenic
cells, the number of tumour cells after 20 days is larger than the initial one. In addition, the
final number of cells increases as we increase the initial fraction of non-immunogenic cells.
These results suggest that the anti-tumour immune action is efficient only when the fraction of
non-immunogenic cells is low compared to the fraction of immunogenic cells. Moreover, the
larger the fraction of non-immunogenic cells, the weaker the immune response is.

Compared to the baseline scenario of Section 4.1, we see the effects of the immune system
on tumour growth. In fact, for each scenario the number of cells at the end of simulations is
lower than the tumour carrying capacity shown in Figure 4. However, for larger fractions of
non-immunogenic cells, the immune response is not efficient enough to reduce the initial tu-
mour size.

Taken together, our results qualitatively reproduce key findings of experiments performed
in in vivo syngeneic mice tumour models [29]. The results presented in [29] indicate that a
non-effective immune response may occur when the fraction of immunogenic cells in the tu-
mour is low. Our computational results provide an explanation for such emergent behaviour.
Since sub-clonal antigens are presented at a low level by the MHC-I, non-immunogenic cells
trigger a poor CD8* T cell response. Thus, tumours characterized by a major fraction of non-
immunogenic cells result in a weaker overall immune response. Furthermore, Gejman et al.
[29] put forward the idea that the threshold fraction of immunogenic cells that is required to
trigger an antigen-specific CD8" T cell response may vary depending on the antigens. In order
to address this point, such a feature could be implemented in the model, for example by con-
sidering antigen presentation levels or chemotactic responses specific to each antigen.

The role of the immunogenic cell fraction within the tumour is further analysed as we ob-
serve a gap between the results obtained considering 25% and 50% of non-immunogenic cells
(see Figure 6). This is investigated by performing simulations considering fractions of non-
immunogenic cells between these two values. Figure 7 displays the time evolution of the num-
ber of tumour cells of 10 different simulations, corresponding to the same initial fractions of
non-immunogenic cells (33%) and immunogenic cells (67%). In this case, we carry out numer-
ical simulations for 38800 MCS (corresponding to 27 days).

With these initial conditions, we observe a large variability in the tumour-immune dynamics.
In particular, Figure 7(a) shows that, in some simulations, the number of tumour cells decreases
over time and only few cells remain at the end of the simulations. In other cases, after an ini-
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Figure 6: Different initial fractions of immunogenic and non-immunogenic cells can cause
variations in the immune response to tumour cells. Plot displaying the number of tumour
cells remaining after 20 days (28800 MCS) for different initial fractions of immunogenic and
non-immunogenic cells. For these simulations, only tumour-3a was considered. The tumour
cell numbers presented here were obtained as the average over 10 simulations and the error
bars display the related standard deviation. The black dotted line highlights the number of
tumour cell at the initial time of the simulations.

tial phase between day 0 and day 10 where CD8" T cells keep under control the growth of
the tumour, the number of tumour cells eventually increases and the resulting final number of
tumour cells is larger than the initial one. This is also illustrated by Figure 7(b), which displays
a sample of the spatial cell distributions at different time of two simulations. In particular, here
we show that, starting from the same initial condition, we obtain two different outcomes: in one
case immune clearance occurs and tumour cells are almost entirely eliminated by the immune
system; in the other case tumour cells escape immune surveillance. When immune escape oc-
curs, in the example proposed in Figure 7(b) at day 14, immunogenic cells are surrounded by
non-immunogenic cells, which hamper immune detection. This leads to a decreased influx of
CD8™ T cells in the tumour micro-environment and results in a weaker immune response.

These results suggest that the stochasticity which is present in cell dynamics may affect the
outcomes of immune action. These results may partially explain the outcomes of earlier exper-
imental research [17, 43], which found that responses of patients with similar tumours can vary
considerably. In this regard, the use of mathematical models for identification and understand-
ing of immune escape mechanisms in individual tumour could help advancing personalized
tumour treatment.
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Figure 7: Stochasticity in cell dynamics may affect the outcomes of immune action. Plot in
panel (a) displays the time evolution of the tumour cell number for an initial fraction of 33%
of non-immunogenic cells and 67% of immunogenic cells for 10 runs of simulations. For these
simulations, only tumour-3a was considered. The insets in panel (b) show an example of the
observed spatial distributions of cells corresponding to different times of two simulations.

4.4 Both the number of sub-populations of tumour cells constituting a tumour and
the fraction of immunogenic and non-immunogenic cells affect the effective-
ness of the immune response

So far, we have investigated with our model the effects of ITH on immune response by vary-
ing independently the number of sub-populations of tumour cells constituting a tumour and
the fraction of immunogenic and non-immunogenic cells. Now, we study their combined ef-
fect in mediating tumour growth. We consider as initial conditions tumour-3a and tumour-7a,
characterized by different numbers of sub-populations of tumour cells, and for different initial
fractions of immunogenic and non-immunogenic cells.

Figure 8 displays the time evolution of the total number of cells for different initial tumour
compositions, and compares the number of immunogenic and non-immunogenic cells at the
end of simulations with respect to the initial one. As shown by Figure 8(al), the immune sys-
tem is able to completely eradicate the tumour only when it is initially composed of 100% of
immunogenic cells, independently of the number of sub-populations of tumour cells. When
the initial tumour is made of 25% of non-immunogenic cells, Figure 8(b1) show that the two
tumours have different dynamics. In particular, as already observed in the results presented in
Section 4.2, the number of cells in tumour-3a decreases over time until the end of the simula-
tions, while the number of cells in tumour-7a, after an initial decrease, steadily increases until
the end of the simulations. Finally, when tumours are initially composed of more than 50% of
non-immunogenic cells, similarly to the baseline scenario of Section 4.1, they follow a logistic
growth, except for an initial decrease shown by Figure 8(cl). For both tumours, the tumour
cell number eventually saturates at a certain value (see Figure 8(c1)-(el)). In these cases, the
saturation value of the number of tumour cells is larger than the initial tumour cell number.
Moreover, the saturation value attained increases as we increase the level of heterogeneity of
the tumour (respectively, the number of sub-populations of tumour cells and the fraction of
non-immunogenic cells). Such results indicate that in these cases CD8" T cells are present in
the tumour micro-environment but do not produce an effective immune response. Persistent
antigen presentation has been proven to cause continuous TCR stimulation that could directly
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Figure 8: Both the number of sub-populations constituting a tumour and the fraction of non-
immunogenic cells affect the effectiveness of the immune response. Plots in panel (al)-(el)
display the time evolution of the tumour cell number for tumour-3a (in red) and tumour-7a (in
blue). In both tumours, from (al) to (el) the initial fraction of non-immunogenic cells is in-
creased. Shaded areas indicate +/— standard deviation between 10 simulations. Plots in panel
(a2)-(e2) display the corresponding average number of immunogenic and non-immunogenic
cells at the end of simulations with respect to the initial one. The error lines represent the
standard deviation between 10 simulations.

induce CD8" T cell dysfunction and exhaustion [79, 80]. The model presented in this work
does not include this aspect, but it could be easily extended to do so.

The outcomes of our model recapitulate the main results of in in vivo clonal mixing exper-
iments in mice models presented by Wolf et al. [78], who studied the combined effect of these
two characteristics of ITH in mediating tumour growth and eradication. Wolf and collaborators
have demonstrated that tumours with increased number of clones and large genetic diversity
are more aggressive. In our model, the number of clones can be linked to the number of sub-
populations of tumour cells, while genetic diversity may be linked to the immunogenicity of
the tumour. Moreover, our findings are in agreement with an experimental work indicating
that patients whose tumours are highly heterogeneous have increased levels of relapse after an
initial response to immunotherapy and worse survival expectations than patients with more
homogeneous tumours [59].

We next analyse the evolution over time of immunogenic and non-immunogenic cells.
When tumours are initially composed of 25% of non-immunogenic cells, Figure 8(b2) shows
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that the two tumours evolve in different ways. While the number of non-immunogenic cells is
considerably reduced in tumour-3a, the final number of non-immunogenic cells increases up to
four times its initial number in tumour-7a. On the other hand, when tumours are initially com-
posed of more than 50% of non-immunogenic cells, independently of the tumour considered,
we observe a similar trend in the evolution of immunogenic and non-immunogenic cells (see
Figure 8(c2)-(e2)). In particular, for both tumour types, the number of immunogenic cells tends
to remain stable or decreases slightly. On the other hand, the number of non-immunogenic
cells increases and grows to up to twice its initial value.

These results suggest that, beyond a certain non-immunogenic cell fraction threshold, the im-
mune system becomes inefficient in both tumour types independently of the number of sub-
populations of tumour cells. Moreover, they suggest that the selective pressure of the im-
mune response can lead to more aggressive tumours, characterized by larger fractions of non-
immunogenic cells. In this regard, our results follow the same behaviour of previous experi-
mental works demonstrating that, under cancer therapeutics (e.g. chemotherapy or radiother-
apy), the population of tumour cells is exposed to the selective stress induced by the treatment
[34, 38, 75]. Therefore, more resistant cells acquire a competitive advantage over more sensitive
cells and induce a weaker response to treatment in the long run. The resulting outcome is a
more aggressive tumour, which may ultimately grow again [63].

5 Conclusions

The number of sub-populations of tumour cells constituting a tumour and the fraction of im-
munogenic and non-immunogenic cells within it are two major components of ITH, and play a
key role in the immune response against solid tumours. Mathematical models make it possible
to asses the influence of these two components of ITH on anti-tumour immunity in a controlled
manner.

In this work, we have presented a spatially explicit stochastic individual-based model of the
interaction dynamics between CD8™ T cells and tumour cells, and we have investigated how
ITH affects the anti-tumour immune response.

Our numerical results show that the number of sub-populations of tumour cells constituting a
tumour can have a crucial impact upon the outcome of the immune response (Figure 5). In the
scenario of a tumour characterized by a low number of sub-populations of tumour cells, im-
mune clearance can occur. Conversely, when the initial tumour is composed of a larger number
of sub-populations, the tumour may be able to escape immune recognition and ultimately grow
again. In this case, our results demonstrate that, in more heterogeneous tumours, tumour cells
could have a better chance of escaping immune surveillance because clonal antigens undergo
“dilution” within the tumour relative to other antigens, diminishing the ability of CD8" T cells
to mount a sufficient cytotoxic response.

The outcomes of our model support the idea that varying the initial fraction of immunogenic
and non-immunogenic cells leads to variations on the effectiveness of the immune response
and results in distinct scenarios, from immune clearance of the tumour to immune escape (Fig-
ure 6). We have also observed that for certain intermediate fractions of immunogenic and
non-immunogenic cells, stochasticity in cell dynamics plays an important role, and can lead
both scenarios close to tumour eradication and to scenarios where a large number of tumour
cells persists over time (Figure 7).

We have also studied the effects of ITH on anti-tumour immune response by varying both
the number of sub-populations of tumour cells and the initial fraction of immunogenic and
non-immunogenic cells (Figure 8). For equal fraction of immunogenic and non-immunogenic
cells, tumours with increased number of sub-populations of tumour cells are more aggressive
than tumours with lower number of sub-populations of tumour cells. However, beyond a cer-
tain threshold value of the fraction of non-immunogenic cells, the immune system becomes

17



inefficient against both types of tumours, independently of the number of sub-populations of
tumour cells. In addition, we found that increasing initial fractions of non-immunogenic cells
always led to a less effective CD8T T cell response. When the tumours are not eradicated, the
final fraction of non-immunogenic cells is larger than the initial one. This suggests that the
immune system may act as a bottleneck which selects and eliminates immunogenic cells, thus
allowing the tumours to escape immune regulation.

In summary, our findings demonstrate the importance of ITH as a possible predictor of the
outcome of immune action. Our results support the idea that patients with tumours bearing
few clonal antigens are expected to be more likely to exhibit a durable benefit from immune re-
sponse than patients with heterogeneous tumours characterized by many different sub-clonal
antigens [59]. On the other hand, our results disbelieve the fact that highly heterogeneous tu-
mours, characterized by the expression of many different antigens, can enhance the efficacy of
immune response. In fact, our results indicate that excessive antigen heterogeneity may, con-
versely, actively impair anti-tumour CD8" T cell immune response. This is also supported by
a recent clinical work which found that excessive mutagenesis, directed to enhance the tumour
mutational burden, may decrease the efficacy of immunotherapy [78].

The current version of our model can be developed further in several ways. We could
incorporate extended aspects of the tumour micro-environment, such as the expression of im-
munosuppressive factors (e.g. PD1 or CTLA4), which affect the effectiveness of anti-tumour
immune response. In fact, these inhibitory factors induce the exhaustion of CD8* T cells in the
tumour micro-environment impairing the immune response [40, 77]. The inclusion of CD8" T
cell exhaustion caused by inhibitory factors could give further explanations for other mecha-
nisms of immune escape. The exhaustion mechanism could be included in the model by, for
example, altering the value of the parameter governing the efficiency of the CD8T T cell popu-
lation in eliminating tumour cells.

The spatial dimension and the flexibility of our model would also allow for the study of the
spatial distribution of CD8" T cells within the tumour and the role of immune infiltration on
the tumour dynamics [27]. Moreover, by posing the model on a 3D domain, a deeper under-
standing of the spatial dynamics of tumour-immune interactions could be achieved.

Finally, from a modelling point of view, although more tailored to capture fine details of the dy-
namics of single cells, individual-based models are not amenable to analytical studies, which
may support a more in-depth theoretical understanding of the application problems under
study. For this reason, it would be useful to derive a continuum version of our model by using
mean filed methods similar to those employed in [5, 18, 64].

In perspective, our model may be used to assess different levels of ITH as biomarkers for com-
paring and predicting outcomes in tumour treatment. Coupling the model with tumour biop-
sies from patients could offer insight into potential outcomes of treatments. Finally, our model
may be a promising tool to explore therapeutic strategies designed to decrease tumour hetero-
geneity and improve the overall anti-tumour immune response.

CRediT authorship contribution statement

Emma Leschiera: Conceptualization, Methodology, Software, Formal analysis, Investigation,
Visualization, Writing - original draft. Tommaso Lorenzi: Conceptualization, Methodology,
Writing - Review & Editing, Supervision. Shensi Shen: Conceptualization, Methodology, Re-
sources, Writing - Review & Editing. Luis Almeida: Conceptualization, Methodology, Writing
- Review & Editing, Supervision. Chloe Audebert: Conceptualization, Methodology, Formal
analysis, Validation, Visualization, Writing - original draft, Supervision.

18



Acknowledgments

The authors are grateful to Jacqueline Marvel for sharing her knowledge on the immune re-
sponse.

E.L. has received funding from the European Research Council (ERC) under the European
Union’s Horizon2020 research and innovation programme (grant agreement No 740623).

T.L. gratefully acknowledges support of the MIUR grant “Dipartimenti di Eccellenza 2018-
2022”.

A Details of computational model

The individual-based model has been numerically solved using the multicellular modelling
environment CompuCell3D [39]. This software is an open source solver, which uses a Cellular
Potts model [33] (also known as CPM, or Glazier-Graner-Hogeweg model). In Cellular Potts
models, biological cells are treated as discrete entities represented as a set of lattice sites, each
with characteristic values of area, perimeter, and intrinsic motility on a regular lattice. Interac-
tion descriptions and dynamics between cells are modelled by means of the effective energy of
the system. This determines many characteristics such as cell size, motility, adhesion strength
and the reaction to gradients of chemotactic fields. During a simulation, each cell will attempt
to extend its boundaries, through a series of index-copy attempts, in order to minimise the ef-
fective energy. The success of the index copy attempt is dependent upon probabilistic rules
which take into account the change in energy.

A1 Cell types

In Cellular Potts models, cells are uniquely identified with an index o (i) on each lattice site i,
with 7 a vector of integers occupying lattice site i. Each cell in the model has a type 7(o(7)),
which determines its properties, and the processes and interactions in which it participate. In
our model, to characterise the different sub-populations of tumour cells, we define as many
types of tumour cells as sub-populations of tumour cells. Moreover, CD8" T cells have as
many types as TCRs considered for the simulation, which corresponds also to the number of
antigens considered. Note that, technically, the extracellular medium is also considered as a
cell of type medium.

A.2 Cellular dynamics

The effective energy is the basis for operation of all Cellular Potts models, including Compu-
Cell3D [39], because it determines the interactions between cells (including the extracellular
medium). Configurations evolve to minimize the effective energy H of the system, defined as

H = Z J(7(0:),7(0))(1 = 8(04,07)) + Y [Aarea(0)(a(0) = Ac(0))*] + D [Mper(0)(p(0) = Fi(0))?] A1)

boundary energy area constraint perimeter constraint

The most important component of the effective energy equation is the boundary energy, which
governs the adhesion of cells. The boundary energy J(7(0;),7(0;)) describes the contact en-
ergy between two cells 0; and o of types 7(o;) and 7(0;). It is calculated by the sum over all
neighbouring pixels i and j that form the boundary between two cells. Thanks to the term
(1 = d(04,05)), the boundary energy contribution is considered only between lattice sites be-
longing to two different cells. The second and third terms represent respectively a cell-area
and cell-perimeter constraint. In particular, a(c) and p(c) are the surface area and perimeter
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of the cell o, A;(0) and P;(o) are the cell’s target surface area and perimeter and Ayeq(0) and
Aper(0) are an area and perimeter constraint coefficient.

The cell configuration evolves through lattice-site copy attempts. To begin an index-copy
attempt, the algorithm randomly selects a lattice site to be a target pixel 4, and a neighbouring
lattice site to be a source pixel i’. If the source and target pixels belong to the same cell (i.e. if
o(i) = o(7')), they do not need to attempt an lattice-site copy and thus the effective energy will
not be calculated. Otherwise, an attempt will be made to switch the target pixel as the source
pixel, thereby increasing the surface area of the source cell and decreasing the surface area of
the target cell.

The algorithm computes AH = H — H', with H the effective energy of the system and H’ the
effective energy if the copy occurs. Then, it sets o (i) = o(i') with probability P(c(i) — o(i)),
given by:

P(o(i) = o(i) = aH (A.2)

1 . AH <O
exp Tm : AH > 0.

The change in effective energy AH evaluate the energy cost of such a copy and parameter
T,, determines the stochasticity of accepted copy attempts. The unit of simulation time is the
Monte Carlo step (MCS).

A.3 Subcellular dynamics and chemotaxis

In our model we simulate CD8" T cell chemotaxis toward tumour cells, defined as the cell
motion induced by a presence of a chemical. In CompuCell3D [39], chemotaxis is obtained
biasing the cell’s motion up or down a field gradient by adding a term A H ¢, in the calculated
effective-energy change A H used in the acceptance function (A.2). For a field ¢(7):

AHchem = —Achem (c(i) — C(i/)) (A.3)

where ¢(i) is the chemical field at the index-copy target pixel 4, c(i') the field at the index-copy
source pixel i/, and A¢pep, the strength and direction of chemotaxis.
The change in concentration of the chemical field c is obtained by solving a reaction-diffusion
equation of the following general form:

Oc

2 — DV?c — A4
o Vie—vye+ S (A.4)

where D, v and S denote the diffusion constant, decay constant and secretion rates of the field,
respectively. These three parameters may vary with position and cell-lattice configuration, and
thus be a function of cell o and pixel i.

B Model parameters

The individual-based model is parametrised using parameter values obtained from published
biological data wherever possible. We use a 2D squared spatial domain with 400 x 400 lat-
tice sites (pixels). We assume that a pixel of the domain corresponds to 3 x 3 um?. As the
CD8" T cell diameter is estimated to be between 10 um and 12 pm [28, 32], the initial size of
a CD8" T cell is 4 x 4 pixels. A tumour cell diameter is estimated to be about 20 pm [19],
therefore we assume that each newly divided tumour cell is made of 5 x 5 pixels. In addition,
the maximum CD8* T cell migration speed measured in the simulation is around 10 pixels /
100 MCS. Therefore, using the CD8" T cell migration measurements in vivo (2-25 pm/min, see
Miller et al. [62]) we choose 1 MCS ~ 1 minute as a time scale. The parameters for the Cellular
Potts model are listed in Table 1, while all the other parameters with their related references are
listed in Table 2. Files to run a simulation example with Compucell3D software are available
at: https://plmlab.math.cnrs. fr/audebert/cc3dmodeltumourcds.
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Table 1: Parameter values used to implement the Cellular Potts model. Energies, temperature
and constrains are dimensionless parameters.

Phenotype Symbol Description Value Reference
Domain  Az,Ay Domain spacing in the x or y direction 1 Pixel = 3 X
3 um?
At Time-step 1 MCS =1 min
ty Final time 20 (days)
CC3D Jmr Contact energy tumour cells-medium 50
Jme Contact energy CD8™" T cells-medium 50
Jor Contact energy CD8" T cells-tumour 20
cells
Jrr Contact energy tumour cells-tumour 110
cells
Jec Contact energy CD8" T cells-CD8" T 1000
cells
dr Tumour cell diameter 20-40 (um) [32]
de CD8™ cell diameter 12 (um) [28]
Aarea Tumour cell area constrain 10
Aper Tumour cell perimeter constrain 10
T Temperature 10
Achem Strength and direction of chemotaxis 50
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