Rh(I) Coordination Chemistry of Chiral α-Aminophosphine(η 6 -arene)chromium Tricarbonyl Ligands

Jean-Michel Camus, Jacques Andrieu, Rinaldo Poli, Philippe Richard, Clara Baldoli, Stefano Maiorana

To cite this version:
Jean-Michel Camus, Jacques Andrieu, Rinaldo Poli, Philippe Richard, Clara Baldoli, et al.. Rh(I) Coordination Chemistry of Chiral α-Aminophosphine(η 6 -arene)chromium Tricarbonyl Ligands. Inorganic Chemistry, 2003, 42 (7), pp.2384-2390. 10.1021/ic025588k. hal-03283643

HAL Id: hal-03283643
https://hal.science/hal-03283643
Submitted on 19 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Rh(I) coordination chemistry of chiral α-amino-phosphine(η^6-arene) chromium tricarbonyl ligands

Jean-Michel Camus[a], Jacques Andrieu *[a], Rinaldo Poli[a], Philippe Richard[a]

Clara Baldoli[b] and Stefano Maiorana[b]

[a] Laboratoire de Synthèse et d’Electrosynthèse Organométalliques, UMR 5632, Université de Bourgogne, Faculté des Sciences “Gabriel”, 6 boulevard Gabriel, 21000 Dijon, France

[b] Dipartimento di Chimica Organica e Industriale e CNR Centro, Studio Sintesi Stereochimica Speciali Organici, Università di Milano, via C. Golgi 19, I-20133 Milano, Italy

Proofs to: Dr Jacques Andrieu

Laboratoire de Synthèse et d’Electrosynthèse Organométalliques
UMR 5632, Université de Bourgogne, Faculté des Sciences “Gabriel”
6 boulevard Gabriel, 21000 Dijon, France
e-mail: Jacques.Andrieu@u-bourgogne.fr
Illustrated Contents

Synopsis

A rhodium complex containing only one chiral α-amino-phosphine ligand leads to a stable complex under high CO pressure which is a precatalyst for styrene hydroformylation.

Keywords:

α-P,N ligands, rhodium, coordination chemistry, arene chromium tricarbonyl, NH$^-$X intramolecular interaction, hydroformylation.
Abstract

The diastereoselective addition of Ph₂PH to the chiral ortho-substituted \(\eta^6\)-benzaldimine complexes (\(\eta^6\)-o-X-C₆H₄CH=NAr)Cr(CO)₃ (X,Ar = MeO, p-C₆H₄OMe: 1; Cl,Ph: 2), leads to the formation of the corresponding chiral aminophosphines (\(\alpha\)-P,N) 3 and 4 in equilibrium with the starting materials. The uncomplexed benzaldimine (o-ClC₆H₄CH=NPh), 2', analogously produces an equilibrium amount of the corresponding aminophosphine 4'. Depending on the equilibrium constant, the subsequent addition of \(\frac{1}{2}\) equivalent of [RhCl(COD)]₂ leads to either Ph₂PH oxidative addition in the case of 3, or to the corresponding [RhCl(COD)(\(\alpha\)-P,N)] complexes 5 and 5' in the case of the aminophosphines 4 and 4'. The addition of the latter ligands, as racemic mixtures, to \(\frac{1}{4}\) equivalent of [Rh(CO)₂Cl]₂ leads to [RhCl(CO)(\(\alpha\)-P,N)]₂ complexes 7 or 7' as mixtures of (\(R_C,S_C\))/(\(S_C,R_C\)) and (\(R_C,R_C\))/(\(S_C,S_C\)) diastereomers. The rhodium complexes 5 and 7' have been fully characterized by IR and \(^{31}\)P NMR spectroscopy and by X-ray crystallography. These compounds exhibit intramolecular Rh-Cl···H-N interactions in the solid state and in solution. The stability of the new rhodium complexes has been studied under different CO pressures. Under one atmosphere of CO, 5 is converted to an unstable complex [RhCl(CO)₂(\(\alpha\)-P,N)], 6, which undergoes ligand redistribution leading to 7 plus an unidentified complex. This reaction is inhibited under higher CO or syngas pressure, as confirmed by the observation of the same catalytic activity in hydroformylation when styrene was added to a catalytic mixture which was either freshly prepared or left standing for 20 h under high CO pressure.
Introduction

Since the discovery that bidentate bifunctional P,N ligands increase considerably the activity and the selectivity of Pd, Ni, Ru and Ir catalysts relative to PR$_3$, their preparation has been the subject of extensive investigations.$^{1-7}$ It has been proposed that the nitrogen function increases the electron density on the metal and subsequently promotes the oxidative addition reactions.8 When both heteroatom donors are separated by only one carbon atom (hereafter termed α-P,N ligand), the nitrogen function has been shown to coordinate to a second metal centre,9,10 or to remain uncoordinated in a mononuclear complex.11 In the latter case, monodentate α-P,N ligands display a free amine group which may assist proton transfer steps in catalytic cycles, as was shown in Ni and Pd catalysis.1,2

We have recently described a synthesis of α-P,N ligands, where the N donor is a secondary amine function, which is based on the reversible addition reaction of Ph$_2$PH to a wide range of benzaldimines. The newly formed P-C bond was found to be stabilized by electron withdrawing substituents on the N- or the C-atom and/or by P-coordination.11 Moreover, the use of chiral (η^6-benzaldimine) tricarbonyl chromium complexes has allowed the access to chiral versions of this ligand architecture via a diastereoselective reaction12, see Scheme 1.

By analogy with our reported stabilization of Ph$_2$PCH(Ph)NHPh by coordination to Cu(I),11 we wished to know whether the stabilizing coordination effect could be generalized to a metal center such as Rh(I) for potential applications to homogeneous catalysis work. We report in this paper the preparation of rhodium complexes, including some unusual features of the solid state and solution properties, and an initial testing of their catalytic behavior in styrene hydroformylation.
Experimental Section

All manipulations were carried out under purified argon and in the dark using standard Schlenk techniques. All solvents were dried and deoxygenated prior to use by standard methods. NMR measurements (¹H, ¹³C{¹H} and ³¹P{¹H}) were carried out with a Bruker AC200 spectrometer. ¹H-¹H and ¹H-¹³C COSY spectra were recorded on a Bruker 500 DRX Advance instrument. The peak positions are reported with positive shifts in ppm downfield of TMS as calculated from the residual solvent peaks (¹H and ¹³C) or downfield of external 85% H₃PO₄ (³¹P). The coordinated 1,5-COD (1,5-cyclooctadiene) C and H nuclei are labeled from 1 to 8, C₁ and C₂ being trans to P. IR spectra were recorded with a Bruker IFS 66V spectrophotometer using KBr optics. Elemental analyses were carried out by the analytical service of the L.S.E.O. with a Fisons Instruments EA1108 analyzer. The commercial compounds [RhCl(COD)]₂ and [Rh(CO)₂Cl]₂ (Strem) were used as received and diphenylphosphine (Aldrich) was distilled prior to use. The α-aminophosphine ligands Ph₂P-CH(Ar¹)-NHAr² (2: Ar¹ = o-C₆H₄Cl, Ar² = C₆H₅, 3: Ar¹ = o-C₆H₄(OCH₃)[Cr(CO)₃], Ar² = p-C₆H₄OCH₃; 4: Ar¹ = o-C₆H₄Cl[Cr(CO)₃], Ar² = Ph; 4': Ar¹ = o-C₆H₄Cl, Ar² = Ph) were isolated or generated as previously described.¹²

Synthesis of [RhCl(COD)(Ph₂P-CH{o-C₆H₄Cl[Cr(CO)₃]}-NPH)-], 5. To a solution of 2 (57 mg, 0.162 mmol) in CDCl₃ (2 ml) was added Ph₂PH (30 μl, 0.162 mmol). After 3 hours the complete formation of the α-P,N ligand 4 was achieved. The solution was then transferred onto [RhCl(COD)]₂ (40 mg, 0.081 mmol) and stirred for 3 hours. The solvent was then removed and the residue was dissolved in THF. Addition of pentane afforded the air sensitive pale yellow crystals 5. Yield (92 mg, 72 %). ¹H NMR (C₆D₆) : 8.00 (1H, s, br, NH), 7.94-6.86 (15H, m, aromatics), 7.28 (1H, d, C₆H₄Cl, ³J(H,H) = 6 Hz), 6.00 (1H, dd, PCH, ³J(H,H) = 10 Hz, ²J(P,H) = 13 Hz), 5.96 (1H, s, br, H₁), 5.95 (1H, s, br, H₂), 4.57 (1H, t, C₆H₄Cl, ³J(H,H) = 6 Hz), 4.41 (1H, d, C₆H₄Cl, ³J(H,H) =
6 Hz), 4.13 (1H, t, \(\text{C}_6 \text{H}_4 \text{Cl} \)), 3.08 (1H, s, br, H_5), 2.87 (1H, s, br, H_6), 2.22-1.45 (8 H, m, H_{3,4,7,8}). \(^{13}\text{C}\{^{1}\text{H}\} \text{NMR (C}_6\text{D}_6\): 231.6 (3C, s, Cr(CO)_3), 146.7 –114.3 (m, C-aromatics), 116.9 (1C, s, C_6HCl), 109.0 (1C, s, C_6HCl), 106.5 (2C, m, C_1, C_2), 97.0 (1C, s, C_6HCl), 94.1 (1C, s, C_6HCl), 86.3 (1C, s, C_6HCl), 85.3 (1C, s, C_6HCl), 73.1 (1C, d, C_5, \(^1J\text{R}(\text{Rh,C olefin}) = 12 \text{ Hz} \)), 71.9 (1C, d, C_6, \(^1J\text{R}(\text{Rh,C olefin}) = 13 \text{ Hz} \)), 58.2 (1C, d, PCH, \(^1J\text{P}(\text{C}) = 20 \text{ Hz} \)), 33.1 (1C, s, C_3), 33.0 (1C, s, C_8), 29.4 (1C, s, C_4), 28.9 (1C, s, C_7). \(^{31}\text{P}\{^{1}\text{H}\} \text{NMR (C}_6\text{D}_6\): 44.1 (d, \(^1J\text{R}(\text{P}) = 155 \text{ Hz} \)). IR (CH_2Cl_2): \(\nu_{\text{NH}} \): 3285 (b) and \(\nu_{\text{CO}} \): 1982 (vs), 1911(vs, vb) cm\(^{-1}\). IR (nujol): \(\nu_{\text{NH}} \): 3288 (w, b) cm\(^{-1}\).

C_{36}H_{33}Cl_2CrNO_3PRh (784.4): calcd. C 55.12, H 4.24, N 1.70; found C 55.15, H 4.25, N 1.70.

Synthesis of [RhCl(COD)(Ph_2P-CH(o-C_6H_4Cl)-NPh)], 5’. By using identical operating procedures as described above for compound 5, compound 2’ (35 mg, 0.162 mmol) and Ph_2PH (30 \(\mu l \), 0.162 mmol) were initially mixed in CDCl_3. After 3 hours an equilibrium with the \(\alpha \)-P,N ligand 4’ was achieved. The complex 5’ was obtained as single yellow crystals after addition to [RhCl(COD)]_2 (40 mg, 0.065 mmol) and work-up as described in the previous section. Yield (63 mg, 60 %). \(^1\text{H} \text{NMR (C}_6\text{D}_6\): 9.26-6.50 (19H aromatics + NH), 6.35 (1H, dd, PCH, \(^2J(P,H) = 14.6 \text{ Hz} \)), 5.83 (2H, s, br, H_1 + H_2), 3.08 (1H, s, br H_5), 2.90 (1H, s, br, H_6), 2.20-1.44 (8H, m, br, H_{3,4,7,8}). \(^{13}\text{C}\{^{1}\text{H}\} \text{NMR (C}_6\text{D}_6\): 147.4-113.4 (m, C-aromatics), 105.6 (s, br, C_1, C_2), 71.9 (d, 1C, C_5, \(^1J\text{R}(\text{Rh,C olefin}) = 14 \text{ Hz} \)), 71.0 (d, 1C, C_6, \(^1J\text{R}(\text{Rh,C olefin}) = 14 \text{ Hz} \)), 56.7 (d, 1C, PCH, \(^1J\text{R}(\text{P}) = 28 \text{ Hz} \)), 33.35 (s, 1C, C_3), 32.4(s, 1C, C_8), 29.3(s, 1C, C_4), 28.4(s, 1C, C_7). \(^{31}\text{P}\{^{1}\text{H}\} \text{NMR (C}_6\text{D}_6\): 34.7 (d, \(^1J\text{R}(\text{P}) = 154 \text{ Hz} \)). C_{33}H_{33}Cl_2CrNPRh (648.4): calcd. C 55.12, H 4.24, N 1.70; found C 55.15, H 4.25, N 1.70.

Synthesis of [RhCO(Ph_2P-CH(o-C_6H_4Cl)[Cr(CO)_3]-NHPH)zCl], 7. A solution of 4 (87 mg, 0.16 mmol) in toluene (5 mL) was added to a solution of [RhCl(COD)]_2 (20 mg, 0.04 mmol) in toluene (5 mL). After a stirring for 1 h, a CO stream was bubbled through the solution for 15 minutes,
causing the formation of a yellow suspension. After stirring overnight, the mixture was concentrated to half its original volume and filtered. The yellow powder was washed two times with pentane (20 ml) and dried under vacuum. Yield 80 mg (80%). 1H NMR (CDCl$_3$): 8.09-6.67 (3H, m, aromatics + 4H from C$_6$H$_4$Cl), 7.81 (2H, s, br, NH, exchange with D$_2$O), 5.82 (2H, m, PCH), 5.55 and 5.50 (2H, t, C$_6$H$_4$Cl, 3J(H,H) = 6 Hz), 5.00 and 4.95 (2H, t, C$_6$H$_4$Cl, 3J(H,H) = 6 Hz). 1H NMR ((CD$_3$)$_2$CO): 8.14-6.51 (32H, m, aromatics), 5.92 and 5.88 (2H, t, C$_6$H$_4$Cl, 3J(H,H) = 6 Hz), 5.80 and 5.77 (2H, t, PCH, 3J(H,H) = 2J(P,H) = 5 Hz), 5.35 and 5.31 (2H, t, C$_6$H$_4$Cl, 3J(H,H) = 6 Hz), 5.28 and 5.22 (2H, d, C$_6$H$_4$Cl, 3J(H,H) = 6 Hz), 2.75 (2H, s, br, NH, exchange with D$_2$O).

13C{1H} NMR ((CD$_3$)$_2$CO): 232.8 (s, Cr(CO)$_3$), 206.9 (Rh-CO, masked by acetone), 147.1-114.0 (m, C-aromatics), 108.1 and 108.0 (2C, s, C$_6$H$_4$Cl), 98.9 and 98.1 (2C, s, C$_6$H$_4$Cl), 89.3 and 89.1(2C, s, C$_6$H$_4$Cl), 86.7 and 86.2 (2C, s, C$_6$H$_4$Cl), 57.8 (t, 2C, PCN, 1J(P,C) = 2J(Rh,C) = 14 Hz).

31P{1H} NMR ((CD$_3$)$_2$CO): 36.98 and 34.54 (d, 1J(Rh,P) = 129 Hz) in 1:2 ratio. IR (THF, cm$^{-1}$): 3320 (br, νNH), 1994 (s, νCO, Rh-CO), 1980 (vs, νCO, Cr(CO)$_3$), 1914 (vs, br, νCO, Cr(CO)$_3$).

Synthesis of [RhCO(Ph$_2$P-CH(α-C$_6$H$_4$Cl)-NHPηCl)$_2$Cl], 7'. To a solution of 2' (59 mg, 0.27 mmol) in CHCl$_3$ (5 ml) was added Ph$_2$PH (49 µl, 0.27 mmol). After 3 hours an equilibrium with the α-P,N ligand 4' was achieved. The solvent was removed and a solution of [RhCl(COD)$_2$ (30 mg, 0.06 mmol) in THF (5ml) was added. After stirring for 1/2 h, CO was bubbled through the solution for 15 min. The resulting yellow solution was further stirred for 30 min and concentrated to 2 mL. Addition of pentane (10 mL) afforded the product as a yellow powder, which was isolated by filtration, washed with pentane (2 x 10 mL) and dried under vacuum (98 mg, 84%). A slow diffusion of pentane onto a THF solution of the product afforded suitable yellow crystals for the X-ray analysis. 1H NMR (C$_6$D$_6$): 9.15-6.55 (38H, m, aromatics), 8.05 (2H, s, br, NH, exchange with D$_2$O), 6.48 (2H, m, PCH). 1H NMR ((CD$_3$)$_2$CO): 8.81-6.49 (38H, m, aromatics), 6.28 (2H, m,
PCH), 2.88 (2H, s br, NH, exchange with D$_2$O). 13C{$_1^H$} NMR (C$_6$D$_6$): 187.6 (2C, d, CO, $^1\!J$(Rh,C)= 67 Hz), 147.0-113.3 (m, C-aromatics), 57.0 and 56.7 (2C, d, PCH, $^1\!J$(C,P) = 14 Hz).

31P{$_1^H$} NMR (C$_6$D$_6$): 31.68 and 29.87 (d, $^1\!J$(Rh,P) = 128 Hz). IR (THF): ν_{NH}: 3314 (w, b), ν_{CO}: 1990 (ws) cm$^{-1}$; IR (nujol): ν_{NH}: 3296 (w, b) cm$^{-1}$. C$_{51}$H$_{43}$Cl$_3$N$_2$OP$_2$Rh (970.1): calcd. C 63.14, H 4.36, N 2.89; found C 62.99, H 4.50, N 3.40.

Stability of Compound 6 under CO Pressure. A mixture of 4 (36 mg, 0.066 mmol) and [RhCl(COD)]$_2$ (16.5 mg, 0.033 mmol) was dissolved in 10 ml of CHCl$_3$, resulting in the formation of complex 5 as described above. The resulting yellow solution was introduced into the autoclave and pressurized with CO (300 psi) at 55°C. After stirring for 12 h, the resulting red solution was analyzed by IR (CHCl$_3$, cm$^{-1}$): 2097 and 2015 (s, ν_{CO}, Rh-CO), 1985 and 1916 (s, br, ν_{CO}, Cr(CO)$_3$). No stretching vibration corresponding to compound Cr(CO)$_6$ was observed.

Crystal structure analysis of complex 5 and 7'. Intensity data were collected on a Nonius Kappa CCD at 110 K for 5 and 7'. The structure was solved by heavy atom method and refined by full-matrix least-squares methods13 with the aid of the WINGX program.14 Non-hydrogen atoms were anisotropically refined. For 5, the hydrogen atoms were located in the final difference Fourier maps and refined freely. For 7', with the exception of the NH hydrogen atom, which was located in the final difference Fourier maps and refined freely, all hydrogen atoms were included in a rigid model. Compound 7' crystallizes with one pentane molecule which is located on a four-fold inversion axis close to the inversion center (0,1/4,5/8), leading to a disorder over two positions. However, the rather large values of the isotropic temperature factors may indicate a further disorder which was not resolved. Crystallographic data and selected bond lengths and angles for the compounds 5 and 7' are reported respectively in Table 1 and 2.
Catalytic runs. The hydroformylation reactions were carried out in a 300-mL stainless-steel Parr autoclave equipped with a magnetic drive, an internal glass vessel, and an immersion tube connected to a valve for solution withdrawals under pressure. The temperature was controlled by a rigid heating mantle and by a single loop coil. The autoclave was purged three times under vacuum/argon before introducing the catalytic solution. The 1:1 CO/H₂ mixture was prepared by mixing the pure gases in a 500-ml stainless steel cylinder before introduction into the autoclave at the desired pressure. Catalytic conditions were as follows: styrene/Rh = 1000, 12 mg of [RhCl(COD)]₂ in 35 ml of solvent, P(syngas) = 600 psi, T = 55°C. The zero time for kinetic runs was considered as the time at which the desired pressure was reached inside the autoclave. In order to maintain temperature and pressure conditions as constant as possible during each kinetic run, only a few mL of catalytic solution mixture were carefully withdrawn each time from the autoclave. The CHCl₃ solvent was then rotary evaporated at room temperature and the yellow-orange residue was analyzed by ¹H NMR spectroscopy to quantify the conversion by integration.

Results and Discussion

(a) Synthesis and characterization

The same synthetic procedure previously used for the formation of Cu(I) complexes has now been applied to Rh(I). It consists of the addition of the stoichiometric amount of [RhCl(COD)]₂ to a mixture of Ph₂PH and the imines 1, 2 or 2', after this has reached the thermodynamic equilibrium with the corresponding α-P,N product. When the Cr(CO)₃-benzaldimine 1 or 2 was used, this reaction led selectively to a single diastereomer as a racemic mixture. As shown in our previous study,¹² the resulting products 3 and 4 have the configuration (Rₐ,Rₐ)/(Sₐ,Sₐ), where the first descriptor refers to the arene planar chirality and the second one refers to the chirality of the carbon center (see Scheme 1). The equilibrium constants shown in scheme 1 had been determined during
our previous study. When the benzaldimine 1 was used, the 1H NMR spectrum showed the presence of three different hydride complexes that are characterized by 1H NMR resonances at -14.00 (hept), -17.20 (dt,) and -18.70 ppm(dt) with coupling constants of 11.6, 35 and 26, and 11.6 and 24 Hz, respectively. However, the 31P NMR spectrum exhibits only one broad signal at 9.0 ppm for all complexes. The mixture presumably results from Ph$_2$P–H oxidative addition to Rh(I), while the imine remained unreacted. These hydride products were not further characterized. Nevertheless the phosphorus chemical shift excludes the formation of bridging phosphido moieties in dinuclear complexes. The use of 2 or 2’, on the other hand, led to the desired mononuclear rhodium complexes 5 or 5’ without the observation of any product resulting from P-H oxidative addition (see scheme 2).

This observation suggests that the outcome of the reaction is controlled by the relative concentration of free Ph$_2$PH and α-P,N in the reaction mixture. Since both reactions with the Rh(I) center are irreversible, the P-C bond formation equilibrium is displaced completely either way depending on which reactivity pathway prevails. Given the quantitative formation of 4, the clean formation of 5 is not surprising. The quantitative formation of 5’, however, shows that coordination to Rh(I) brings the same stabilizing effect previously demonstrated for Cu(I) toward rupture of the ligand P-C bond. Hence, the presence of the Cr(CO)$_3$ fragment is not necessary to insure the stability of the Rh(I) complex. However, its presence allows the introduction of chirality in complex 5.

Both complexes 5 and 5’ are characterized by a doublet in the 31P NMR at δ 44.1 and 34.7 ppm, respectively, with a 1J(P-Rh) coupling constant of 155 Hz in each cases. An X-ray diffraction analysis of 5 (vide infra) confirms the monodentate (P) coordination of the ligand. Addition of one
more (additional) equivalent of 4 or 4’ to 5 or 5’ does not induce displacement of the coordinated COD moiety. (see scheme 3, path a). However, when CO gas is introduced into this reaction mixture, the new complexes 7 (or 7’) are formed (see scheme 3, path b), via the formation of intermediates 6 or 6’ (see below for their identification). The same complexes can also be obtained directly by treatment of four equivalents of the appropriate α-P,N ligand with [Rh(CO)₂Cl]₂ (path e).

The solutions of compounds 7 and 7’ are characterized by two doublets in the ³¹P NMR with ^{1}J(P-Rh) of 128 Hz and by only one carbonyl vibration in the IR around 1990 cm⁻¹ in THF solution. These spectroscopic data are consistent with a trans-[RhCl(CO)L₂] square-planar geometry,¹⁵-¹⁷ which is confirmed by an X-ray diffraction study for 7’ (see below). The two ³¹P NMR resonances are attributed to the different pairs of diastereomers (RC,RC)/(SC,SC) and (RC,SC)/(SC,RC), whose formation is due to the use of the racemic ligand. The resonances are observed at 37.0 and 34.5 ppm (1:2 ratio) for 7 and at 31.7 and 29.9 ppm (1:1 ratio) for 7’. Several resonances in the 1H NMR spectrum are also distinct for the two diastereomeric pairs, whereas others overlap (see Experimental). The complete resonance assignment was made possible by the spectroscopic analysis of (RAr,RC;RAr,RC)-7, obtained from optically pure (RAr,RC)-4, showing that the higher field resonance for 7 (major product) is due to the (RAr,RC;SAr,SC) diastereomer.

The νCO in mononuclear complexes allows an estimation of the σ-donor/π-acceptor character of phosphine ligands and an evaluation of the electron density at the metal.¹⁸,¹⁹ The comparison of the CO stretching frequencies of compounds 7 (1994 cm⁻¹) and 7’ (1990 cm⁻¹) with those of different trans-RhCl(CO)L₂ complexes indicates that the σ-donor/π-acceptor properties of ligands 4 and 4’ are comparable to those of diphenylpyrrolylphosphine and P(p-CF₃C₆H₄).²⁰,²¹
only 4 cm\(^{-1}\) to higher frequency on going from 7’ to 7 indicates that ligand 4 is only slightly affected by the electron withdrawing Cr(CO)\(_3\) group.

(b) Unusual features of 5 and 7’ complexes in solid state and in solution

The X-Ray diffraction analyses of 5 and 7’ (see Figures 1 and 2) show that the amine-phosphine ligands are only P-coordinated in the square planar rhodium complexes. For complex 7’, only one racemic diastereomer (\(R_C,R_C\)/\(S_C,S_C\)) is observed in the unit cell whereas both diastereomers were present in the solution before crystallization. The essential geometrical features and metric parameters are quite typical for the RhCl(CO)\(_2\)L and RhCl(COD)L structures.\(^{22-24}\) The more interesting structural features in the complexes is the intramolecular Rh-Cl…H-N interaction(s) between the NH amine function(s) and the Rh-Cl moiety. The N-Cl distances in the 3.12-3.20 Å range for 5 and 7’ (see Table 2) are significantly smaller than the sum of the N-H bond length and the van der Walls radii of H and Cl atoms\(^{25}\) and even smaller than an analogous interaction (3.33 Å) recently reported for a palladium allyl complex.\(^{26}\) Other reported intramolecular M-Cl…H-N interactions for neutral aminophosphines complexes involve four or seven membered rings,\(^{27-29}\) but no previous example seems available for six membered-rings.

The H-bonding interactions observed for 5 and 7’ in the solid state are maintained in CH\(_2\)Cl\(_2\) and even in THF. This is demonstrated by the following IR spectroscopic results. The NH absorption band in the free ligand 4 is found at 3327 cm\(^{-1}\) in the solid state and at 3409 cm\(^{-1}\) in THF solution. This is due to the dimeric structure of 4 exhibiting P…H-N interactions.\(^{12}\) Therefore, the solution band can be attributed to the stretching vibration of the free N-H moiety. Compound 5, on the other hand, exhibits the N-H stretching vibration at 3283 cm\(^{-1}\) in THF and 3285 cm\(^{-1}\) in CH\(_2\)Cl\(_2\) (these are close to the value of 3288 cm\(^{-1}\) observed for the solid dispersed in Nujol). Furthermore, a tenfold dilution of the solution does not alter the form of the spectrum, notably no absorption is visible in the free N-H region. The large red shift of ca. 125 cm\(^{-1}\) relative to the free N-H group.
indicates a rather strong H-bonding interaction. For compound 7', the N-H vibration is observed at 3312 cm\(^{-1}\) in THF solution (a red shift of 97 cm\(^{-1}\) relative to free N-H) and at 3296 cm\(^{-1}\) for the solid dispersed in Nujol. The lower shift for 7' relative to 5 indicates a weaker H-bonding interaction, which can be rationalized on the basis of the higher NH/Cl ratio. It is to be remarked that this H-bonding interaction does not engage the nitrogen lone pair. Consequently, the inversion at nitrogen should remain free and no new chiral center is generated.

<Figures 1 and 2>

When crystals of the pure diastereomer \((R_C,R_C)/(S_C,S_C)-7'\) are dissolved in \(C_6D_6\), the compound immediately establishes an equilibrium with the \((S_C,R_C)/(R_C,S_C)\) diastereoisomer (1:1 ratio) (see scheme 4). This is proven by the immediate recording of \(^{31}\)P NMR and \(^1\)H spectra. Therefore, a rapid intermolecular ligand exchange process must occurs. A similar phosphine-scrambling process has been previously reported for compounds \(RhCl(CO)(L)(L')\) with \(L, L' = triphenylphosphine, tricyclohexylphosphine\) or \(dimethylphenylphosphine\) and rationalized in terms of either the formation of dinuclear rhodium complexes\(^{30}\) or through a dissociation-recooordination process.\(^{31}\)

<Scheme 4>

(c) Identification of the dicarbonyl complex \(cis\text{-}Rh(CO)\text{2}Cl(L)\)

When two equivalents of ligand 4 or 4' (in equilibrium with 2' and \(Ph_2PH\)) are added at room temperature to a THF solution of \([Rh(CO)\text{2}Cl]_2\), an unstable mononuclear dicarbonyl derivative \(cis\text{-}Rh(CO)\text{2}Cl(L)\) (6 or 6') is formed (see scheme 3 path d). The proposed geometry is demonstrated by the characteristic IR and \(^{31}\)P NMR data.\(^{32-37}\) The presence of only one doublet with \(^1\)J(P-Rh) = 132 Hz (32.7 ppm for 6, 28.1 ppm for 6') in the \(^{31}\)P NMR spectrum and of two carbonyl bands (at 2017
and 2095 cm$^{-1}$ for 6; 2015 and 2094 cm$^{-1}$ for 6') in the IR spectrum unambiguously exclude the formation of a binuclear intermediate which could result from the potential assembling character of the α-P,N ligands.9,38,39

Under a dinitrogen purge the unstable complexes 6 and 6' rapidly undergo quantitative decarbonylation to afford complexes 7 and 7', respectively, as shown by the IR and 31P NMR monitoring. The IR spectrum of the crude mixture showed also two weak carbonyl bands at 2070 and 2080 cm$^{-1}$ while no additional 31P resonance is observed in the NMR spectrum. Therefore, the transformation of 6 to 7 must be accompanied by the formation of a second product which does not contain phosphine ligands. However, the IR data are not consistent with the formation of [Rh(CO)$_2$Cl]$_2$. This product is formulated as “RhCl(CO)$_n$” in Scheme 3. We have not made any further attempt to fully characterize this by-product. A separate experiment shows that complexes 5 and 5' transform into 6 and 6' immediately when exposed to CO at atmospheric pressure (path c), but these are converted completely to the same final mixture within 30 minutes. On the other hand, the solutions obtained by decomposition of 6 (or 6') regenerate these precursors when pressurized under CO (see also the catalytic studies below). It is interesting to note that a similar behavior was observed by Alper et al for the analogous complex RhCl(CO)$_2$(L-κ^1-P), (L = Ph$_2$POCH(Ph)CH(Me)NHMe),17 whose transformation into RhCl(CO)L$_2$ and [RhCl(CO)$_2$]$_2$ was proposed on the basis of 31P NMR. In another study, the formation of a μ-CO species was found when using a pyridinylphosphine ligand.38 Our IR investigation excludes the formation of such species, although it could play a role as an intermediate as found for other ligand redistribution processes.30

Independently on how complex 6 is generated, this remains the major species in solution, as shown by IR spectroscopy, when this is maintained overnight under a high CO pressure (20 atm). The subsequent release of the CO pressure induces the evolution of 6 to 7 as previously described. The stabilizing effect of the high CO pressure suggests that the initial step of the ligand
redistribution process in Scheme 3 is a CO dissociation. In order to establish the reversibility of this ligand redistribution process, the decomposed mixture obtained as described above (containing no residual complex 6) was pressurized with CO (20 atm) for several hours in an autoclave. Upon depressurization, an immediate infrared analysis reveals the presence of compound 6 together with 7, and the subsequent quantitative transformation into 7.

Further evidence that complex 6 is stable under a high CO pressure was obtained through hydroformylation catalysis studies. A first run was carried out by charging the autoclave with [RhCl(COD)]₂, ligand 4 (L/Rh = 1), styrene, the chloroform solvent, and syngas. A kinetic follow-up (triangles in Figure 3) shows a turnover frequency of 45 h⁻¹. It is interesting to note the absence of any induction period.

![Figure 3]

A second experiment was carried out under the same conditions. However, the precatalyst solution was initially equilibrated overnight under a CO pressure in the absence of styrene to ensure the quantitative formation of compound 6. The autoclave was then depressurized and the complete and slow transformation of 6 to 7 was verified by IR spectroscopy. At this point, styrene was introduced and the subsequent catalytic run (see squares in Figure 3) indicates the same turnover frequency as for the previous experiment. These results suggest that the same catalytic species is present in both systems and confirm that the ligand redistribution process can be reversed only under high CO pressure.

Conclusion
We have shown that chiral α-aminophosphine ligands form stable Rh(I) complexes provided that the equilibrium constant of the ligand formation from the benzaldimine and diphenylphosphine is sufficiently high. Otherwise, the diphenylphosphine oxidative addition reaction prevails. The Rh(I) complexes containing one or two monodentate (P) α-P,N ligands display Rh-Cl-\cdotsH-N interactions with the dangling secondary amine function in the solid state and in solution. The NMR and IR studies have highlighted ligand redistribution processes in solution, some of which are dependent on the CO pressure. The stabilization of dicarbonyl rhodium compounds by high CO pressure allows the formation of a hydroformylation catalytic precursor. The influence of the P,N ligand on the hydroformylation catalytic activity will be the topic of a separate contribution.

Acknowledgements

We are grateful to the Ministère de la Recherche, the Centre National de la Recherche Scientifique (CNRS) and the Conseil Régional de Bourgogne for support of this work. J.-M.C. thanks the Ministère de la Recherche for a PhD fellowship. We are also grateful to Prof. Elena Shubina for helpful discussion. SM and CB thank the Italian National Research Council, the MIUR of Rome, and the University of Milano (joint national project “Stereoselezione in Sintesi Organica. Metodologie e applicazioni”) for support of this work.

References

(40) Andrieu/Camus/Poli/….??, manuscript in preparation.
Table 1 Crystal data and structure refinement for 5 and 7’.

<table>
<thead>
<tr>
<th>Compound</th>
<th>5</th>
<th>7’</th>
</tr>
</thead>
<tbody>
<tr>
<td>chemical formula</td>
<td>C${36}$H${33}$Cl$_2$NO$_3$PCrRh</td>
<td>C${51}$H${42}$N$_2$0P2Cl3Rh·1/4(C${5}$H${12}$)</td>
</tr>
<tr>
<td>formula weight</td>
<td>784.41</td>
<td>988.10</td>
</tr>
<tr>
<td>T; K</td>
<td>110(2)</td>
<td>110(2)</td>
</tr>
<tr>
<td>space group</td>
<td>p-1</td>
<td>I41/a</td>
</tr>
<tr>
<td>a; Å</td>
<td>11.9308(3)</td>
<td>42.6851(4)</td>
</tr>
<tr>
<td>b; Å</td>
<td>12.4015(3)</td>
<td>42.6851(4)</td>
</tr>
<tr>
<td>c; Å</td>
<td>12.5645(3)</td>
<td>10.2428(1)</td>
</tr>
<tr>
<td>α; °</td>
<td>68.8459(15)</td>
<td>90</td>
</tr>
<tr>
<td>β; °</td>
<td>89.439(2)</td>
<td>90</td>
</tr>
<tr>
<td>γ; °</td>
<td>76.449(2)</td>
<td>90</td>
</tr>
<tr>
<td>V; Å3</td>
<td>1679.76(7)</td>
<td>18662.6(3)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>D$_{calc}$; g/cm3</td>
<td>1.551</td>
<td>1.407</td>
</tr>
<tr>
<td>λ; Å</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>μ; mm$^{-1}$</td>
<td>1.058</td>
<td>0.647</td>
</tr>
<tr>
<td>R(F$_o$)a (all data)</td>
<td>0.047</td>
<td>0.076</td>
</tr>
<tr>
<td>R$_w$ (F$_o^2$)b (all data)</td>
<td>0.080</td>
<td>0.090</td>
</tr>
</tbody>
</table>

a R(F$_o$) = Σ(||F$_o$$|$|F$_c$$||)/Σ|F$_o$|.

b R$_w$(F$_o^2$) = [Σw(F$_o^2$-F$_c^2$)2/Σ[w(F$_o^2$)2]$]^{1/2}$ where w=1/[σ2(F$_o^2$)+(0.038P)2+1.37P] for 5 and w=1/[σ2(F$_o^2$)+(0.033P)2+27.39P] for 7’ where P=(Max(F$_o^2$,0)+2*F$_c^2$)/3.
Table 2. Selected lengths (Å) and angles (°) for compounds

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th></th>
<th>7'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh-Cl(2)</td>
<td>2.3978(6)</td>
<td>Rh-Cl(1)</td>
<td>2.3871(7)</td>
</tr>
<tr>
<td>Rh-P</td>
<td>2.3134(6)</td>
<td>Rh-P(1)</td>
<td>2.3358(7)</td>
</tr>
<tr>
<td>Rh-C(29)</td>
<td>2.230(3)</td>
<td>Rh-P(2)</td>
<td>2.3332(7)</td>
</tr>
<tr>
<td>Rh-C(30)</td>
<td>2.240(3)</td>
<td>Rh-C(1)</td>
<td>1.818(3)</td>
</tr>
<tr>
<td>Rh-C(33)</td>
<td>2.110(3)</td>
<td>C(1)-O</td>
<td>1.145(3)</td>
</tr>
<tr>
<td>Rh-C(34)</td>
<td>2.133(3)</td>
<td>N(1)-H</td>
<td>0.78(3)</td>
</tr>
<tr>
<td>Rh-Ct(1)*</td>
<td>2.004(4)</td>
<td>N(1)-H⋯Cl(1)</td>
<td>2.40(3)</td>
</tr>
<tr>
<td>Rh-Ct(2)*</td>
<td>2.128(3)</td>
<td>N(1)-Cl(1)</td>
<td>3.135(3)</td>
</tr>
<tr>
<td>P-C(10)</td>
<td>1.899(2)</td>
<td>N(2)-H</td>
<td>0.89(3)</td>
</tr>
<tr>
<td>C(10)-N</td>
<td>1.440(3)</td>
<td>N(2)-H⋯Cl(1)</td>
<td>2.24(4)</td>
</tr>
<tr>
<td>N-H</td>
<td>0.82(3)</td>
<td>N(2)-Cl(1)</td>
<td>3.116(3)</td>
</tr>
<tr>
<td>N-H⋯Cl(2)</td>
<td>2.42(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N⋯Cl(2)</td>
<td>3.199(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Rh-Cl(2)</td>
<td>93.32(2)</td>
<td>P(1)-Rh-Cl(1)</td>
<td>90.85(2)</td>
</tr>
<tr>
<td>Ct(1)-Rh-Ct(2)</td>
<td>86.2(2)</td>
<td>P(1)-Rh-C(1)</td>
<td>89.79(8)</td>
</tr>
<tr>
<td>Ct(2)-Rh-Cl(2)</td>
<td>87.3(1)</td>
<td>P(2)-Rh-Cl(1)</td>
<td>88.82(2)</td>
</tr>
<tr>
<td>Ct(1)-Rh-P</td>
<td>93.0(2)</td>
<td>P(2)-Rh-C(1)</td>
<td>90.48(8)</td>
</tr>
<tr>
<td>N-H⋯Cl(2)</td>
<td>158(3)</td>
<td>N(1)-H⋯Cl(1)</td>
<td>157(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(2)-H⋯Cl(1)</td>
<td>167(3)</td>
</tr>
</tbody>
</table>

Ct(1) is the centroid of C(29), C(30) and Ct(2) is the centroid of C(33), C(34)
Caption for Figures

Figure 1. ORTEP view of complex 5. Thermal ellipsoids are drawn at the 50% probability level. For clarity, only the relevant hydrogen atoms are shown.

Figure 2. ORTEP View of complex 7'. Thermal ellipsoids are drawn at the 50% probability level. For clarity, the pentane solvate molecule is omitted and only the relevant hydrogen atoms are shown.

Figure 3. Rate conversion for the styrene hydroformylation with complex 5 (see Table 3 for the experimental conditions) (▲) Styrene introduced at t = 0. (●) Styrene introduced after 20 hours.
Figure 3
Scheme 1

\[
\begin{array}{cccc}
X & Ar & \text{imine} & \alpha-P,N & K \\
\text{MeO} & p-C_6H_4OMe & 1 & 3 & 17 \\
\text{Cl} & \text{Ph} & 2 & 4 & >1000 \\
\text{Cl}^a & \text{Ph} & 2' & 4' & 330 \\
\end{array}
\]

\(^a\)Without \(\text{Cr(CO)}_3\)

Scheme 2

\[
\begin{align*}
\text{Ar}^1\text{CH=NAr}^2 + \text{Ph}_2\text{PH} & \xrightarrow{K} \text{Ph}_2\text{P} & \text{Ar}^1\text{NAr}^2 \\
1, 2, 2' & \xrightarrow{1/2 \, [\text{RhCl(COD)}]_2} 4, 4' \\
K = 17 & \xrightarrow{K \geq 330} 5,5' \\
\end{align*}
\]
Scheme 3

1/2 [Rh(COD)Cl]₂ → [Rh(COD)Cl]₂

5, 5' [Rh(COD)Cl]₂

5, 5' → [Rh(COD)Cl]₂

6, 6' → [Rh(COD)Cl]₂

6, 6' → [Rh(COD)Cl]₂

7, 7' → [Rh(COD)Cl]₂

Path a: [Rh(COD)Cl]₂ → [Rh(COD)Cl]₂

Path b: [Rh(COD)Cl]₂ → [Rh(COD)Cl]₂

Path c: [Rh(COD)Cl]₂ → [Rh(COD)Cl]₂

Path d: [Rh(COD)Cl]₂ → [Rh(COD)Cl]₂

Path e: [Rh(COD)Cl]₂ → [Rh(COD)Cl]₂
Scheme 4

\[
\begin{align*}
\text{Scheme 4} & \\
\begin{array}{c}
\text{Ar} \quad \text{Ph}_2\text{P} \quad \text{NHPh} \\ \\
\text{OC} \quad \text{Rh} \quad \text{Cl} \\
\text{Ph}_2\text{P} \quad \text{NHPh} \\
\text{Ar}
\end{array} + \\
\begin{array}{c}
\text{Ar} \quad \text{Ph}_2\text{P} \quad \text{NHPh} \\ \\
\text{OC} \quad \text{Rh} \quad \text{Cl} \\
\text{Ph}_2\text{P} \quad \text{NHPh} \\
\text{Ar}
\end{array}
\end{align*}
\]

\[\text{(R}_C\text{,R}_C\text{-7')} \quad \text{and} \quad \text{(S}_C\text{,R}_C\text{-7')} \quad \text{and} \quad \text{(R}_C\text{,S}_C\text{-7')}\]

\[
\begin{align*}
\text{Ar} \quad \text{Ph}_2\text{P} \quad \text{NHPh} \\
2 \quad \text{OC} \quad \text{Rh} \quad \text{Cl} \\
\text{Ph}_2\text{P} \quad \text{NHPh} \\
\text{Ar}
\end{align*}
\]

\[\text{(S}_C\text{,R}_C\text{- and (R}_C\text{,S}_C\text{-7')}\]