
HAL Id: hal-03283633
https://hal.science/hal-03283633

Preprint submitted on 12 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Capturing the diversity of analyses on the Linux kernel
variability – Companion Technical Report

Johann Mortara, Philippe Collet

To cite this version:
Johann Mortara, Philippe Collet. Capturing the diversity of analyses on the Linux kernel variability
– Companion Technical Report. 2021. �hal-03283633�

https://hal.science/hal-03283633
https://hal.archives-ouvertes.fr

Capturing the diversity of analyses on the Linux kernel variability
Companion Technical Report - April 2021

JOHANN MORTARA, Université Côte d’Azur, CNRS, I3S, France

PHILIPPE COLLET, Université Côte d’Azur, CNRS, I3S, France

This technical report comes as a companion to "Capturing the diversity of analyses on the Linux kernel variability" [7] published at SPLC
’21. In this report, we present additional inconsistencies in terminologies found in the state-of-the-art. We also give the exhaustive
list of anomalies present in the five studied papers and detail the application of our formalism on all of them. Finally, we present a
synthetic map of the studied anomalies over the Linux build system and their instantiations using our formalism.

Contents

Abstract 1
Contents 1
1 Variability in the Linux kernel 1
2 Diversity 3
3 Model 3
3.1 Derivator Model 4
3.2 Configurator Model 7
4 Definitions 9
5 Resulting tables 16
References 19

1 VARIABILITY IN THE LINUX KERNEL

The Linux build system is composed of three distinct stages (fig. 1):

Kconfig space. Kconfig files are present in multiple directories of the codebase and define configuration options
(also called symbols) representing features. Each configuration option is defined as a config entry and can be of six
different types: bool, tristate, string, hex, or int. A default value for the feature can be set with the default entry.
Features can be selected directly by the user via a prompt (present in an individual prompt entry or attached to the
type of the feature), or by constraints on other features (defined in a depends on entry). Menus allow to group features.
If a feature is defined within a menu item that itself has a depends on entry, this condition is appended by Kconfig to
the depends on condition of the feature 1. A feature can also force the selection of another feature with the select
entry. For example, in the lib/Kconfig file presented in fig. 1, feature FOO (l.4) is a feature of type bool whose default
value is y but which can be modified by the user via a prompt. To be selected, DEPS_A or DEPS_B need to be selected,
and MENU_COND needs to be satisfied. The selection of FOO, will also force the selection of F_SEL. Kconfig checks for
the consistency of the constraints between the selected features and outputs two files containing the list of selected

1https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html#menu-structure

1

https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html#menu-structure

Johann Mortara and Philippe Collet

Kconfig
configurator
on features

Kconfig files

Kbuild Makefiles

CPP
derivator
on code
blocks

Source files

 1 menu “Menu prompt”
 2 depend on MENU_COND
 3
 4 config FOO
 5 bool "FOO prompt text"
 6 default y
 7 select F_SEL
 8 depends on DEPS_A || DEPS_B
 9
10 config BAR
11 tristate "BAR prompt text"
12 default n
14
15 endmenu
16
17 config F_SEL
18 bool
19 default n

lib/Kconfig

1 obj-$(CONFIG_FOO) += foo.o
2 foo-y := file_a.o file_b.o
3 obj-y += file_c.o

 1 #if (defined CONFIG_FOO || defined CONFIG_BAR || defined CONFIG_BAZ)
 2 // B1
 3 #if defined CONFIG_FOO
 4 // B2
 5 #elif defined CONFIG_BAR
 6 // B3
 7 #else
 8 // B4
 9 #endif
10 #endif

.config Kbuild
derivator
on source

files

autoconf.h

lib/dir/Makefile

1 obj-$(CONFIG_BAR) += dir/

lib/Makefile

lib/dir/foo.c

Kconfig space Make space Code space#define CONFIG_FOO
#define CONFIG_BAR
#define CONFIG_F_SEL

1 CONFIG_FOO=1
2 CONFIG_BAR=m
3 CONFIG_F_SEL=1

Fig. 1. Sample Linux build process, inspired from [11] and [14]

features in two formats: .config will be read by the Kbuild Makefiles, and autoconf.h is a C header file that will be
appended to every source file during compilation.

Make space. The Kbuild system is made of multiple Makefiles present in multiple directories throughout the project,
which select objects for the compilation. Three types of objects exist: object files, directories and composite objects.
Object files (such as file_c.o in lib/dir/Makefile) represent objects generated during the compilation from existing
.c files in the codebase. Therefore, a file_c.c file should be present in the codebase. Added directories (such as dir/
in lib/Makefile) will have their Kbuild Makefile parsed to select files from this subtree. Composite objects associate
multiple files in one single object. For example, foo.o in lib/dir/Makefile is a composite object defined at line 2
combining file_a.o and file_b.o and used at line 1.

Selection is done by adding the object files generated at the precompilation to lists. For example, in lib/dir/Makefile,
the file_c.o object is added to the obj-y list. In this case, the object will always be selected. The selection of an object
can also be conditioned by the value of a feature, as for the foo.o object. CONFIG_FOO refers to the FOO feature defined
in the Kconfig file lib/Kconfig. FOO is a boolean feature, therefore if it has for value y, the object will be added to the
obj-y list. The same mechanism applies for the dir directory in lib/Makefile, with the small difference that BAR is
a tristate feature, allowing an extra m value. The object added to the obj-m list will be compiled as a module. If a
feature is not defined, the name of the list becomes obj- and is ignored.

Code space. Variability in the source files is implemented using CPP directives. Code in conditional blocks declared
with #if, #elif, #ifdef, or #ifndef directives (referred to as ifdef directives) is selected only if the condition of the

2

Capturing the diversity of analyses on the Linux kernel variability

Table 1. Terminologies for each space of the Linux build system

Paper Kconfig files Kbuild Makefiles CPP / Source files

Tartler et al. [18] Model level Generation level Source code level
Tartler et al. [17] Configuration space Implementation variant Implementation space

Nadi and Holt [10, 11] Kconfig space Make space Code space

Hengelein [6], Tartler [15]
Feature Modeling

Build system
Generator

Configuration Preprocessor
Passos et al. [12] Variability Model Mapping Implementation

El-Sharkawy et al. [3] Problem space Solution space

Abal et al. [1]
Problem space

/
Solution space

Model Code
Nadi and Holt [9] Configuration space Compilation space Implementation space

Nadi [8] Configuration space Build space Code space

Sincero et al. [14]
Problem space

/
Solution space

Model Implementation
Tartler et al. [16] Configuration space / Implementation space

Chosen terminology

directive is satisfied. For example, in lib/dir/foo.c, the selection of B1 implies that the condition line 1 is true. A
nested block can only be selected if its parent block is selected (the selection of B1 implies that the condition line 3 is
true and that B1 is also selected). Finally, code defined in a block declared with #elif or #else can only be selected if
the ifdef blocks preceding it are not selected (the selection of B3 implies that the condition line 5 is true and that B2 is
not selected, and the selection of B4 implies that neither B2 nor B3 are selected).

2 DIVERSITY

Alongside the selected studies characterizing anomalies in the Linux build system, plethora of work describe it as
they study some aspects of the Linux kernel (such as the evolution of its model [12]), or use it as a case study [1] or
a benchmark for tools [3]. Table 1 summarizes, for the papers found by our query, the different terminologies used
to refer to the different parts of the build system (namely, Kconfig and its files, Kbuild and its Makefiles, and CPP
directives in source files). Except for a journal extension [8] and a PhD thesis [15], every paper has its own terminology,
and some of them even use multiple terminologies ([1, 6, 15, 16]). One paper [3] groups the Kbuild and CPP in a single
Solution space, denomination used by Abal et al. [1] and Sincero et al. [14] to refer only to the CPP constraints.

In the papers we selected for study, we noticed redundant expressions of anomalies. However, the variables used to
represent the different spaces diverge, hampering the comprehension of the expressed defects between the work. A
summary of the different notations encountered is showed in table 2.

3 MODEL

As presented in the paper, deriving a variant of the Linux build system is done in three stages. First, a subset of the
features defined in the Kconfig files are selected, either by the user or by constraints, and form a valid configuration of

3

Johann Mortara and Philippe Collet

Table 2. Notation mapping for constraints in the three spaces

Paper Properties CPP Make Kconfig

Sincero et al. [14] anom. {1} C / K
Tartler et al. [16] anom. {13} I / C
Nadi and Holt [10] anom. {19,21,22,24} C M K

the Linux kernel. These features are then used in the Kbuild Makefiles to select the files from the code base which will
be added for compilation, and by the C preprocessor (CPP) to select parts of these files.

3.1 Derivator Model

In this section, we introduce the concepts to form the derivator model and illustrate them with its application to CPP.

Definition 1 (Asset). An asset 𝑎 = ⟨𝜙𝑠𝑒𝑙𝑒𝑐𝑡 , 𝜙𝑝𝑟𝑒𝑑𝑠 , 𝜙𝑑𝑒𝑝𝐼𝑛𝑡 , 𝜙𝑑𝑒𝑝𝐸𝑥𝑡 ⟩ from a set of assets A𝑋 is defined as follows:

• 𝜙𝑠𝑒𝑙𝑒𝑐𝑡 is a propositional formula for the asset’s selection ;
• 𝜙𝑝𝑟𝑒𝑑𝑠 is a propositional formula on other assets that are evaluated before 𝑎. We call these assets predecessors ;
• 𝜙𝑑𝑒𝑝𝐼𝑛𝑡 is a propositional formula on assets on which 𝑎 is dependent ;
• 𝜙𝑑𝑒𝑝𝐸𝑥𝑡 is a propositional formula on assets from another context on which 𝑎 is dependent.

Application to CPP. An asset 𝑏 is a code block, with:

• 𝜙𝑠𝑒𝑙𝑒𝑐𝑡 the condition of the #if surrounding the block ;
• 𝜙𝑝𝑟𝑒𝑑𝑠 = ¬(∨

𝑖
𝑏𝑖) if 𝑏 is an #elsif or #else block, 𝑏𝑖 represents the corresponding #if block and the potential

#elsif blocks before 𝑏 ;
• 𝜙𝑑𝑒𝑝𝐼𝑛𝑡 = 𝑝 with 𝑝 the parent block of 𝑏 if 𝑏 is a nested block.
• 𝜙𝑑𝑒𝑝𝐸𝑥𝑡 = 𝑓 𝑖𝑙𝑒 the file containing 𝑏.

Example. In fig. 1, the lib/foo/foo.c file and the blocks B1, B2, B3, and B4 it contains are represented by the following
assets:

• 𝑓 𝑖𝑙𝑒 = ⟨𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒⟩
• 𝑏1 = ⟨𝐹𝑂𝑂 ∨ 𝐵𝐴𝑅 ∨ 𝐵𝐴𝑍, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑓 𝑖𝑙𝑒⟩
• 𝑏2 = ⟨𝐹𝑂𝑂, 𝑡𝑟𝑢𝑒, 𝑏1, 𝑓 𝑖𝑙𝑒⟩
• 𝑏3 = ⟨𝐵𝐴𝑅,¬𝑏2, 𝑏1, 𝑓 𝑖𝑙𝑒⟩
• 𝑏4 = ⟨𝑡𝑟𝑢𝑒,¬(𝑏2 ∨ 𝑏3), 𝑏1, 𝑓 𝑖𝑙𝑒⟩

Definition 2 (Internal presence condition). The internal presence condition of an asset is the boolean formula that
needs to be satisfiable for the asset to be selectable. It is defined as

PC𝐼𝑛𝑡 (𝑎) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑎 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑎

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑎

)
Note. An asset is selected if and only if its presence condition is satisfied: PC𝐼𝑛𝑡 (𝑎) ↔ 𝑎

4

Capturing the diversity of analyses on the Linux kernel variability

Application to CPP. Let us take again the previous example.

PC𝐼𝑛𝑡 (𝑏1) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏1 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑏1

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏1

)
= (𝐹𝑂𝑂 ∨ 𝐵𝐴𝑅 ∨ 𝐵𝐴𝑍) ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝑡𝑟𝑢𝑒) ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝑡𝑟𝑢𝑒)

= (𝐹𝑂𝑂 ∨ 𝐵𝐴𝑅 ∨ 𝐵𝐴𝑍)

PC𝐼𝑛𝑡 (𝑏2) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏2 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑏2

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏2

)
= (𝐹𝑂𝑂) ∧ 𝑡𝑟𝑢𝑒 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝑏1)

= (𝐹𝑂𝑂) ∧ (𝐹𝑂𝑂 ∨ 𝐵𝐴𝑅 ∨ 𝐵𝐴𝑍)

PC𝐼𝑛𝑡 (𝑏3) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏3 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑏3

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏3

)
= (𝐵𝐴𝑅) ∧ (¬PC𝐼𝑛𝑡 (𝑏2)) ∧ PC𝐼𝑛𝑡 (𝑏1)

PC𝐼𝑛𝑡 (𝑏4) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏4 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑏4

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏4

)
= (¬(PC𝐼𝑛𝑡 (𝑏2) ∨ PC𝐼𝑛𝑡 (𝑏3))) ∧ PC𝐼𝑛𝑡 (𝑏1)

Note. Extracted presence conditions can be complex and may contain redundant terms (e.g., PC𝐼𝑛𝑡 (𝑏2) is equivalent to
𝐹𝑂𝑂). Approaches to simplify presence conditions have been proposed [20] and are out of the scope of this paper.

Definition 3 (External presence condition). By evaluating PC𝐼𝑛𝑡 , we check that the asset can be selected given the
constraints of its space. However, other external constraints may prevent the selection the asset. We call context the set
of these constraints. The external presence condition of an asset in a given context C is defined as

PC𝐸𝑥𝑡 (𝑎) = PC𝐼𝑛𝑡 (𝑎) ∧ 𝑠𝑙𝑖𝑐𝑒 (C, 𝑡𝑒𝑟𝑚𝑠 (PC𝐼𝑛𝑡 (𝑎)) ∪ 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝐸𝑥𝑡𝑎))

Application to CPP. In the Linux build system, the selection of a CPP block is conditioned by constraints on both
the features used in the #if instructions (which are determined at the Kconfig level) and the file containing the block
(which are determined at the Kbuild level). Thus, the context C to express the external presence condition of a block is
the union of the Kconfig and Kbuild contexts C = CKconfig ∪ CKbuild. Let us take an example with

CKconfig = {𝐹𝑂𝑂 → 𝐵𝐴𝑅, 𝐵𝐴𝑍 → (¬𝐹1), 𝐹1 → (¬𝐹𝑂𝑂), 𝐹3 → 𝐹4}

CKbuild = {𝑓 𝑖𝑙𝑒 ↔ 𝐹𝑂𝑂 }

then PC𝐸𝑥𝑡 (𝑏1)

= PC𝐼𝑛𝑡 (𝑏1) ∧ 𝑠𝑙𝑖𝑐𝑒 (C, 𝑡𝑒𝑟𝑚𝑠 (PC𝐼𝑛𝑡 (𝑏1)) ∪ 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝐸𝑥𝑡𝑏1))

= PC𝐼𝑛𝑡 (𝑏1) ∧ 𝑠𝑙𝑖𝑐𝑒 (C, {𝐹𝑂𝑂, 𝐵𝐴𝑅, 𝐵𝐴𝑍 } ∪ {𝑓 𝑖𝑙𝑒 })

= PC𝐼𝑛𝑡 (𝑏1) ∧ ((𝐹𝑂𝑂 → 𝐵𝐴𝑅) ∧ (𝐵𝐴𝑍 → (¬𝐹1))

∧ (𝐹1 → (¬𝐹𝑂𝑂)) ∧ (𝑓 𝑖𝑙𝑒 ↔ 𝐹𝑂𝑂))

3.1.1 Internal consistency. To express defects, we define dead, core, and full-mandatory assets, relying on definitions of
dead and false-optional features introduced by Benavides et al. [2], and full-mandatory features from Trinidad et al.
[19].

5

Johann Mortara and Philippe Collet

Definition 4 (Dead asset). An asset 𝑎 of A is dead if it can never be selected. The set of dead assets of A is noted
𝑑𝑒𝑎𝑑𝑠 (A).

𝑎 ∈ 𝑑𝑒𝑎𝑑𝑠 (A) ⇔ ¬𝑠𝑎𝑡 (PC𝐼𝑛𝑡 (𝑎))

Note. This consistency check includes the more specific case where an asset is dead because of an inconsistency
with the condition to select its internal dependencies (i.e., 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑠) → ¬𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑠) as in this case PC𝐼𝑛𝑡 (𝑎) is
inconsistent.

Definition 5 (Core asset). An asset 𝑎 of A is a core asset if it is always selected. The set of core assets of A is noted
𝑐𝑜𝑟𝑒 (A).

𝑎 ∈ 𝑐𝑜𝑟𝑒 (A) ⇔ ¬𝑠𝑎𝑡 (¬(PC𝐼𝑛𝑡 (𝑎)))

3.1.2 External consistency.

Definition 6. (Externally dead asset) An asset 𝑎 is an externally dead asset if it is never selected due to inconsistencies
with its context. The set of externally dead assets of A is noted 𝑑𝑒𝑎𝑑𝑠𝐸𝑥𝑡 (A).

𝑎 ∈ 𝑑𝑒𝑎𝑑𝑠𝐸𝑥𝑡 (A) ⇔ ¬𝑠𝑎𝑡 (PC𝐸𝑥𝑡 (𝑎))

Definition 7 (Externally core asset). An asset 𝑎 of A is an externally core asset if it is always selected independently
of the constraints of the context. The set of core assets of A is noted 𝑐𝑜𝑟𝑒𝐸𝑥𝑡 (A).

𝑎 ∈ 𝑐𝑜𝑟𝑒𝐸𝑥𝑡 (A) ⇔ ¬𝑠𝑎𝑡 (¬(PC𝐸𝑥𝑡 (𝑎)))

Definition 8. (Externally full-mandatory asset) An asset 𝑎 is an externally full-mandatory asset if the selection of its
parent dependencies implies its selection due to the formulas in its context. The set of externally full-mandatory assets
of A is noted𝑚𝑎𝑛𝑑𝐸𝑥𝑡 (A).

𝑎 ∈𝑚𝑎𝑛𝑑𝐸𝑥𝑡 (A) ⇔ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑎) → PC𝐸𝑥𝑡 (𝑎)

⇔ ¬𝑠𝑎𝑡 (¬PC𝐸𝑥𝑡 (𝑎) ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑎))

Definition 9. (Missing dead asset) An asset 𝑎 is missing dead if a feature in its presence condition is not defined in the
context C. The set of assets of A with missing features is noted𝑚𝑖𝑠𝑠𝑖𝑛𝑔(A).

𝑎 ∈𝑚𝑖𝑠𝑠𝑖𝑛𝑔(A) ⇔ ∃𝑚 ∈ 𝑡𝑒𝑟𝑚𝑠 (PC𝐸𝑥𝑡 (𝑎)) | (𝑚 ∉ 𝑡𝑒𝑟𝑚𝑠 (C))

At the Kbuild level, an asset 𝑠 = ⟨𝜙𝑠𝑒𝑙𝑒𝑐𝑡 , 𝜙𝑝𝑟𝑒𝑑𝑠 , 𝜙𝑑𝑒𝑝𝐼𝑛𝑡 , 𝜙𝑑𝑒𝑝𝐸𝑥𝑡 ⟩ can represent a C object file. We then express
presence conditions and related anomalies with our model. As seen in section 1, an object is selected for compilation by
being added to defined lists, with possible constraints on one or more features in case of multiple definitions. Before,
objects can also be added to composite variables.

• 𝜙𝑠𝑒𝑙𝑒𝑐𝑡 =
∨
𝑓𝑖 with 𝑓𝑖 being features which at least one needs to be set for the source file to be selected. If the

asset is always selected, 𝜙𝑠𝑒𝑙𝑒𝑐𝑡 = 𝑡𝑟𝑢𝑒 . If the asset is defined but never added to a list, 𝜙𝑠𝑒𝑙𝑒𝑐𝑡 = 𝑓 𝑎𝑙𝑠𝑒 ;
• 𝜙𝑝𝑟𝑒𝑑𝑠 = 𝑐𝑜𝑚𝑝 with 𝑐𝑜𝑚𝑝 the name of the composite variable if 𝑠 is part of a composite definition. 𝑐𝑜𝑚𝑝 must

be selected ;
• 𝜙𝑑𝑒𝑝𝐼𝑛𝑡 = 𝑑𝑖𝑟 with 𝑑𝑖𝑟 the directory containing the source file represented by 𝑠 which also needs to be selected ;
• 𝜙𝑑𝑒𝑝𝐸𝑥𝑡 = 𝑡𝑟𝑢𝑒 as the selection of a source file only relies on its feature.

Expressing the assets from fig. 1.

6

Capturing the diversity of analyses on the Linux kernel variability

Table 3. Truth table for 𝜙𝑒𝑛𝑎𝑏𝑙𝑒 from a Kconfig feature

Presence of prompt Presence of default 𝜙𝑒𝑛𝑎𝑏𝑙𝑒

yes
activated 𝑡𝑟𝑢𝑒

not activated 𝑡𝑟𝑢𝑒

no
activated 𝑡𝑟𝑢𝑒

not activated 𝑓 𝑎𝑙𝑠𝑒

• 𝑑𝑖𝑟 = ⟨𝐵𝐴𝑅, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒⟩
• 𝑓 𝑜𝑜 = ⟨𝐹𝑂𝑂, 𝑡𝑟𝑢𝑒, 𝑑𝑖𝑟, 𝑡𝑟𝑢𝑒⟩
• 𝑓 𝑖𝑙𝑒_𝑎 = ⟨𝑡𝑟𝑢𝑒, 𝑓 𝑜𝑜, 𝑑𝑖𝑟, 𝑡𝑟𝑢𝑒⟩
• 𝑓 𝑖𝑙𝑒_𝑏 = ⟨𝑡𝑟𝑢𝑒, 𝑓 𝑜𝑜, 𝑑𝑖𝑟, 𝑡𝑟𝑢𝑒⟩
• 𝑓 𝑖𝑙𝑒_𝑐 = ⟨𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑑𝑖𝑟, 𝑡𝑟𝑢𝑒⟩

Expressing their presence conditions

PC𝐼𝑛𝑡 (𝑑𝑖𝑟) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑑𝑖𝑟 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑑𝑖𝑟

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑑𝑖𝑟

)
= 𝐵𝐴𝑅 ∧ 𝑡𝑟𝑢𝑒 ∧ 𝑡𝑟𝑢𝑒 = 𝐵𝐴𝑅

PC𝐼𝑛𝑡 (𝑓 𝑜𝑜) = 𝐹𝑂𝑂 ∧ 𝑡𝑟𝑢𝑒 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (PC𝐼𝑛𝑡 (𝑑𝑖𝑟)) = 𝐹𝑂𝑂 ∧ 𝐵𝐴𝑅

PC𝐼𝑛𝑡 (𝑓 𝑖𝑙𝑒_𝑎) = 𝑡𝑟𝑢𝑒 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (PC𝐼𝑛𝑡 (𝑓 𝑜𝑜)) ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (PC𝐼𝑛𝑡 (𝑑𝑖𝑟))

= (𝐹𝑂𝑂 ∧ 𝐵𝐴𝑅) ∧ 𝐵𝐴𝑅

PC𝐼𝑛𝑡 (𝑓 𝑖𝑙𝑒_𝑏) = PC𝐼𝑛𝑡 (𝑓 𝑖𝑙𝑒_𝑎)

PC𝐼𝑛𝑡 (𝑓 𝑖𝑙𝑒_𝑐) = 𝑡𝑟𝑢𝑒 ∧ 𝑡𝑟𝑢𝑒 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (PC𝐼𝑛𝑡 (𝑑𝑖𝑟)) = 𝐵𝐴𝑅

3.2 Configurator Model

The configurator represents the model element that checks the selection of features. It is represented by a set of features
F . We will illustrate the formalization here with its application to the Kconfig.
𝐹 = ⟨𝜙𝑒𝑛𝑎𝑏𝑙𝑒 , 𝜙𝑑𝑒𝑝𝑠 , F𝑠𝑒𝑙𝑒𝑐𝑡 ⟩

• 𝜙𝑒𝑛𝑎𝑏𝑙𝑒 is a propositional formula representing the ability to select the feature ;
• 𝜙𝑑𝑒𝑝𝑠 is a propositional formula on features on which 𝐹 is dependent ;
• F𝑠𝑒𝑙𝑒𝑐𝑡 is a set of features automatically selecting 𝐹 . If a feature from F𝑠𝑒𝑙𝑒𝑐𝑡 is selected, 𝐹 is also selected,

regardless of the precedent conditions.

Application to Kconfig. A feature 𝐹 is a configuration option defined in a Kconfig file, with:

• 𝜙𝑒𝑛𝑎𝑏𝑙𝑒 represents the ability to select the feature by user selection (prompt), or default value, as defined
in table 3 ;

• 𝜙𝑑𝑒𝑝𝑠 represents the boolean formula on features defined in the depends on statement ;
• F𝑠𝑒𝑙𝑒𝑐𝑡 is a set of features selecting 𝐹 with a select statement ;

In the Kconfig file presented in fig. 1, three features are defined: FOO, BAR and F_SEL. Existing work on the semantics
of the Kconfig files [13] inline the conditions from the menu items surrounding the definition of a feature in the depends
on condition. These features can be represented by the following assets:

7

Johann Mortara and Philippe Collet

• 𝐹𝑂𝑂 = ⟨𝑡𝑟𝑢𝑒, (𝐷𝐸𝑃𝑆_𝐴 ∨ 𝐷𝐸𝑃𝑆_𝐵) ∧𝑀𝐸𝑁𝑈 _𝐶𝑂𝑁𝐷, {}⟩
• 𝐵𝐴𝑅 = ⟨𝑡𝑟𝑢𝑒,𝑀𝐸𝑁𝑈 _𝐶𝑂𝑁𝐷, {}⟩
• 𝐹_𝑆𝐸𝐿 = ⟨𝑓 𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒, {𝐹𝑂𝑂}⟩

Definition 10 (Presence condition). The presence condition of a feature 𝐹 ∈ F represents the boolean formula which
needs to be satisfied for the feature to be selected.

PC(𝐹) =
(
𝜙𝑒𝑛𝑎𝑏𝑙𝑒 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝑠)

)
∨ 𝑑𝑖𝑟𝑒𝑐𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹)

with 𝑑𝑖𝑟𝑒𝑐𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹) = ∨
𝐹𝑠 ∈F𝑠𝑒𝑙𝑒𝑐𝑡

PC(𝐹𝑠).

Note. The selection of a feature implies that its presence condition is satisfied: 𝐹 → PC(𝐹) There is no biimplication
as we consider that a user can manually interfere in the selection. Therefore, the information extracted from the model
can only express if a feature can be selected, and not its effective selection.

Application to Kconfig.

PC(𝐹𝑂𝑂) =
(
𝜙𝑒𝑛𝑎𝑏𝑙𝑒𝐹𝑂𝑂

∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝑠𝐹𝑂𝑂
)
)
∨ 𝑑𝑖𝑟𝑒𝑐𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹𝑂𝑂)

= 𝑡𝑟𝑢𝑒 ∧ ((PC(𝐷𝐸𝑃𝑆_𝐴) ∨ PC(𝐷𝐸𝑃𝑆_𝐵)) ∧ PC(𝑀𝐸𝑁𝑈 _𝐶𝑂𝑁𝐷))

= (PC(𝐷𝐸𝑃𝑆_𝐴) ∨ PC(𝐷𝐸𝑃𝑆_𝐵)) ∧ PC(𝑀𝐸𝑁𝑈 _𝐶𝑂𝑁𝐷)

PC(𝐵𝐴𝑅) =
(
𝜙𝑒𝑛𝑎𝑏𝑙𝑒𝐵𝐴𝑅

∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝑠𝐵𝐴𝑅
)
)
∨ 𝑑𝑖𝑟𝑒𝑐𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝐵𝐴𝑅)

= 𝑡𝑟𝑢𝑒 ∧ PC(𝑀𝐸𝑁𝑈 _𝐶𝑂𝑁𝐷)

= PC(𝑀𝐸𝑁𝑈 _𝐶𝑂𝑁𝐷)

PC(𝐹_𝑆𝐸𝐿) = (𝑓 𝑎𝑙𝑠𝑒 ∧ 𝑡𝑟𝑢𝑒) ∨ PC(𝐹𝑂𝑂) = PC(𝐹𝑂𝑂)

Note. Due to the size and complexity of the Kconfig model, obtaining a sound and complete abstraction of its
semantics is still a challenge. The latest studies on boolean translation are not able to represent the whole complexity
of the language [4]. Because of these limitations, the accuracy of variability reasoning approaches is also limited and
acknowledged by researchers [5]. Therefore, we aim here to provide a model allowing us to synthesize the current
work, and do not pretend to present a complete model of Kconfig 2.

3.2.1 Consistency.

Definition 11 (Dead feature). A feature 𝐹 of F is dead if it can never be selected. The set of dead features is noted
𝑑𝑒𝑎𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ().

𝐹 ∈ 𝑑𝑒𝑎𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 () ⇔ ¬𝑠𝑎𝑡 (PC(𝐹))

Definition 12 (Core feature). A feature 𝐹 of F is a core feature if it is always selected. The set of core features is noted
𝑐𝑜𝑟𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ().

𝐹 ∈ 𝑐𝑜𝑟𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 () ⇔ ¬𝑠𝑎𝑡 (¬PC(𝐹))

Note. If 𝐹𝑆 ∈ F𝑠𝑒𝑙𝑒𝑐𝑡𝐹 is a core feature, then 𝐹 is also a core feature, as PC(𝐹𝑆) → PC(𝐹).

2For example, although Kconfig’s syntax allows adding conditions to select statements, no defect described in our model requires to express this
behaviour.

8

Capturing the diversity of analyses on the Linux kernel variability

Definition 13. (Missing dead feature) A feature 𝐹 is missing dead if a feature in its presence condition is not defined.
The set of missing dead features is noted𝑚𝑖𝑠𝑠𝑖𝑛𝑔𝐷𝑒𝑎𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ().

𝐹 ∈𝑚𝑖𝑠𝑠𝑖𝑛𝑔𝐷𝑒𝑎𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 () ⇔ (𝑚 ∈ 𝑡𝑒𝑟𝑚𝑠 (PC(𝐹)) ∧ (𝑚 ∉ F)

3.2.2 Expressing cross-space formulas. Nadi and Holt [10] defined multiple anomalies (anom. {19,21,22,24}) using
different terms, i.e., 𝐵𝑁 , 𝐶 ,𝑀 , and 𝐾 , which we now describe with our model.

𝐵𝑁 ∧𝐶 . 𝐵𝑁 represents a block, and 𝐶 the constraints in the code space. This expression is true if and only if the
block 𝐵𝑁 is selected, thus it corresponds to 𝐵𝑁 ↔ PC𝑆𝑖𝑛 (𝐵𝑁) using Tartler et al. [16]’s notation and PC𝐼𝑛𝑡 (𝐵𝑁) in
our model.

𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑁). 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑁) represents the selection of the parent of a block, i.e., its enclosing block. This expression
corresponds to 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝐵𝑁) in our model.

The Kconfig space 𝐾 . 𝐾 represents the set of constraints in the Kconfig space, i.e., the constraints on features that
allow them to be selected. Tartler et al. [16] do not use the whole feature model expression as the solving would not
scale. They instead identify the features impacting the selection of a given code block using a slicing algorithm to build
a minimal but sufficient subset of the configuration space through a recursive application on each new feature found in
the presence condition expression.

The make space𝑀 . 𝑀 represents the set of constraints in the make space, i.e., the constraints on features that allow
the selection of source files in the Makefiles. In her PhD thesis [8], Nadi states: since the conflicts in anom. {21} arise from

looking at the block presence condition as well as the file’s presence condition, we call this category of anomalies code-build
anomalies. Thus, to detect defects involving the make space, it is only necessary to have the presence condition of the
file containing the analyzed block.

In section 3.1, we instantiate on CPP the definition of external presence condition given in def. 3, using for context
C = CKconfig ∪ CKbuild. Thus, CKconfig = 𝐾 and CKbuild = 𝑀 , and:

𝑠𝑙𝑖𝑐𝑒 (CKconfig, 𝑡𝑒𝑟𝑚𝑠 (PC𝐼𝑛𝑡 (𝑎)) ∪ 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝐸𝑥𝑡𝑎)) |= 𝐾

𝑠𝑙𝑖𝑐𝑒 (CKbuild, 𝑡𝑒𝑟𝑚𝑠 (PC𝐼𝑛𝑡 (𝑎)) ∪ 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝐸𝑥𝑡𝑎)) |= 𝑀

4 DEFINITIONS

Presence Condition [14]:

PC(𝑏𝑖) = 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑏𝑖) ∧ 𝑛𝑜𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑏𝑖) ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑏𝑖)

with

𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑏𝑖) Given a block 𝑏𝑖 , the function 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑏𝑖) returns the logical expression as specified in the
block declaration. Example: For the block B1 in fig. 1, the function 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑏1) returns: 𝐴 ∨ 𝐵 ∨𝐶 .

𝑝𝑎𝑟𝑒𝑛𝑡 (𝑏𝑖) Given 𝑏𝑖 , 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑏𝑖) returns the logical variable that represents the selection of its parent. If the block
is not nested in any other block, then the result is always true. Example: For the block B3 in fig. 1, the function
returns: 𝑏1.

9

Johann Mortara and Philippe Collet

𝑛𝑜𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑏𝑖) Given 𝑏𝑖 , 𝑛𝑜𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑏𝑖) returns the negation of the disjunction of all its predecessors
(logical variables representing blocks) in an if-group. Example: For the block B4 of fig. 1 𝑛𝑜𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑏4)
returns ¬(𝑏2 ∨ 𝑏3).

Compliance with presence conditions from Sincero et al. [14] For conciseness and to prevent confusion, we
name this definition PC𝑆𝑖𝑛 and use the more compact expression given in [16]:

PC𝑆𝑖𝑛 (𝑏𝑖) = 𝑒𝑥𝑝𝑟 (𝑏𝑖) ∧ 𝑛𝑜𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑏𝑖) ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑏𝑖)

We can express PC𝑆𝑖𝑛 using our definition of asset from def. 1. Let us apply PC𝑆𝑖𝑛 on an asset 𝑏 as defined
in section 3.1.

PC𝑆𝑖𝑛 (𝑏) = 𝑒𝑥𝑝𝑟 (𝑏) ∧ 𝑛𝑜𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑏) ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑏)

= 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏 ∧ ¬ (𝑝𝑟𝑒𝑑1 ∨ 𝑝𝑟𝑒𝑑2 ∨ · · · ∨ 𝑝𝑟𝑒𝑑𝑛) ∧ 𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏
= 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏 ∧ 𝜙𝑝𝑟𝑒𝑑𝑠𝑏 ∧ 𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏

𝜙𝑝𝑟𝑒𝑑𝑠𝑏 and 𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏 are propositions on assets corresponding to the blocks themselves. However, to evaluate the
presence condition, these assets have to be expanded to their logical expression.

PC𝑆𝑖𝑛 (𝑏) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑏

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏)

The definition of PC𝑆𝑖𝑛 is therefore compliant with our definition of PC𝐼𝑛𝑡 given in def. 2.

Anomaly 1 (Dead block [14]). A block is dead if:

¬𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑎𝑏𝑙𝑒 (K ∧ C ∧ 𝐵𝑙𝑜𝑐𝑘𝑁)

with K and C the propositional formulas representing the problem space constraints (i.e., Kconfig space) and solution

space constraints (i.e., Make space) respectively. 𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑎𝑏𝑙𝑒 () represents the boolean satisfiability problem 3.

Instantiation 1 (Dead block {1}). Same as inst. 13.

Anomaly 2 (Internal consistency [14]). Internal consistency is defined as checking for each block of a compilation unit

if it is selectable by at least one valid configuration. This property is checked with 𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑎𝑏𝑙𝑒 (𝐶𝑢 ∧ 𝑏𝑖) which, expanded
using the definition of 𝐶𝑢 , gives:

𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑎𝑏𝑙𝑒

((∧
𝑖=1..𝑚

𝑏𝑖 ↔ PC(𝑏𝑖)
)
∧ 𝑏𝑖

)
Instantiation 2 (Expressing Internal consistency {2}).

∧
𝑖=1..𝑚

𝑏𝑖 ↔ PC(𝑏𝑖) corresponds to the set of constraints of the

code space, and 𝑏𝑖 the selection of the 𝑏𝑖 block. Therefore,
(∧
𝑖=1..𝑚

𝑏𝑖 ↔ PC(𝑏𝑖)
)
∧𝑏𝑖 can be simplified to 𝑏𝑖 ↔ PC(𝑏𝑖),

as done by Tartler et al. [16] in anom. {14}. Thus, anom. {2}⇔ anom. {14}.

Anomaly 3 (External consistency [14]). External consistency is defined as checking for each block of a compilation unit

if it is selectable by at least one valid configuration. This property is checked with 𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑎𝑏𝑙𝑒 (𝐶𝑢 ∧ 𝑏𝑖 ∧ 𝐹𝑀) (with 𝐹𝑀
the representation of the feature model in a boolean formula) which, expanded using the definition of 𝐶𝑢 , gives:

𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑎𝑏𝑙𝑒

((∧
𝑖=1..𝑚

𝑏𝑖 ↔ PC(𝑏𝑖)
)
∧ 𝑏𝑖 ∧ 𝐹𝑀

)
3In the remainder of this paper, we will refer to it as 𝑠𝑎𝑡 () .

10

Capturing the diversity of analyses on the Linux kernel variability

Instantiation 3 (Expressing External consistency {3}). In inst. 2, we showed:(∧
𝑖=1..𝑚

𝑏𝑖 ↔ PC(𝑏𝑖)
)
∧ 𝑏𝑖 ⇔ (𝑏𝑖 ↔ PC(𝑏𝑖))

𝐹𝑀 in anom. {3} and V in anom. {15} both represent the Kconfig space constraints. Therefore:

𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑎𝑏𝑙𝑒

((∧
𝑖=1..𝑚

𝑏𝑖 ↔ PC(𝑏𝑖)
)
∧ 𝑏𝑖 ∧ 𝐹𝑀

)
⇔ 𝑠𝑎𝑡 ((𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V)

i.e., anom. {3} ⇔ anom. {15}.

Anomaly 4 (Dead feature [6]). A feature is dead if there are contradictions in its dependencies.

Instantiation 4 (Expressing dead feature {4}). Given 𝐹 a dead feature. The definition can be expressed in our model as
¬𝑠𝑎𝑡 (𝜙𝑑𝑒𝑝𝑠𝐹), which itself implies ¬𝑠𝑎𝑡 (PC(𝐹)), hence 𝐹 is dead.

Anomaly 5 (False optional (undead) feature [6]). A false optional feature in Kconfig is a feature that is selected by
another feature that is always on or selected by a feature that is false optional itself.

Instantiation 5 (Expressing false optional {5}). This definition corresponds to the note in def. 12, thus 𝐹 is a core
feature.

Anomaly 6 (Missing dead feature [6]). A feature is missing dead if features in the dependencies are not defined in
Kconfig.

Instantiation 6 (Expressing missing dead feature {6}). The definition limits the presence of an undefined feature in the
dependencies:

(𝑚 ∈ 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝑠𝐹)) ∧ (𝑚 ∉ F)

As 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝑠𝐹) ⊆ 𝑡𝑒𝑟𝑚𝑠 (PC(𝐹)), every missing dead feature according to anom. {6} is also missing dead in our
model.

Anomaly 7 (Selects on Symbols with Dependencies [6]). select statements should not be used to select symbols
matching the following conditions:

• The Symbol has dependencies
• The Symbol is selected by another symbol

Instantiation 7 (Expressing selects on symbols with dependencies {7}).

(𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝑠𝐹) ≠ ∅) ∧ 𝑑𝑖𝑟𝑒𝑐𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹)

Anomaly 8 (Unreachable symbol [6]). A symbol is unreachable if:

• The symbol is invisible (does not have a prompt)
• The symbol is not selected by another symbol
• The symbol does not have a default value (or just default values with the value "n")

Instantiation 8 (Expressing unreachable symbol {8}). Given 𝐹 a symbol. If the symbol does not have a prompt neither a
default value allowing its selection, then ¬𝑠𝑎𝑡 (𝜙𝑒𝑛𝑎𝑏𝑙𝑒𝐹). Selection by another feature is modeled with 𝑑𝑖𝑟𝑒𝑐𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹).
Thus:

¬𝑠𝑎𝑡 (𝜙𝑒𝑛𝑎𝑏𝑙𝑒𝐹) ∧ ¬𝑑𝑖𝑟𝑒𝑐𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹)
11

Johann Mortara and Philippe Collet

Anomaly 9 (Unnecessary Selects on Choice Values [6]). select statements are unnecessary on symbols matching the
following conditions:

• The Symbol is a choice value
• The Symbol is selected by another symbol

Instantiation 9 (Expressing unnecessary selects on choice values {9}). To express this defect, we need to add an extra
𝑡𝑦𝑝𝑒 attribute to the feature. 𝑡𝑦𝑝𝑒 ∈ {𝑐𝑜𝑛𝑓 𝑖𝑔, 𝑐ℎ𝑜𝑖𝑐𝑒} represents the way 𝐹 is defined in the Kconfig model, either as a
simple 𝑐𝑜𝑛𝑓 𝑖𝑔 element or in a 𝑐ℎ𝑜𝑖𝑐𝑒 statement.

(𝑡𝑦𝑝𝑒𝐹 = 𝑐ℎ𝑜𝑖𝑐𝑒) ∧ 𝑑𝑖𝑟𝑒𝑐𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹)

Anomaly 10 (File Not Used (implementation-compilation consistency) [10]). A .c file exists in the directory but is not
used in the Makefile of that directory.

Instantiation 10 (Expressing File Not Used {10}). This definition may not be valid anymore, since the syntax of Kbuild
Makefiles allows them to explore subdirectories too 4. However, we can generalise this definition with: A .c file exists in

the codebase but is not used in any Makefile.

Given 𝑆 the set of source files of the Linux kernel code base, and AKbuild the set of assets representing source files
in the Kbuild Makefiles. A file 𝑠 ∈ 𝑆 is a file not used if no asset in AKbuild corresponds to 𝑠:

�𝑎𝑖 ∈ AKbuild | 𝑠 ≡ 𝑎𝑖

Anomaly 11 (Feature Not Defined (compilation-configuration consistency) [10]). A .c file is referenced in the Makefile,
and its presence is conditioned on a Kconfig feature being defined. However, this feature is not defined in any of the
Kconfig files.

Instantiation 11 (Expressing Feature Not Defined {11}). Given𝑚 a feature not being defined in any Kconfig files, and
𝑎 a file referenced a Kbuild Makefile whose presence is conditioned by𝑚. Thus,𝑚 is present in 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑎 , however is
not present in the features defined in the Kconfig files, obtained with 𝑡𝑒𝑟𝑚𝑠 (CKconfig).

(𝑚 ∈ 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑎)) ∧ (𝑚 ∉ 𝑡𝑒𝑟𝑚𝑠 (CKconfig))

As 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑎𝑖) ⊆ 𝑡𝑒𝑟𝑚𝑠 (PC𝐸𝑥𝑡 (𝑎𝑖)), anom. {11} is a special case of def. 9, therefore 𝑎 is a missing dead file.

Anomaly 12 (Variable Not Used (compilation self-consistency) [10]). A .c file is referenced in the Makefile as part of a
composite variable definition, but this variable is never used.

Instantiation 12 (Expressing Variable Not Used {12}). Given 𝑎 an asset and 𝜙𝑝𝑟𝑒𝑑𝑠𝑎 = 𝑐𝑜𝑚𝑝 . 𝑎 is an unused variable if
¬𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑐𝑜𝑚𝑝

, and ¬𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑐𝑜𝑚𝑝 → ¬PC(𝑐𝑜𝑚𝑝) → ¬𝑒𝑥𝑝𝑎𝑛𝑑𝑠 (𝜙𝑝𝑟𝑒𝑑𝑠𝑎) → ¬PC(𝑎) . Thus, 𝑎 is a dead asset.

Anomaly 13 (Configurability defect [16]). A configurability defect (short: defect) is a configuration-conditional item
that is either dead (never included) or undead (always included) under the precondition that its parent (enclosing item)
is included:

dead: ¬𝑠𝑎𝑡 (C ∧ I ∧ 𝐵𝑙𝑜𝑐𝑘𝑁)

undead: ¬𝑠𝑎𝑡 (C ∧ I ∧ ¬𝐵𝑙𝑜𝑐𝑘𝑁 ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑙𝑜𝑐𝑘𝑁))
4https://www.kernel.org/doc/html/latest/kbuild/makefiles.html#descending-down-in-directories

12

https://www.kernel.org/doc/html/latest/kbuild/makefiles.html#descending-down-in-directories

Capturing the diversity of analyses on the Linux kernel variability

with C and I the formulas representing the configuration (i.e., Kconfig) and implementation (i.e., Make) spaces
respectively.

Instantiation 13 (Expressing configurability defects {13}). Same as inst. 22 with C = CKconfig.

Anomaly 14 (Implementation-only defects [16], simplification of anom. {2}). Implementation-only defects [. . .] represent

code blocks that cannot be selected regardless of the systems’ selected features; the structure of the source file itself contains

contradictions that impede the selection of a block. This can be determined by checking the satisfiability of the formula

𝑠𝑎𝑡 (𝑏𝑖 ↔ PC(𝑏𝑖)). We can infer the expressions for dead and undead implementation-only defects.

dead: ¬𝑠𝑎𝑡 (𝑏𝑖 ↔ PC(𝑏𝑖))

undead: ¬𝑠𝑎𝑡 (¬ (𝑏𝑖 ↔ PC(𝑏𝑖)))

Instantiation 14 (Expressing Implementation-only defects {14}). Given B the set of blocks:

¬𝑠𝑎𝑡 (𝑏𝑖 ↔ PC𝑆𝑖𝑛 (𝑏𝑖)) ⇔ ¬𝑠𝑎𝑡 (PC𝐼𝑛𝑡 (𝑏𝑖))

⇔ 𝑏𝑖 ∈ 𝑑𝑒𝑎𝑑𝑠 (B) (𝑑𝑒 𝑓 . 4)

¬𝑠𝑎𝑡 (¬ (𝑏𝑖 ↔ PC𝑆𝑖𝑛 (𝑏𝑖))) ⇔ ¬𝑠𝑎𝑡 (¬ (PC𝐼𝑛𝑡 (𝑏𝑖)))

⇔ 𝑏𝑖 ∈ 𝑐𝑜𝑟𝑒 (B) (𝑑𝑒 𝑓 . 5)

Anomaly 15 (Configuration-implementation defects [16], simplification of anom. {3}). Configuration-implementation
defects occur when the rules from the configuration space contradict rules from the implementation space. We check for

such defects by solving 𝑠𝑎𝑡 ((𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V). We can infer the expressions for dead and undead configuration-
implementation defects.

dead: ¬𝑠𝑎𝑡 ((𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V)

undead: ¬𝑠𝑎𝑡 (¬ (𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V)

with V the propositional formula representing the configuration space (i.e., the feature model of Kconfig).

Instantiation 15 (Expressing configuration-implementation defects {15}). V corresponds to the minimum but sufficient
set of constraints from the configuration space. Thus:

𝑠𝑎𝑡 ((𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V) ⇔ 𝑠𝑎𝑡 (PC𝐼𝑛𝑡 (𝑏𝑖) ∧ CKconfig)

We can then express dead and undead configuration-implementation defects. Given B the set of blocks and C =

CKconfig:

¬𝑠𝑎𝑡 ((𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V) ⇔ ¬𝑠𝑎𝑡 (PC𝐼𝑛𝑡 (𝑏𝑖) ∧ C)

⇔ ¬𝑠𝑎𝑡 (PC𝐸𝑥𝑡 (𝑏𝑖)) (𝑑𝑒 𝑓 . 3)

¬𝑠𝑎𝑡 (¬ (𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V) ⇔ ¬𝑠𝑎𝑡 (¬PC𝐼𝑛𝑡 (𝑏𝑖) ∧ C)

⇔ ¬𝑠𝑎𝑡 (¬PC𝐸𝑥𝑡 (𝑏𝑖)) (𝑑𝑒 𝑓 . 3)

anom. {15} thus expresses dead (def. 6) and core defects (def. 7).

Anomaly 16 (Configuration-only defects [16]). Features are present in the configuration-space model but do not
appear in any valid configuration of the model, which means that the presence condition of the feature is not satisfiable.

13

Johann Mortara and Philippe Collet

We can check for such defects by solving: 𝑠𝑎𝑡 (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 → 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒)). However, no formal definition
of 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 was given.

Instantiation 16 (Expressing configuration-only defects {16}). The function 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒) returns the
presence implication of the feature and is defined by the authors as "the selection of the feature itself and the expression

of the depends on option." This definition, expressed by our model, corresponds to 𝜙𝑒𝑛𝑎𝑏𝑙𝑒𝑓 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝑠𝑓) = PC(𝑓).
Thus

¬𝑠𝑎𝑡 (𝑓 → 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑓)) ⇔ ¬𝑠𝑎𝑡 (PC(𝑓))

Therefore, 𝑓 is dead.

Anomaly 17 (Referential defects [16]). Referential defects are caused by a missing feature (𝑚) that appears in either the

configuration or the implementation space only. That is:

𝑠𝑎𝑡 ((𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V ∧ ¬ (𝑚1 ∨ · · · ∨𝑚𝑛))

is unsatisfiable.

Instantiation 17 (Expressing referential defects {17}). If the feature is missing in the configuration space, then the
definition corresponds def. 9 with C = CKconfig as context. A feature missing in the implementation space can mean
that the feature is used in the Make space only. It is characterized as a defect as [16] does not consider this space, but it
is not a defect for us.

Anomaly 18 (Code anomalies [10]). Code anomalies are defined as "Conflicting code constraints" and are not expressed
in the paper as they are already determined by the Undertaker tool designed in [16]. Thus, formulas to detect these
anomalies are the ones from anom. {2} and anom. {14}.

Instantiation 18 (Expressing code anomalies {18}). Same as inst. 2.

Anomaly 19 (Code–Kconfig [10]). Code–Kconfig anomalies are defined as "Code constraints are not consistent with
constraints in Kconfig" and detected using the following formulas:

𝐷𝑒𝑎𝑑𝐵𝑁
= ¬𝑠𝑎𝑡 (𝐵𝑙𝑜𝑐𝑘𝑁 ∧𝐶 ∧ 𝐾)

𝑈𝑛𝑑𝑒𝑎𝑑𝐵𝑁
= ¬𝑠𝑎𝑡 (¬𝐵𝑙𝑜𝑐𝑘𝑁 ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑙𝑜𝑐𝑘𝑁) ∧𝐶 ∧ 𝐾)

These formulas are strictly identical to anom. {15}, thus their expressiveness in our model will be checked together.

Instantiation 19 (Expressing code–Kconfig {19}). Same as inst. 13.

Anomaly 20 (Code–Kconfig missing [10]). Such defects happen when Code constraints are not consistent with Kconfig

constraints because certain features used in the code are not defined in the Kconfig files and are, therefore, always false.

Instantiation 20 (Expressing code–Kconfig missing defects {20}). Same as inst. 23 with C = CKconfig.

Anomaly 21 (Code–Make [10]). Code–Make anomalies are defined as "Code constraints are not consistent with constraints
in Makefiles". Although their formulas are not given in the paper, we can deduce them from anom. {19}:

𝐷𝑒𝑎𝑑𝐵𝑁
= ¬𝑠𝑎𝑡 (𝐵𝑙𝑜𝑐𝑘𝑁 ∧𝐶 ∧𝑀)

𝑈𝑛𝑑𝑒𝑎𝑑𝐵𝑁
= ¬𝑠𝑎𝑡 (¬𝐵𝑙𝑜𝑐𝑘𝑁 ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑙𝑜𝑐𝑘𝑁) ∧𝐶 ∧𝑀)

14

Capturing the diversity of analyses on the Linux kernel variability

Instantiation 21 (Expressing code–Make defects {21}). Same as inst. 22 with C = CKbuild.

Anomaly 22 (Code–Make–Kconfig [10]). Code–Make–Kconfig anomalies are defined as "The combination of con-

straints in the three spaces are conflicting" and detected using the following formulas:

𝐷𝑒𝑎𝑑𝐵𝑁
= ¬𝑠𝑎𝑡 (𝐵𝑙𝑜𝑐𝑘𝑁 ∧𝐶 ∧𝑀 ∧ 𝐾)

𝑈𝑛𝑑𝑒𝑎𝑑𝐵𝑁
= ¬𝑠𝑎𝑡 (¬𝐵𝑙𝑜𝑐𝑘𝑁 ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑙𝑜𝑐𝑘𝑁) ∧𝐶 ∧𝑀 ∧ 𝐾)

Instantiation 22 (Expressing code–Make–Kconfig anomalies {22}).

¬𝑠𝑎𝑡 (𝐵𝑁 ∧𝐶 ∧𝑀 ∧ 𝐾)

⇔ ¬𝑠𝑎𝑡 (PC𝐼𝑛𝑡 (𝐵𝑁) ∧ C)

⇔ ¬𝑠𝑎𝑡 (PC𝐸𝑥𝑡 (𝐵𝑁)) (𝑑𝑒 𝑓 . 3)

¬𝑠𝑎𝑡 (¬𝐵𝑁 ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑁) ∧𝐶 ∧𝑀 ∧ 𝐾)

⇔ ¬𝑠𝑎𝑡 (C ∧ ¬PC𝐼𝑛𝑡 (𝐵𝑁) ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝐵𝑁))

⇔ ¬𝑠𝑎𝑡
(
¬PC𝐸𝑥𝑡 (𝐵𝑁) ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝐵𝑁)

)
anom. {22} thus expresses dead (def. 6) and full-mandatory defects (def. 8).

Anomaly 23 (Code–Make–Kconfig missing [10]). Such defects happen when "The combination of constraints in the

three spaces are conflicting because certain features used in the compilation constraints are not defined in the Kconfig files,

and are therefore always false".

Instantiation 23 (Expressing code–Make–Kconfig missing defects {23}). We showed in inst. 22 that 𝐵𝑁 ∧𝐶 ∧𝑀 ∧𝐾 |=
PC𝐸𝑥𝑡 (𝐵𝑁). If a feature𝑚 from the formula is not defined in the Kconfig files, it means that𝑚 ∉ 𝑡𝑒𝑟𝑚𝑠 (𝐾) ∪𝑡𝑒𝑟𝑚𝑠 (𝑀),
i.e.,𝑚 ∉ 𝑡𝑒𝑟𝑚𝑠 (CKconfig ∪CKbuild). Therefore: ∃𝑚 ∈ 𝑡𝑒𝑟𝑚𝑠 (PC𝐸𝑥𝑡 (𝐵𝑁)) | (𝑚 ∉ 𝑡𝑒𝑟𝑚𝑠 (C)) , thus 𝐵𝑁 is dead by missing
feature.

Anomaly 24 (Make–Kconfig [10]). A file is dead "if it can never be present (i.e., will never get compiled) while satisfying

the combination of constraints in the Make space and the Kconfig space". These anomalies are checked by checking these
formulas.

𝐷𝑒𝑎𝑑𝐹𝑁 = ¬𝑠𝑎𝑡 (𝐹𝑖𝑙𝑒𝑁 ∧𝑀 ∧ 𝐾)

𝑈𝑛𝑑𝑒𝑎𝑑𝐹𝑁 = ¬𝑠𝑎𝑡 (¬𝐹𝑖𝑙𝑒𝑁 ∧𝑀 ∧ 𝐾)

Instantiation 24 (Expressing Make–Kconfig anomalies {24}). Let us consider 𝑠 the asset that represents the file 𝐹𝑁 ,
and C = CKconfig.

PC𝐼𝑛𝑡 (𝑠) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑠 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑠

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑠

)
= 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑠 ∧ PC𝐼𝑛𝑡 (𝑐𝑜𝑚𝑝) ∧ PC𝐼𝑛𝑡 (𝑑𝑖𝑟)

To build 𝑀 as it appears in anom. {24}, Nadi and Holt [10] extract for every file a presence condition consisting of
a conjunction of the features conditioning the selection of the file (

∨
𝑓𝑖 = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑠), the composite object if present

15

Johann Mortara and Philippe Collet

Kconfig
configurator
on features

CPP
derivator
on code
blocks

Kconfig space

Make space

Code space

Kbuild
derivator
on source

files

[6]: anom. {4,5,6,7,8,9}
[16]: anom. {16}

[9]: anom. {10,11,12}

[14]: anom. {2}, [10]: anom. {18}, [16]: anom. {14}

[10]: anom. {24,25} [10]: anom. {21}

[14]: anom. {3}
[10]: anom. {19,20}
[16]: anom. {13,15,17}

[1
0]
:a
no

m
.{
19
,2
0}

Fig. 2. Synthetic map of inconsistencies analyses of the Linux Kernel

(PC𝐼𝑛𝑡 (𝑐𝑜𝑚𝑝)) and its parent directory (PC𝐼𝑛𝑡 (𝑑𝑖𝑟)) in the corresponding Makefiles. Therefore, PC𝐼𝑛𝑡 (𝑠) |= (𝐹𝑁 ∧𝑀).

PC𝐸𝑥𝑡 (𝑠) = PC𝐼𝑛𝑡 (𝑠) ∧ 𝑠𝑙𝑖𝑐𝑒 (C, 𝑡𝑒𝑟𝑚𝑠 (PC𝐼𝑛𝑡 (𝑠)) ∪ 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝐸𝑥𝑡𝑠))

|= (𝐹𝑁 ∧𝑀) ∧𝐾 (cf. 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 3.2.2)

We can then express anom. {24} in our model:

¬𝑠𝑎𝑡 (𝐹𝑁 ∧𝑀 ∧ 𝐾) ⇔ ¬𝑠𝑎𝑡 (PC𝐸𝑥𝑡 (𝑠))

¬𝑠𝑎𝑡 (¬𝐹𝑁 ∧𝑀 ∧ 𝐾) ⇔ ¬𝑠𝑎𝑡 (¬PC𝐸𝑥𝑡 (𝑠))

anom. {24} thus expresses dead (def. 6) and core defects (def. 7).

Anomaly 25 (Make–Kconfig missing [10]). The definition of this type of defects is not written literally in the paper
but we can derive the definition from anom. {20,23}. Such defects happen when the combination of constraints in the
make and Kconfig spaces are conflicting because certain features used in the Makefiles are not defined in the Kconfig
files, and are therefore always false.

Instantiation 25 (Expressing Make–Kconfig missing defects {25}). Same as inst. 23 with C = CKconfig, and relying
on formulas from inst. 24.

5 RESULTING TABLES

We summarize our study of the existing work on anomalies in the Linux build system by providing a synthetic map
illustrates the coverage of the different papers and the anomalies they express over the different spaces of the Linux
build system fig. 2. Table 4 describes for every anomaly the expressed property in our formalism.

16

Capturing the diversity of analyses on the Linux kernel variability

Table 4. The studied anomalies over the Linux build system and their instantiation using our model

Paper Defect

Derivator Internal consistency

Dead Core

[14]
Dead block (anom. {1} and inst. 1) ✓

Internal consistency (anom. {2} and inst. 2) ✓ ✓

[10] Code anomalies (anom. {18} and inst. 18) ✓ ✓

[16] Implementation-only defects (anom. {14} and inst. 14) ✓ ✓

[9] Variable Not Used (anom. {12} and inst. 12) ✓

Derivator External consistency

Dead Core Full-mandatory

[14] External consistency (anom. {3} and inst. 3) ✓ ✓

[10]

Code–Kconfig anomalies (anom. {19} and inst. 19) ✓ ✓

Code–Make anomalies (anom. {21} and inst. 21) ✓ ✓

Code–Make–Kconfig anomalies (anom. {22} and inst. 22) ✓ ✓

Make–Kconfig anomalies (anom. {24} and inst. 24) ✓ ✓

[16]
Configurability defects (anom. {13} and inst. 13) ✓ ✓

Configuration-implementation defects (anom. {15} and inst. 15) ✓ ✓

Derivator missing feature

[10]
Code–Kconfig missing anomalies (anom. {20} and inst. 20) ✓

Code–Make–Kconfig missing anomalies (anom. {23} and inst. 23) ✓

Make–Kconfig missing anomalies (anom. {25} and inst. 25) ✓

[9] Feature Not Defined (anom. {11} and inst. 11) ✓

[16] Referential defects (anom. {17} and inst. 17) ✓

Configurator consistency

Dead Missing dead Core

[16] Configuration-only defects (anom. {16} and inst. 16) ✓

[6]
Dead feature (anom. {4} and inst. 4) ✓

Missing dead feature (anom. {6} and inst. 6) ✓

False optional (undead) feature (anom. {5} and inst. 5) ✓

Other properties

[9] File Not Used (anom. {10} and inst. 10) ✓

[6]
Unreachable Symbols (anom. {8} and inst. 8) ✓

Unnecessary Selects on Choice Values (anom. {9} and inst. 9) ✓

Selects on Symbols with Dependencies (anom. {7} and inst. 7) ✓

17

Johann Mortara and Philippe Collet

Table 5. Anomalies covered by the model (defects defined as dead and undead according to the authors)

Paper

Sincero et al.
[14]

Tartler et al.
[16] Nadi and Holt [9] Nadi and Holt

[10]
Hengelein

[6]

Derivator

Internal Dead anom. {2} anom. {14} anom. {12} anom. {18}
consistency Core anom. {2} anom. {14} anom. {18}
External Dead anom. {1,3} anom. {13,15} anom. {19,21,22,24}

consistency Core anom. {3} anom. {15} anom. {24}
Full-mandatory anom. {13} anom. {19,21,22}

Missing feature anom. {17} anom. {11} anom. {20,23,25}

Configurator

Dead anom. {16} anom. {4}
Core anom. {5}

Missing dead anom. {6}

Other properties

anom. {10} anom. {7,8,9}
(e.g., unreachable symbol, file not used)

18

Capturing the diversity of analyses on the Linux kernel variability

REFERENCES
[1] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 variability bugs in the linux kernel: a qualitative analysis. In Proceedings of the 29th

ACM/IEEE international conference on Automated software engineering. 421–432.
[2] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated analysis of feature models 20 years later: A literature review. Information

systems 35, 6 (2010), 615–636.
[3] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2017. An Empirical Study of Configuration Mismatches in Linux. In Proceedings of the 21st

International Systems and Software Product Line Conference-Volume A. 19–28.
[4] David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander Egyed. 2019. A Kconfig translation to logic with one-way validation

system. In Proceedings of the 23rd International Systems and Software Product Line Conference-Volume A. 303–308.
[5] Patrick Franz, Thorsten Berger, Ibrahim Fayaz, Sarah Nadi, and Evgeny Groshev. 2021. ConfigFix: Interactive Configuration Conflict Resolution for

the Linux Kernel. In 43rd IEEE/ACM International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). ACM.
[6] Stefan Hengelein. 2015. Analyzing the Internal Consistency of the Linux KConfig Model. Master’s thesis. University of Erlangen, Dept. of Computer

Science.
[7] Johann Mortara and Philippe Collet. 2021. Capturing the diversity of analyses on the Linux kernel variability. In 25th ACM International Systems

and Software Product Line Conference - Volume A (SPLC ’21).
[8] Sarah Nadi. 2014. Variability Anomalies in Software Product Lines. Ph.D. Dissertation. University of Waterloo.
[9] Sarah Nadi and Ric Holt. 2011. Make it or break it: Mining anomalies from Linux Kbuild. In 2011 18th Working Conference on Reverse Engineering.

IEEE, 315–324.
[10] Sarah Nadi and Ric Holt. 2012. Mining Kbuild to detect variability anomalies in Linux. In 2012 16th European Conference on Software Maintenance

and Reengineering. IEEE, 107–116.
[11] Sarah Nadi and Ric Holt. 2014. The Linux kernel: A case study of build system variability. Journal of Software: Evolution and Process 26, 8 (2014),

730–746.
[12] Leonardo Passos, Jianmei Guo, Leopoldo Teixeira, Krzysztof Czarnecki, Andrzej Wasowski, and Paulo Borba. 2013. Coevolution of variability

models and related artifacts: A case study from the Linux kernel. In Proceedings of the 17th International Software Product Line Conference. 91–100.
[13] Steven She and Thorsten Berger. 2010. Formal semantics of the Kconfig language. Technical note, University of Waterloo 24 (2010).
[14] Julio Sincero, Reinhard Tartler, Daniel Lohmann, and Wolfgang Schröder-Preikschat. 2010. Efficient extraction and analysis of preprocessor-based

variability. In Proceedings of the ninth international conference on Generative programming and component engineering. 33–42.
[15] Reinhard Tartler. 2013. Mastering variability challenges in Linux and related highly-configurable system software. Ph.D. Dissertation.
[16] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-Preikschat. 2011. Feature consistency in compile-time-configurable system

software: Facing the Linux 10,000 feature problem. In Proceedings of the sixth conference on Computer systems. 47–60.
[17] Reinhard Tartler, Julio Sincero, Christian Dietrich, Wolfgang Schröder-Preikschat, and Daniel Lohmann. 2012. Revealing and repairing configuration

inconsistencies in large-scale system software. International Journal on Software Tools for Technology Transfer 14, 5 (2012), 531–551.
[18] Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, and Daniel Lohmann. 2009. Dead or alive: Finding zombie features in the Linux

kernel. In Proceedings of the First International Workshop on Feature-Oriented Software Development. 81–86.
[19] Pablo Trinidad, David Benavides, Amador Durán, Antonio Ruiz-Cortés, and Miguel Toro. 2008. Automated error analysis for the agilization of

feature modeling. Journal of Systems and Software 81, 6 (2008), 883–896.
[20] Alexander Von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk Beyer, and Thorsten Berger. 2015. Presence-condition simplification

in highly configurable systems. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1. IEEE, 178–188.

19

	Abstract
	Contents
	1 Variability in the Linux kernel
	2 Diversity
	3 Model
	3.1 Derivator Model
	3.2 Configurator Model

	4 Definitions
	5 Resulting tables
	References

