
HAL Id: hal-03283627
https://hal.science/hal-03283627

Submitted on 12 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Capturing the diversity of analyses on the Linux kernel
variability

Johann Mortara, Philippe Collet

To cite this version:
Johann Mortara, Philippe Collet. Capturing the diversity of analyses on the Linux kernel variability.
25th ACM International Systems and Software Product Line Conference - Volume A (SPLC ’21), Sep
2021, Leicester, United Kingdom. �10.1145/3461001.3471151�. �hal-03283627�

https://hal.science/hal-03283627
https://hal.archives-ouvertes.fr

Capturing the diversity of analyses on the Linux kernel variability
Johann Mortara

Université Côte d’Azur, CNRS, I3S
Sophia Antipolis, France

johann.mortara@univ-cotedazur.fr

Philippe Collet
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
philippe.collet@univ-cotedazur.fr

ABSTRACT

As its variability management architecture is complex, the Linux
kernel is a constant subject of study for analyzing different aspects
of its variability. It relies on a configuration-aware build system,
preprocessor directives in the code, and a configuration tool. While
many studies have focused on detecting anomalies within these
parts or between them, all concepts and denominations are dif-
ferent among contributions, with similar properties devised with
varied formalisms, or with no easy relationship between them. This
actually hampers the understanding of all variability issues and
proposed analyses, as well as their application to other highly con-
figurable systems. In this paper, we analyse the different properties
that have been studied on the variability of the kernel and propose a
formalism based on the generic concepts of configurator and deriva-
tor. We instantiate them to represent the Kconfig, the Kbuild, and
CPP in a unified model that enables to represent all the consistency
properties. With this model, we manage to categorize the main re-
lated studies, establishing their coverage on the defined properties,
showing also overlapping and divergences between studies.

CCS CONCEPTS

• Software and its engineering→ Software product lines.

KEYWORDS

Linux, configuration, variability, build system, variability anomalies

1 INTRODUCTION

With impressive figures of over 15,000 configurable features, 28
million lines of code in more than 60K files, 900,000 commits from
more than 2K authors [24], the Linux kernel has been a constant
subject of study for the software engineering community. Thanks
to its open-source nature and its available history, software evolu-
tion [4, 16, 34] and maintenance [1, 17] issues have been extensively
studied, but it is in the variability research community that it has
become emblematic over the years [42].

Related work. The variability management architecture of the
kernel is complex. It relies on a model-based configuration tool
(Kconfig), CPP preprocessor directives in the code, and a configuration-
aware build system (Kbuild).

Naturally, variability management in the Kconfig part was
deeply investigated. While Sincero and Schröder-Preikschat [43]
established a first mapping between the Kconfig language and
feature modelling concepts, She et al. [41] investigated the inverse
mapping and built a model for the Kconfig language constructs.
In [40], She and Berger described the semantics of the Kconfig
language, used as a basis for multiple tools [10, 19, 39, 45]. Zengler
and Küchlin [53] achieved a translation of Kconfig’s constraints
in a single logic formula, later reused with SAT-solving by Walch

et al. [52] to analyze the consistency of Kconfig files. In his Mas-
ter’s thesis, Hengelein [15] analyses defects in Kconfig. As it can
be seen as a feature model [41], it can have its defects, i.e., dead
features [18], or false optional features [54]. Besides, as the Linux
kernel is a living ecosystem, the evolution of its variability model
has also been extensively studied [9, 25, 35, 36].

Closer to the code, Sincero et al. [44] defined presence condi-

tions to identify inconsistencies in the constraints defined by ifdef
directives in the kernel, and proposed an implementation with
the Undertaker toolchain. While Tartler et al. introduced the
problem of inconsistencies between Kconfig files and ifdef direc-
tives in [47], they extended Undertaker to add constraints from
the Kconfig files and identify inconsistencies between the two
spaces [45, 46]. Other tools relying on presence conditions have
been developed to reason on ifdef directives for type checking,
such as TypeChef [22], and use the Linux code base as a robustness
trial [20]. In [38] the authors identified more than 36,000 incon-
sistencies in the Linux code assets with their checking technique
between FM concepts and their translation using ifdef directives.

Multiple tooled approaches have also been proposed to parse,
analyze and reason on Kbuild Makefiles, as KbuildMiner [6],
Makex [32], Golem [8] (and its extension MiniGolem [37]), and
Kmax [13]. Berger et al. [6] analyzed the Kbuild Makefiles to ex-
tract a mapping between features and code assets in the shape of
presence conditions on the features. Other tools for analyzing stan-
dard Makefiles have been applied to Kbuild files, as Makao [3],
which builds a dependency graph from them. This tool is used in
more recent work on the identification of unspecified dependencies
in make-based systems, also applied to Kbuild [7]. Finally, after
studying the internal consistency of the Kbuild Makefiles through
three types of defects [30], Nadi and Holt built a third extension of
Undertaker to add constraints from the Kbuild files and identify
inconsistencies in the three spaces [31].

Despite this large body of work, the variability of the Linux ker-
nel is still a subject of new studies (e.g., translating configurations
from the Kconfig to propositional logic [11], using symbolic exe-
cution to recover build conditions in Kbuild files [33]), tools (e.g.,
interactively resolving configuration conflict [12]), and challenges
(e.g., deriving a BDD [48]).

Problem statement. While many studies have focused on detect-
ing anomalies in or between each part of the Linux build, all con-
cepts and denominations are different among contributions, with
the same properties being described with varied formalisms and
sometimes different definitions, at different levels, or with no easy
relationship between them.

For example, Sincero et al. [44] presented a first implementa-
tion of Undertaker for CPP implementing their formalism on
CPP. Tartler et al. [45] then improved it by adding a second level

Johann Mortara and Philippe Collet

to Undertaker for reasoning over the Kconfig constraints, but
the authors considered the constraints from CPP in the tool as a
black box. Consequently the fine-grained comprehension of the
link feature–block is then lost. The same issue can be found in the
work from Nadi and Holt [31] on the Kbuild space and the third
extension they provide for Undertaker.

Moreover, several studies on the variability anomalies exhibit
inconsistencies in and across the different parts of the Linux build
system, making use of identical denominations (such as dead and
undead) for different types of code assets (code block, file. . .), with
sometimes colliding definitions[31, 44, 45] (cf. section 3).

These issues and the lack of a uniform vision over the different
analyses on the kernel variability hamper the understanding of
both the issues and the proposed solutions, as well as their transfer
in the future evolution of the build system. Furthermore a uniform
and consistent model could be applied to other highly configurable
systems, such as MozBuild [26] from the Mozilla foundation.

Contributions. In this paper, after providing background infor-
mation about variability in the Linux kernel (section 2), we tackle
these issues by making the following contributions:

• We analyse the different terminologies and properties that
have been studied on the variability elements of the kernel,
taking as input the main related work on consistency inside
Kconfig, Kbuild, and CPP, and between them (section 3).

• We bring together existing formalizations in a single formal-
ism that captures all relevant elements of the Linux kernel
variability. Instead of extracting a partial representation
to reason about it, our formalism first considers selectable
entities of the entire build workflow, i.e., features, files and
code blocks, to express properties. These properties are
determined over two concepts: a configurator, which can
represent the Kconfig, and a derivator, which can be instan-
tiated differently to represent the Kbuild (to select files)
and CPP (to select code blocks) (section 4).

• We show the instantiated models and express the already
identified defects from the main previous contributions,
establishing their coverage on the defined properties (sec-
tion 5).

Section 6 discusses the threats to the validity of this study while
section 7 concludes this paper.

2 VARIABILITY IN THE LINUX KERNEL

The Linux build system is composed of three distinct stages (fig. 1):

Kconfig space. Kconfig files are present in multiple directories
of the codebase and define configuration options (also called sym-

bols) representing features. Each configuration option is defined as
a config entry and can be of six different types: bool, tristate,
string, hex, or int. A default value for the feature can be set with
the default entry. Features can be selected directly by the user via
a prompt (present in an individual prompt entry or attached to the
type of the feature), or by constraints on other features (defined in
a depends on entry). Menus allow to group features. If a feature is
defined within a menu item that itself has a depends on entry, this
condition is appended by Kconfig to the depends on condition

of the feature 1. A feature can also force the selection of another
feature with the select entry. For example, in the lib/Kconfig
file presented in fig. 1, feature FOO (l.4) is a feature of type bool
whose default value is y but which can be modified by the user via
a prompt. To be selected, DEPS_A or DEPS_B need to be selected,
and MENU_COND needs to be satisfied. The selection of FOO, will also
force the selection of F_SEL. Kconfig checks for the consistency of
the constraints between the selected features and outputs two files
containing the list of selected features in two formats: .configwill
be read by the Kbuild Makefiles, and autoconf.h is a C header file
that will be appended to every source file during compilation.

Make space. The Kbuild system is made of multiple Makefiles
present in multiple directories throughout the project, which select
objects for the compilation. Three types of objects exist: object files,
directories and composite objects. Object files (such as file_c.o in
lib/dir/Makefile) represent objects generated during the compi-
lation from existing .c files in the codebase. Therefore, a file_c.c
file should be present in the codebase. Added directories (such as
dir/ in lib/Makefile) will have their Kbuild Makefile parsed to
select files from this subtree. Composite objects associate multiple
files in one single object. For example, foo.o in lib/dir/Makefile
is a composite object defined at line 2 combining file_a.o and
file_b.o and used at line 1.

Selection is done by adding the object files generated at the
precompilation to lists. For example, in lib/dir/Makefile, the
file_c.o object is added to the obj-y list. In this case, the object
will always be selected. The selection of an object can also be condi-
tioned by the value of a feature, as for the foo.o object. CONFIG_FOO
refers to the FOO feature defined in the Kconfig file lib/Kconfig.
FOO is a boolean feature, therefore if it has for value y, the object
will be added to the obj-y list. The same mechanism applies for
the dir directory in lib/Makefile, with the small difference that
BAR is a tristate feature, allowing an extra m value. The object
added to the obj-m list will be compiled as a module. If a feature is
not defined, the name of the list becomes obj- and is ignored.

Code space. Variability in the source files is implemented us-
ing CPP directives. Code in conditional blocks declared with #if,
#elif, #ifdef, or #ifndef directives (referred to as ifdef direc-
tives) is selected only if the condition of the directive is satisfied.
For example, in lib/dir/foo.c, the selection of B1 implies that
the condition line 1 is true. A nested block can only be selected
if its parent block is selected (the selection of B1 implies that the
condition line 3 is true and that B1 is also selected). Finally, code de-
fined in a block declared with #elif or #else can only be selected
if the ifdef blocks preceding it are not selected (the selection of B3
implies that the condition line 5 is true and that B2 is not selected,
and the selection of B4 implies that neither B2 nor B3 are selected).

3 DIVERSITY OF ANALYSES

Facing the many research studies on the Linux kernel variabil-
ity, we queried three major digital libraries (ACM Digital Library,
IEEEXplore and Scopus) searching for papers related to the con-
sistency, build or configuration of the Linux kernel, and clearly

1https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html#menu-
structure

https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html#menu-structure
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html#menu-structure

Capturing the diversity of analyses on the Linux kernel variability

Kconfig
configurator
on features

Kconfig files

Kbuild Makefiles

CPP
derivator
on code
blocks

Source files

 1 menu “Menu prompt”
 2 depend on MENU_COND
 3
 4 config FOO
 5 bool "FOO prompt text"
 6 default y
 7 select F_SEL
 8 depends on DEPS_A || DEPS_B
 9
10 config BAR
11 tristate "BAR prompt text"
12 default n
14
15 endmenu
16
17 config F_SEL
18 bool
19 default n

lib/Kconfig

1 obj-$(CONFIG_FOO) += foo.o
2 foo-y := file_a.o file_b.o
3 obj-y += file_c.o

 1 #if (defined CONFIG_FOO || defined CONFIG_BAR || defined CONFIG_BAZ)
 2 // B1
 3 #if defined CONFIG_FOO
 4 // B2
 5 #elif defined CONFIG_BAR
 6 // B3
 7 #else
 8 // B4
 9 #endif
10 #endif

.config Kbuild
derivator
on source

files

autoconf.h

lib/dir/Makefile

1 obj-$(CONFIG_BAR) += dir/

lib/Makefile

lib/dir/foo.c

Kconfig space Make space Code space#define CONFIG_FOO
#define CONFIG_BAR
#define CONFIG_F_SEL

1 CONFIG_FOO=1
2 CONFIG_BAR=m
3 CONFIG_F_SEL=1

Figure 1: Sample Linux build process, inspired from [32] and [44]

evoking at least one of the three mechanisms of the build system
(namely, Kconfig, Kbuild, and CPP). We then explored the refer-
ences from the obtained papers to search for other work related
to the topic. After manual inspection, we discarded work related
to the analysis of tools to parse files from the build system [10],
the tools themselves [19, 39] and tooled approaches that do not
characterize anomalies [3, 6, 8, 13, 37]. We also dismiss work on the
formal semantics of the Kconfig files [40, 52, 53] and translation
to boolean logic [11], which do not report anomalies. Finally, we
dismiss preliminary work completed by later publications of the
same authors [47] and journal extensions [32, 46].

In the following, we discuss five studies of anomalies in the ker-
nel variability, definitions for anomalies being directly extracted
from them. We mark with a ★ anomalies that are naturally incon-
sistent as they are directly extracted from papers. Characterizing
these inconsistencies is done by instantiating the anomalies in our
models (cf. section 5). However, some sentences may be added to
reproduce the context of the definitions. For brevity’s sake, some
less important definitions are not given in this paper, but are de-
tailed in a companion report that is covering all definitions of the
analysed studies, the proposed models, and their application to the
kernel [28].

3.1 CPP internal consistency by Sincero et al.

[44]

Sincero et al. [44] formalize CPP directives using propositional logic
and propose a framework, Undertaker, to automate the derivation
of presence conditions from ifdef directives. They define lines of

code in ifdef blocks as blocks and define for a block 𝑏𝑖 the

Presence Condition [44]:

PC(𝑏𝑖) = 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑏𝑖) ∧ 𝑛𝑜𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑏𝑖) ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑏𝑖)

with
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑏𝑖) Given a block 𝑏𝑖 , the function 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑏𝑖)

returns the logical expression as specified in the block dec-
laration. Example: For the block B1 in fig. 1, the function
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑏1) returns: 𝐴 ∨ 𝐵 ∨𝐶 .

𝑝𝑎𝑟𝑒𝑛𝑡 (𝑏𝑖) Given 𝑏𝑖 , 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑏𝑖) returns the logical variable
that represents the selection of its parent. If the block is
not nested in any other block, then the result is always true.
Example: For the block B3 in fig. 1, the function returns: 𝑏1.

𝑛𝑜𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑏𝑖) Given 𝑏𝑖 , 𝑛𝑜𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑏𝑖) returns the
negation of the disjunction of all its predecessors (logical
variables representing blocks) in an if-group. Example: For
the block B4 of fig. 1 𝑛𝑜𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑏4) returns ¬(𝑏2∨𝑏3).

The authors then give a definition of dead defect:

Anomaly 1 (Dead block [44]). A block is dead if:

¬𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑎𝑏𝑙𝑒 (K ∧ C ∧ 𝐵𝑙𝑜𝑐𝑘𝑁)

with K and C the propositional formulas representing the problem
space constraints (i.e., Kconfig space) and solution space constraints

(i.e., Make space) respectively. 𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑎𝑏𝑙𝑒 () represents the boolean
satisfiability problem 2.

2In the remainder of this paper, we will refer to it as 𝑠𝑎𝑡 () .

Johann Mortara and Philippe Collet

Relying on the expression of the presence condition, the authors
finally define two levels of consistency to express this definition
of dead defect. As these expressions have been simplified by the
authors in later work [45], they are given in the companion report.

Anomaly 2 (Internal consistency [44]). def. in companion report.

Anomaly 3 (External consistency [44]). def. in companion report.

3.2 Kconfig internal consistency by

Hengelein [15]

In his Master’s thesis Hengelein [15] analyses the internal consis-
tency of Kconfig and characterises six different types of anomalies.
While the first three are common anomalies resulting from conflicts
between constraints on the features, the last three are related to
the syntax of the Kconfig files, and given in the companion report.

Anomaly 4 (Dead feature [15]). A feature is dead if there are
contradictions in its dependencies.

Anomaly 5 (False optional (undead) feature ★ [15]). A false op-
tional feature in Kconfig is a feature that is selected by another
feature that is always on or selected by a feature that is false op-
tional itself.

Anomaly 6 (Missing dead feature [15]). A feature is missing dead
if features in the dependencies are not defined in Kconfig.

Anomaly 7 (Selects on Symbols with Dependencies [15]). def. in

companion report.

Anomaly 8 (Unreachable symbol [15]). def. in companion report.

Anomaly 9 (Unnecessary Selects on Choice Values [15]). def. in

companion report.

3.3 Kbuild consistency by Nadi and Holt [30]

Nadi and Holt [30] investigate both the internal and external consis-
tencies of the Kbuild Makefiles by studying the (non-)use of com-
posite objects, and the non-selection of a file because of a missing
feature. The absence of files from the code base in the Makefiles is
also studied (anom. {10}), but does not result from a conflict between
constraints in the build system. Its definition and its instantiation
in our model are thus given in the companion report.

Anomaly 10 (File Not Used (implementation-compilation consis-
tency) [31]). def. in companion report.

Anomaly 11 (Feature Not Defined (compilation-configuration con-
sistency) [31]). A .c file is referenced in the Makefile, and its pres-
ence is conditioned on a Kconfig feature being defined. However,
this feature is not defined in any of the Kconfig files.

Anomaly 12 (Variable Not Used (compilation self-consistency) [31]).
A .c file is referenced in the Makefile as part of a composite variable
definition, but this variable is never used.

3.4 Kconfig–CPP consistency by Tartler et

al. [45]

Tartler et al. [45] characterize defects issuing from conflicts be-
tween the Kconfig and the CPP space. They first give the following
definition of dead and undead blocks.

Anomaly 13 (Configurability defect ★ [45]). A configurability
defect (short: defect) is a configuration-conditional item that is
either dead (never included) or undead (always included) under the
precondition that its parent (enclosing item) is included:

dead: ¬𝑠𝑎𝑡 (C ∧ I ∧ 𝐵𝑙𝑜𝑐𝑘𝑁)
undead: ¬𝑠𝑎𝑡 (C ∧ I ∧ ¬𝐵𝑙𝑜𝑐𝑘𝑁 ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑙𝑜𝑐𝑘𝑁))

with C andI the formulas representing the configuration (i.e., Kcon-
fig) and implementation (i.e., Make) spaces respectively.

The authors then reuse the formalism proposed by Sincero et al.
[44] to simplify the defects with the two following definitions.

Anomaly 14 (Implementation-only defects [45], simplification
of anom. {2}). def. in companion report.

Anomaly 15 (Configuration-implementation defects ★ [45], sim-
plification of anom. {3}). Configuration-implementation defects
occur when the rules from the configuration space contradict rules

from the implementation space. We check for such defects by solving

𝑠𝑎𝑡 ((𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V). We can infer the expressions for dead
and undead configuration-implementation defects.

dead: ¬𝑠𝑎𝑡 ((𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V)
undead: ¬𝑠𝑎𝑡 (¬ (𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V)

withV the propositional formula representing the configuration
space (i.e., the feature model of Kconfig).

Since anom. {14} is a special case of anom. {15} which does not
consider external constraints, we only detail the latter.

Anomaly 16 (Configuration-only defects [45]). Features are present
in the configuration-space model but do not appear in any valid con-
figuration of the model, which means that the presence condition
of the feature is not satisfiable. We can check for such defects by
solving: 𝑠𝑎𝑡 (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 → 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒)). However,
no formal definition of 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 was given.

Anomaly 17 (Referential defects [45]). Referential defects are caused
by a missing feature (𝑚) that appears in either the configuration or

the implementation space only. That is:

𝑠𝑎𝑡 ((𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V ∧ ¬ (𝑚1 ∨ · · · ∨𝑚𝑛))

is unsatisfiable.

3.5 Kconfig–Kbuild–CPP consistency by Nadi

and Holt [31]

Nadi and Holt [31] improve Undertaker [45] to add constraints
from the Make space and identify dead and undead artifacts at both
source file and code block levels, relying on constraints from the
three spaces.

Anomaly 18 (Code anomalies [31]). def. in companion report.

Anomaly 19 (Code–Kconfig ★ [31]). Code–Kconfig anomalies
are defined as "Code constraints are not consistent with constraints

in Kconfig" and detected using the following formulas:

𝐷𝑒𝑎𝑑𝐵𝑁
= ¬𝑠𝑎𝑡 (𝐵𝑙𝑜𝑐𝑘𝑁 ∧𝐶 ∧ 𝐾)

𝑈𝑛𝑑𝑒𝑎𝑑𝐵𝑁
= ¬𝑠𝑎𝑡 (¬𝐵𝑙𝑜𝑐𝑘𝑁 ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑙𝑜𝑐𝑘𝑁) ∧𝐶 ∧ 𝐾)

Capturing the diversity of analyses on the Linux kernel variability

These formulas are strictly identical to anom. {15}, thus their
expressiveness in our model will be checked together.

Anomaly 20 (Code–Kconfig missing [31]). Such defects happen
when Code constraints are not consistent with Kconfig constraints

because certain features used in the code are not defined in the Kconfig

files and are, therefore, always false.

Anomaly 21 (Code–Make ★ [31]). def. in companion report.

Anomaly 22 (Code–Make–Kconfig★ [31]). Code–Make–Kconfig
anomalies are defined as "The combination of constraints in the three

spaces are conflicting" and detected using the following formulas:

𝐷𝑒𝑎𝑑𝐵𝑁
= ¬𝑠𝑎𝑡 (𝐵𝑙𝑜𝑐𝑘𝑁 ∧𝐶 ∧𝑀 ∧ 𝐾)

𝑈𝑛𝑑𝑒𝑎𝑑𝐵𝑁
= ¬𝑠𝑎𝑡 (¬𝐵𝑙𝑜𝑐𝑘𝑁 ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑙𝑜𝑐𝑘𝑁) ∧𝐶 ∧𝑀 ∧ 𝐾)

Anomaly 23 (Code–Make–Kconfig missing [31]). Such defects
happen when "The combination of constraints in the three spaces are

conflicting because certain features used in the compilation constraints

are not defined in the Kconfig files, and are therefore always false".

Anomaly 24 (Make–Kconfig ★ [31]). A file is dead "if it can

never be present (i.e., will never get compiled) while satisfying the

combination of constraints in the Make space and the Kconfig space".
These anomalies are checked by checking these formulas.

𝐷𝑒𝑎𝑑𝐹𝑁 = ¬𝑠𝑎𝑡 (𝐹𝑖𝑙𝑒𝑁 ∧𝑀 ∧ 𝐾)
𝑈𝑛𝑑𝑒𝑎𝑑𝐹𝑁 = ¬𝑠𝑎𝑡 (¬𝐹𝑖𝑙𝑒𝑁 ∧𝑀 ∧ 𝐾)

Anomaly 25 (Make–Kconfig missing [31]). The definition of this
type of defects is not written literally in the paper but we can derive
the definition from anom. {20,23}. Such defects happen when the
combination of constraints in the make and Kconfig spaces are
conflicting because certain features used in the Makefiles are not
defined in the Kconfig files, and are therefore always false.

Since anom. {18,19,21} and their missing variants anom. {20,25}
encompass special cases of anom. {19} and anom. {23} by considering
only some spaces, we only detail the instantiation of the latter.

3.6 Summary

While the studies on the Linux build system all present the three
spaces (Kconfig, Kbuild and CPP) when they used them, no stan-
dard denomination is given to each of these spaces, leading to a
profusion of names. The different denominations for the studied
papers are listed in table 1 3. Within just this subset, we can notice
that every paper has its own terminology. To prevent the addition
of yet another terminology to the state-of-the-art, we decided to
reuse the terminology proposed by Nadi and Holt [31], as it is the
only study we kept that covers the three spaces.

By analysing the definitions of anomalies from the selected pa-
pers, we can pinpoint multiple elements bringing confusion. First,
multiple definitions are redundant between papers, but their ex-
pression and their names differ. For example, Dead block defined
by Sincero et al. [44] in anom. {1}, Configurability defects defined
by Tartler et al. [45] in anom. {13} and Code–Kconfig anomalies de-
fined by Nadi and Holt [31] in anom. {19} express the same formula.
Moreover, spaces can also be named differently, sometimes with
3Details of all the studies presented in the introduction are given in a complete table
in the companion report [28].

Table 1: Notation and terminologies mapping for the three

spaces in selected papers

Paper Kconfig files Kbuild Makefiles CPP / Source files

[31] Kconfig space Make space Code space
K M C

[15] Feature Modeling Build system Generator
Configuration Preprocessor

[30] Configuration space Compilation space Implementation space

[44]
Problem space / Solution space

Model Implementation
K / C

[45] Configuration space / Implementation space
C / I

the same letter representing two different spaces in two definitions
(𝐶 represents the CPP constraints in [31, 44] and the Kconfig con-
straints in [45]). A summary of these differences is given in table 1.

On the opposite, some anomalies with identical names may not
express the same type of defect. This is the case for the formulas to
detect dead blocks in anom. {13} and anom. {15}, which are equiva-
lent, while the characterizations of undead blocks are inconsistent.
Let us take the following example:

1 #if defined A

2 //block 1

3 # if defined A

4 //block 2

5 # endif

6 #endif

Block 2 is undead according to anom. {13}, as the selection of its
parent (Block 1) implies its selection. However, if the A variable is
not defined, then Block 2 is not undead according to anom. {15} as
it is not always included.

While encompassing the variability of the whole Linux kernel
build system, the models presented in the next section will also
help in obtaining a coherent set of consistency properties.

4 PROPOSED MODELS

In order to cover all three stages of the Linux kernel build system
and to represent its variability mechanisms independently of their
implementation, we design a model with the concepts of feature,
asset, propositional formula, and presence condition. We add a
concept of predecessor to handle the dependency between the three
stages, as well as two additional concepts to be able to represent
the stages themselves:

• a configurator defines presence conditions on features (i.e.,
the condition allowing an individual feature to be selected).
Presence conditions on features are propositional formulas
on other features;

• a derivator defines presence conditions on assets, (i.e., the
condition allowing an individual asset to be selected). Pres-
ence conditions on assets are propositional formulas on
both features and assets, which can be either of the same
type or of another type.

Some properties will also be defined on the internal and external
consistency of the elements as to cover the different anomalies
devised in the previous section. We could also have built our models

Johann Mortara and Philippe Collet

on amore expressive theoretical background, such as the refinement
theory, to potentially obtain for free some properties, but we decided
to rely on a more simple but very explicit basis to clarify first all
concepts and inconsistencies.

In the following, we will use these utility definitions:
𝑡𝑒𝑟𝑚𝑠 (𝜙) a helper function which, given a propositional for-

mula, returns the terms in it (e.g., 𝑡𝑒𝑟𝑚𝑠 ((𝐴 ∧ 𝐵) ∨𝐶) =

{𝐴, 𝐵,𝐶}).
𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙) a helper function which, given a propositional for-

mula𝜙 , replaces every asset 𝑎 in𝜙 by its presence condition,
notedPC𝐼𝑛𝑡 (𝑎) and defined in def. 2 (e.g., 𝑒𝑥𝑝𝑎𝑛𝑑 (𝑏1 ∧ ¬𝑏2) =
PC𝐼𝑛𝑡 (𝑏1) ∧ ¬PC𝐼𝑛𝑡 (𝑏2)).

𝑠𝑙𝑖𝑐𝑒 (𝐶,𝑇) an operator which, given a set of boolean condi-
tions on terms 𝐶 and a set of terms 𝑇 , returns the conjunc-
tion of all propositional formulas from 𝐶 containing terms
from 𝑇 . The operator is recursively applied to the terms
that appear in these formulas4.

4.1 Derivator Model

In this section, we introduce the concepts to form the derivator
model and illustrate them with its application to CPP.

Definition 1 (Asset). An asset𝑎 = ⟨𝜙𝑠𝑒𝑙𝑒𝑐𝑡 , 𝜙𝑝𝑟𝑒𝑑𝑠 , 𝜙𝑑𝑒𝑝𝐼𝑛𝑡 , 𝜙𝑑𝑒𝑝𝐸𝑥𝑡 ⟩
from a set of assets A𝑋 is defined as follows:

• 𝜙𝑠𝑒𝑙𝑒𝑐𝑡 is a propositional formula for the asset’s selection ;
• 𝜙𝑝𝑟𝑒𝑑𝑠 is a propositional formula on other assets that are

evaluated before 𝑎. We call these assets predecessors ;
• 𝜙𝑑𝑒𝑝𝐼𝑛𝑡 is a propositional formula on assets on which 𝑎 is

dependent ;
• 𝜙𝑑𝑒𝑝𝐸𝑥𝑡 is a propositional formula on assets from another

context on which 𝑎 is dependent.

Application to CPP. An asset 𝑏 is a code block, with:
• 𝜙𝑠𝑒𝑙𝑒𝑐𝑡 the condition of the #if surrounding the block ;
• 𝜙𝑝𝑟𝑒𝑑𝑠 = ¬(∨

𝑖
𝑏𝑖) if 𝑏 is an #elsif or #else block, 𝑏𝑖 repre-

sents the corresponding #if block and the potential #elsif
blocks before 𝑏 ;

• 𝜙𝑑𝑒𝑝𝐼𝑛𝑡 = 𝑝 with 𝑝 the parent block of 𝑏 if 𝑏 is a nested
block.

• 𝜙𝑑𝑒𝑝𝐸𝑥𝑡 = 𝑓 𝑖𝑙𝑒 the file containing 𝑏.
Example. In fig. 1, the lib/foo/foo.c file and the blocks B1, B2,
B3, and B4 it contains are represented by the following assets:

• 𝑓 𝑖𝑙𝑒 = ⟨𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒⟩
• 𝑏1 = ⟨𝐹𝑂𝑂 ∨ 𝐵𝐴𝑅 ∨ 𝐵𝐴𝑍, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑓 𝑖𝑙𝑒⟩
• 𝑏2 = ⟨𝐹𝑂𝑂, 𝑡𝑟𝑢𝑒, 𝑏1, 𝑓 𝑖𝑙𝑒⟩
• 𝑏3 = ⟨𝐵𝐴𝑅,¬𝑏2, 𝑏1, 𝑓 𝑖𝑙𝑒⟩
• 𝑏4 = ⟨𝑡𝑟𝑢𝑒,¬(𝑏2 ∨ 𝑏3), 𝑏1, 𝑓 𝑖𝑙𝑒⟩

Definition 2 (Internal presence condition). The internal presence
condition of an asset is the boolean formula that needs to be satisfi-
able for the asset to be selectable. It is defined as

PC𝐼𝑛𝑡 (𝑎) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑎 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑎

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑎

)
4The principle of slicing has already been applied to feature models [2, 23] and its
goal is to extract a subset of formulas equivalent to the whole space by keeping only
formulas relevant to terms from𝑇 .

Note. An asset is selected if and only if its presence condition is
satisfied: PC𝐼𝑛𝑡 (𝑎) ↔ 𝑎

Application to CPP. Let us take again the previous example.

PC𝐼𝑛𝑡 (𝑏1) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏1 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑏1

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏1

)
= (𝐹𝑂𝑂 ∨ 𝐵𝐴𝑅 ∨ 𝐵𝐴𝑍) ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝑡𝑟𝑢𝑒) ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝑡𝑟𝑢𝑒)
= (𝐹𝑂𝑂 ∨ 𝐵𝐴𝑅 ∨ 𝐵𝐴𝑍)

PC𝐼𝑛𝑡 (𝑏2) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏2 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑏2

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏2

)
= (𝐹𝑂𝑂) ∧ 𝑡𝑟𝑢𝑒 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝑏1)
= (𝐹𝑂𝑂) ∧ (𝐹𝑂𝑂 ∨ 𝐵𝐴𝑅 ∨ 𝐵𝐴𝑍)

PC𝐼𝑛𝑡 (𝑏3) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏3 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑏3

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏3

)
= (𝐵𝐴𝑅) ∧ (¬PC𝐼𝑛𝑡 (𝑏2)) ∧ PC𝐼𝑛𝑡 (𝑏1)

PC𝐼𝑛𝑡 (𝑏4) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏4 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑏4

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏4

)
= (¬(PC𝐼𝑛𝑡 (𝑏2) ∨ PC𝐼𝑛𝑡 (𝑏3))) ∧ PC𝐼𝑛𝑡 (𝑏1)

Note. Extracted presence conditions can be complex and may con-
tain redundant terms (e.g., PC𝐼𝑛𝑡 (𝑏2) is equivalent to 𝐹𝑂𝑂). Ap-
proaches to simplify presence conditions have been proposed [51]
and are out of the scope of this paper.

Definition 3 (External presence condition). By evaluating PC𝐼𝑛𝑡 ,
we check that the asset can be selected given the constraints of
its space. However, other external constraints may prevent the
selection the asset. We call context the set of these constraints. The
external presence condition of an asset in a given context C is
defined as

PC𝐸𝑥𝑡 (𝑎) = PC𝐼𝑛𝑡 (𝑎)∧𝑠𝑙𝑖𝑐𝑒 (C, 𝑡𝑒𝑟𝑚𝑠 (PC𝐼𝑛𝑡 (𝑎))∪𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝐸𝑥𝑡𝑎))

Application to CPP. In the Linux build system, the selection
of a CPP block is conditioned by constraints on both the features
used in the #if instructions (which are determined at the Kconfig
level) and the file containing the block (which are determined at
the Kbuild level). Thus, the context C to express the external pres-
ence condition of a block is the union of the Kconfig and Kbuild
contexts C = CKconfig ∪ CKbuild. Let us take an example with

CKconfig = {𝐹𝑂𝑂 → 𝐵𝐴𝑅, 𝐵𝐴𝑍 → (¬𝐹1), 𝐹1 → (¬𝐹𝑂𝑂), 𝐹3 → 𝐹4}
CKbuild = {𝑓 𝑖𝑙𝑒 ↔ 𝐹𝑂𝑂 }

then PC𝐸𝑥𝑡 (𝑏1)

= PC𝐼𝑛𝑡 (𝑏1) ∧ 𝑠𝑙𝑖𝑐𝑒 (C, 𝑡𝑒𝑟𝑚𝑠 (PC𝐼𝑛𝑡 (𝑏1)) ∪ 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝐸𝑥𝑡𝑏1))
= PC𝐼𝑛𝑡 (𝑏1) ∧ 𝑠𝑙𝑖𝑐𝑒 (C, {𝐹𝑂𝑂, 𝐵𝐴𝑅, 𝐵𝐴𝑍 } ∪ {𝑓 𝑖𝑙𝑒 })
= PC𝐼𝑛𝑡 (𝑏1) ∧ ((𝐹𝑂𝑂 → 𝐵𝐴𝑅) ∧ (𝐵𝐴𝑍 → (¬𝐹1))
∧ (𝐹1 → (¬𝐹𝑂𝑂)) ∧ (𝑓 𝑖𝑙𝑒 ↔ 𝐹𝑂𝑂))

4.1.1 Internal consistency. To express defects, we define dead, core,
and full-mandatory assets, relying on definitions of dead and false-
optional features introduced by Benavides et al. [5], and full-mandatory
features from Trinidad et al. [49].

Definition 4 (Dead asset). An asset 𝑎 of A is dead if it can never
be selected. The set of dead assets of A is noted 𝑑𝑒𝑎𝑑𝑠 (A).

𝑎 ∈ 𝑑𝑒𝑎𝑑𝑠 (A) ⇔ ¬𝑠𝑎𝑡 (PC𝐼𝑛𝑡 (𝑎))

Capturing the diversity of analyses on the Linux kernel variability

Note. This consistency check includes the more specific case where
an asset is dead because of an inconsistency with the condition to se-
lect its internal dependencies (i.e., 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑠) → ¬𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑠)
as in this case PC𝐼𝑛𝑡 (𝑎) is inconsistent.

Definition 5 (Core asset). An asset 𝑎 of A is a core asset if it is
always selected. The set of core assets of A is noted 𝑐𝑜𝑟𝑒 (A).

𝑎 ∈ 𝑐𝑜𝑟𝑒 (A) ⇔ ¬𝑠𝑎𝑡 (¬(PC𝐼𝑛𝑡 (𝑎)))

4.1.2 External consistency.

Definition 6. (Externally dead asset) An asset 𝑎 is an externally
dead asset if it is never selected due to inconsistencies with its con-
text. The set of externally dead assets of A is noted 𝑑𝑒𝑎𝑑𝑠𝐸𝑥𝑡 (A).

𝑎 ∈ 𝑑𝑒𝑎𝑑𝑠𝐸𝑥𝑡 (A) ⇔ ¬𝑠𝑎𝑡 (PC𝐸𝑥𝑡 (𝑎))

Definition 7 (Externally core asset). An asset 𝑎 of A is an ex-
ternally core asset if it is always selected independently of the
constraints of the context. The set of core assets of A is noted
𝑐𝑜𝑟𝑒𝐸𝑥𝑡 (A).

𝑎 ∈ 𝑐𝑜𝑟𝑒𝐸𝑥𝑡 (A) ⇔ ¬𝑠𝑎𝑡 (¬(PC𝐸𝑥𝑡 (𝑎)))

Definition 8. (Externally full-mandatory asset) An asset 𝑎 is an
externally full-mandatory asset if the selection of its parent depen-
dencies implies its selection due to the formulas in its context. The
set of externally full-mandatory assets of A is noted𝑚𝑎𝑛𝑑𝐸𝑥𝑡 (A).

𝑎 ∈𝑚𝑎𝑛𝑑𝐸𝑥𝑡 (A) ⇔ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑎) → PC𝐸𝑥𝑡 (𝑎)
⇔ ¬𝑠𝑎𝑡 (¬PC𝐸𝑥𝑡 (𝑎) ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑎))

Definition 9. (Missing dead asset) An asset 𝑎 is missing dead if
a feature in its presence condition is not defined in the context C.
The set of assets of A with missing features is noted𝑚𝑖𝑠𝑠𝑖𝑛𝑔(A).

𝑎 ∈𝑚𝑖𝑠𝑠𝑖𝑛𝑔(A) ⇔ ∃𝑚 ∈ 𝑡𝑒𝑟𝑚𝑠 (PC𝐸𝑥𝑡 (𝑎)) | (𝑚 ∉ 𝑡𝑒𝑟𝑚𝑠 (C))

4.2 Configurator Model

The configurator represents the model element that checks the
selection of features. It is represented by a set of features F . We
will illustrate the formalization here with its application to the
Kconfig.
𝐹 = ⟨𝜙𝑒𝑛𝑎𝑏𝑙𝑒 , 𝜙𝑑𝑒𝑝𝑠 , F𝑠𝑒𝑙𝑒𝑐𝑡 ⟩

• 𝜙𝑒𝑛𝑎𝑏𝑙𝑒 is a propositional formula representing the ability
to select the feature ;

• 𝜙𝑑𝑒𝑝𝑠 is a propositional formula on features on which 𝐹 is
dependent ;

• F𝑠𝑒𝑙𝑒𝑐𝑡 is a set of features automatically selecting 𝐹 . If a
feature from F𝑠𝑒𝑙𝑒𝑐𝑡 is selected, 𝐹 is also selected, regardless
of the precedent conditions.

Application to Kconfig. A feature 𝐹 is a configuration option
defined in a Kconfig file, with:

• 𝜙𝑒𝑛𝑎𝑏𝑙𝑒 represents the ability to select the feature by user
selection (prompt), or default value, as defined in table 2 ;

• 𝜙𝑑𝑒𝑝𝑠 represents the boolean formula on features defined
in the depends on statement ;

• F𝑠𝑒𝑙𝑒𝑐𝑡 is a set of features selecting 𝐹 with a select state-
ment ;

Table 2: Truth table for 𝜙𝑒𝑛𝑎𝑏𝑙𝑒 from a Kconfig feature

Presence of prompt Presence of default 𝜙𝑒𝑛𝑎𝑏𝑙𝑒

yes
activated 𝑡𝑟𝑢𝑒

not activated 𝑡𝑟𝑢𝑒

no
activated 𝑡𝑟𝑢𝑒

not activated 𝑓 𝑎𝑙𝑠𝑒

In the Kconfig file presented in fig. 1, three features are defined:
FOO, BAR and F_SEL. Existing work on the semantics of the Kconfig
files [40] inline the conditions from the menu items surrounding the
definition of a feature in the depends on condition. These features
can be represented by the following assets:

• 𝐹𝑂𝑂 = ⟨𝑡𝑟𝑢𝑒, (𝐷𝐸𝑃𝑆_𝐴 ∨𝐷𝐸𝑃𝑆_𝐵) ∧𝑀𝐸𝑁𝑈 _𝐶𝑂𝑁𝐷, {}⟩
• 𝐵𝐴𝑅 = ⟨𝑡𝑟𝑢𝑒,𝑀𝐸𝑁𝑈 _𝐶𝑂𝑁𝐷, {}⟩
• 𝐹_𝑆𝐸𝐿 = ⟨𝑓 𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒, {𝐹𝑂𝑂}⟩

Definition 10 (Presence condition). The presence condition of a
feature 𝐹 ∈ F represents the boolean formula which needs to be
satisfied for the feature to be selected.

PC(𝐹) =
(
𝜙𝑒𝑛𝑎𝑏𝑙𝑒 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝑠)

)
∨ 𝑑𝑖𝑟𝑒𝑐𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹)

with 𝑑𝑖𝑟𝑒𝑐𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹) = ∨
𝐹𝑠 ∈F𝑠𝑒𝑙𝑒𝑐𝑡

PC(𝐹𝑠).

Note. The selection of a feature implies that its presence condition
is satisfied: 𝐹 → PC(𝐹) There is no biimplication as we consider
that a user can manually interfere in the selection. Therefore, the
information extracted from the model can only express if a feature
can be selected, and not its effective selection.

Application to Kconfig.

PC(𝐹𝑂𝑂) =
(
𝜙𝑒𝑛𝑎𝑏𝑙𝑒𝐹𝑂𝑂

∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝑠𝐹𝑂𝑂
)
)
∨ 𝑑𝑖𝑟𝑒𝑐𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹𝑂𝑂)

= 𝑡𝑟𝑢𝑒 ∧ ((PC(𝐷𝐸𝑃𝑆_𝐴) ∨ PC(𝐷𝐸𝑃𝑆_𝐵)) ∧ PC(𝑀𝐸𝑁𝑈 _𝐶𝑂𝑁𝐷))
= (PC(𝐷𝐸𝑃𝑆_𝐴) ∨ PC(𝐷𝐸𝑃𝑆_𝐵)) ∧ PC(𝑀𝐸𝑁𝑈 _𝐶𝑂𝑁𝐷)

PC(𝐵𝐴𝑅) =
(
𝜙𝑒𝑛𝑎𝑏𝑙𝑒𝐵𝐴𝑅

∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝑠𝐵𝐴𝑅
)
)
∨ 𝑑𝑖𝑟𝑒𝑐𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝐵𝐴𝑅)

= 𝑡𝑟𝑢𝑒 ∧ PC(𝑀𝐸𝑁𝑈 _𝐶𝑂𝑁𝐷)
= PC(𝑀𝐸𝑁𝑈 _𝐶𝑂𝑁𝐷)

PC(𝐹_𝑆𝐸𝐿) = (𝑓 𝑎𝑙𝑠𝑒 ∧ 𝑡𝑟𝑢𝑒) ∨ PC(𝐹𝑂𝑂) = PC(𝐹𝑂𝑂)

Note. Due to the size and complexity of the Kconfig model, ob-
taining a sound and complete abstraction of its semantics is still a
challenge. The latest studies on boolean translation are not able to
represent the whole complexity of the language [11]. Because of
these limitations, the accuracy of variability reasoning approaches
is also limited and acknowledged by researchers [12]. Therefore, we
aim here to provide a model allowing us to synthesize the current
work, and do not pretend to present a complete model of Kconfig 5.

4.2.1 Consistency.

Definition 11 (Dead feature). A feature 𝐹 of F is dead if it can
never be selected. The set of dead features is noted 𝑑𝑒𝑎𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ().

𝐹 ∈ 𝑑𝑒𝑎𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 () ⇔ ¬𝑠𝑎𝑡 (PC(𝐹))
5For example, although Kconfig’s syntax allows adding conditions to select state-
ments, no defect described in our model requires to express this behaviour.

Johann Mortara and Philippe Collet

Definition 12 (Core feature). A feature 𝐹 of F is a core feature if it
is always selected. The set of core features is noted 𝑐𝑜𝑟𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ().

𝐹 ∈ 𝑐𝑜𝑟𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 () ⇔ ¬𝑠𝑎𝑡 (¬PC(𝐹))

Note. If 𝐹𝑆 ∈ F𝑠𝑒𝑙𝑒𝑐𝑡𝐹 is a core feature, then 𝐹 is also a core feature,
as PC(𝐹𝑆) → PC(𝐹).

Definition 13. (Missing dead feature) A feature 𝐹 is missing
dead if a feature in its presence condition is not defined. The set of
missing dead features is noted𝑚𝑖𝑠𝑠𝑖𝑛𝑔𝐷𝑒𝑎𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ().

𝐹 ∈𝑚𝑖𝑠𝑠𝑖𝑛𝑔𝐷𝑒𝑎𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 () ⇔ (𝑚 ∈ 𝑡𝑒𝑟𝑚𝑠 (PC(𝐹)) ∧ (𝑚 ∉ F)

5 INSTANTIATION ON THE LINUX KERNEL

We now instantiate our model on the kernel build system. The con-
figurator is used to model the Kconfig, while the derivator concept
is used to model source files selected by the Kbuild Makefiles, with
a form of positive variability [50]: the core is represented by the
obj-y entries, where the additional parts are added in composite
objects and feature dependent entries. The same derivator concept
also represents the selection of code blocks from the source files by
CPP, implementing this time negative variability [50].

5.1 Model on CPP

For CPP we have to describe the presence conditions and cross-
space expressions for its related anomalies.

5.1.1 Compliance with presence conditions from Sincero et al. [44].
For conciseness and to prevent confusion, we name this definition
PC𝑆𝑖𝑛 and use the more compact expression given in [45]:

PC𝑆𝑖𝑛 (𝑏𝑖) = 𝑒𝑥𝑝𝑟 (𝑏𝑖) ∧ 𝑛𝑜𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑏𝑖) ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑏𝑖)

We can express PC𝑆𝑖𝑛 using our definition of asset from def. 1.
Let us apply PC𝑆𝑖𝑛 on an asset 𝑏 as defined in section 4.1.

PC𝑆𝑖𝑛 (𝑏) = 𝑒𝑥𝑝𝑟 (𝑏) ∧ 𝑛𝑜𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑏) ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑏)
= 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏 ∧ ¬ (𝑝𝑟𝑒𝑑1 ∨ 𝑝𝑟𝑒𝑑2 ∨ · · · ∨ 𝑝𝑟𝑒𝑑𝑛) ∧ 𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏
= 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏 ∧ 𝜙𝑝𝑟𝑒𝑑𝑠𝑏 ∧ 𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏

𝜙𝑝𝑟𝑒𝑑𝑠𝑏 and𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏 are propositions on assets corresponding to
the blocks themselves. However, to evaluate the presence condition,
these assets have to be expanded to their logical expression.

PC𝑆𝑖𝑛 (𝑏) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑏 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑏

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑏)

The definition of PC𝑆𝑖𝑛 is therefore compliant with our defini-
tion of PC𝐼𝑛𝑡 given in def. 2.

5.1.2 Expressing cross-space formulas. Nadi and Holt [31] defined
multiple anomalies (anom. {19,21,22,24}) using different terms, i.e.,
𝐵𝑁 , 𝐶 ,𝑀 , and 𝐾 , which we now describe with our model.

𝐵𝑁 ∧𝐶 . 𝐵𝑁 represents a block, and𝐶 the constraints in the code
space. This expression is true if and only if the block 𝐵𝑁 is selected,
thus it corresponds to 𝐵𝑁 ↔ PC𝑆𝑖𝑛 (𝐵𝑁) using Tartler et al. [45]’s
notation and PC𝐼𝑛𝑡 (𝐵𝑁) in our model.

𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑁). 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑁) represents the selection of the parent
of a block, i.e., its enclosing block. This expression corresponds to
𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝐵𝑁) in our model.

The Kconfig space 𝐾 . 𝐾 represents the set of constraints in the
Kconfig space, i.e., the constraints on features that allow them to
be selected. Tartler et al. [45] do not use the whole feature model
expression as the solving would not scale. They instead identify
the features impacting the selection of a given code block using
a slicing algorithm to build a minimal but sufficient subset of the
configuration space through a recursive application on each new
feature found in the presence condition expression.

The make space 𝑀 . 𝑀 represents the set of constraints in the
make space, i.e., the constraints on features that allow the selection
of source files in the Makefiles. In her PhD thesis [29], Nadi states:
since the conflicts in anom. {21} arise from looking at the block presence

condition as well as the file’s presence condition, we call this category

of anomalies code-build anomalies. Thus, to detect defects involving
the make space, it is only necessary to have the presence condition
of the file containing the analyzed block.

In section 4.1, we instantiate on CPP the definition of external
presence condition given in def. 3, using for context C = CKconfig∪
CKbuild. Thus, CKconfig = 𝐾 and CKbuild = 𝑀 , and:

𝑠𝑙𝑖𝑐𝑒 (CKconfig, 𝑡𝑒𝑟𝑚𝑠 (PC𝐼𝑛𝑡 (𝑎)) ∪ 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝐸𝑥𝑡𝑎)) |= 𝐾
𝑠𝑙𝑖𝑐𝑒 (CKbuild, 𝑡𝑒𝑟𝑚𝑠 (PC𝐼𝑛𝑡 (𝑎)) ∪ 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝐸𝑥𝑡𝑎)) |= 𝑀

We can then express the different formulas in our model.

Instantiation 1 (Expressing code–Make–Kconfig anomalies {22}).

¬𝑠𝑎𝑡 (𝐵𝑁 ∧𝐶 ∧𝑀 ∧ 𝐾)
⇔ ¬𝑠𝑎𝑡 (PC𝐼𝑛𝑡 (𝐵𝑁) ∧ C)
⇔ ¬𝑠𝑎𝑡 (PC𝐸𝑥𝑡 (𝐵𝑁)) (𝑑𝑒 𝑓 . 3)

¬𝑠𝑎𝑡 (¬𝐵𝑁 ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐵𝑁) ∧𝐶 ∧𝑀 ∧ 𝐾)
⇔ ¬𝑠𝑎𝑡 (C ∧ ¬PC𝐼𝑛𝑡 (𝐵𝑁) ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝐵𝑁))

⇔ ¬𝑠𝑎𝑡
(
¬PC𝐸𝑥𝑡 (𝐵𝑁) ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝐵𝑁)

)
anom. {22} thus expresses dead (def. 6) and full-mandatory defects
(def. 8).

Instantiation 2 (Expressing configurability defects {13}). Same
as inst. 1 with C = CKconfig.

Instantiation 3 (Expressing code–Kconfig {19}). Same as inst. 2.

Instantiation 4 (Expressing configuration-implementation defects
{15}). V corresponds to the minimum but sufficient set of con-
straints from the configuration space. Thus:

𝑠𝑎𝑡 ((𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V) ⇔ 𝑠𝑎𝑡 (PC𝐼𝑛𝑡 (𝑏𝑖) ∧ CKconfig)

We can then express dead and undead configuration-implemen-
tation defects. Given B the set of blocks and C = CKconfig:

¬𝑠𝑎𝑡 ((𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V) ⇔ ¬𝑠𝑎𝑡 (PC𝐼𝑛𝑡 (𝑏𝑖) ∧ C)
⇔ ¬𝑠𝑎𝑡 (PC𝐸𝑥𝑡 (𝑏𝑖)) (𝑑𝑒 𝑓 . 3)

¬𝑠𝑎𝑡 (¬ (𝑏𝑖 ↔ PC(𝑏𝑖)) ∧ V) ⇔ ¬𝑠𝑎𝑡 (¬PC𝐼𝑛𝑡 (𝑏𝑖) ∧ C)
⇔ ¬𝑠𝑎𝑡 (¬PC𝐸𝑥𝑡 (𝑏𝑖)) (𝑑𝑒 𝑓 . 3)

anom. {15} thus expresses dead (def. 6) and core defects (def. 7).

Capturing the diversity of analyses on the Linux kernel variability

Instantiation 5 (Expressing code–Make–Kconfig missing defects
{23}). We showed in inst. 1 that 𝐵𝑁 ∧𝐶 ∧𝑀 ∧𝐾 |= PC𝐸𝑥𝑡 (𝐵𝑁). If
a feature𝑚 from the formula is not defined in the Kconfig files, it
means that𝑚 ∉ 𝑡𝑒𝑟𝑚𝑠 (𝐾) ∪ 𝑡𝑒𝑟𝑚𝑠 (𝑀), i.e.,𝑚 ∉ 𝑡𝑒𝑟𝑚𝑠 (CKconfig ∪
CKbuild). Therefore: ∃𝑚 ∈ 𝑡𝑒𝑟𝑚𝑠 (PC𝐸𝑥𝑡 (𝐵𝑁)) | (𝑚 ∉ 𝑡𝑒𝑟𝑚𝑠 (C)) ,
thus 𝐵𝑁 is dead by missing feature.

Instantiation 6 (Expressing code–Kconfig missing defects {20}).
Same as inst. 5 with C = CKconfig.
Instantiation 7 (Expressing referential defects {17}). If the feature
is missing in the configuration space, then the definition corre-
sponds def. 9 with C = CKconfig as context. A feature missing in
the implementation space can mean that the feature is used in the
Make space only. It is characterized as a defect as [45] does not
consider this space, but it is not a defect for us.

5.2 Model on Kbuild

At the Kbuild level, an asset 𝑠 = ⟨𝜙𝑠𝑒𝑙𝑒𝑐𝑡 , 𝜙𝑝𝑟𝑒𝑑𝑠 , 𝜙𝑑𝑒𝑝𝐼𝑛𝑡 , 𝜙𝑑𝑒𝑝𝐸𝑥𝑡 ⟩
can represent a C object file. We then express presence conditions
and related anomalies with our model. As seen in section 2, an
object is selected for compilation by being added to defined lists,
with possible constraints on one or more features in case of multiple
definitions. Before, objects can also be added to composite variables.

• 𝜙𝑠𝑒𝑙𝑒𝑐𝑡 =
∨
𝑓𝑖 with 𝑓𝑖 being features which at least one

needs to be set for the source file to be selected. If the asset
is always selected, 𝜙𝑠𝑒𝑙𝑒𝑐𝑡 = 𝑡𝑟𝑢𝑒 . If the asset is defined but
never added to a list, 𝜙𝑠𝑒𝑙𝑒𝑐𝑡 = 𝑓 𝑎𝑙𝑠𝑒 ;

• 𝜙𝑝𝑟𝑒𝑑𝑠 = 𝑐𝑜𝑚𝑝 with 𝑐𝑜𝑚𝑝 the name of the composite vari-
able if 𝑠 is part of a composite definition. 𝑐𝑜𝑚𝑝 must be
selected ;

• 𝜙𝑑𝑒𝑝𝐼𝑛𝑡 = 𝑑𝑖𝑟 with 𝑑𝑖𝑟 the directory containing the source
file represented by 𝑠 which also needs to be selected ;

• 𝜙𝑑𝑒𝑝𝐸𝑥𝑡 = 𝑡𝑟𝑢𝑒 as the selection of a source file only relies
on its feature.

Expressing the assets from fig. 1.

• 𝑑𝑖𝑟 = ⟨𝐵𝐴𝑅, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒⟩
• 𝑓 𝑜𝑜 = ⟨𝐹𝑂𝑂, 𝑡𝑟𝑢𝑒, 𝑑𝑖𝑟, 𝑡𝑟𝑢𝑒⟩
• 𝑓 𝑖𝑙𝑒_𝑎 = ⟨𝑡𝑟𝑢𝑒, 𝑓 𝑜𝑜, 𝑑𝑖𝑟, 𝑡𝑟𝑢𝑒⟩
• 𝑓 𝑖𝑙𝑒_𝑏 = ⟨𝑡𝑟𝑢𝑒, 𝑓 𝑜𝑜, 𝑑𝑖𝑟, 𝑡𝑟𝑢𝑒⟩
• 𝑓 𝑖𝑙𝑒_𝑐 = ⟨𝑡𝑟𝑢𝑒, 𝑡𝑟𝑢𝑒, 𝑑𝑖𝑟, 𝑡𝑟𝑢𝑒⟩

Expressing their presence conditions

PC𝐼𝑛𝑡 (𝑑𝑖𝑟) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑑𝑖𝑟 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑑𝑖𝑟

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑑𝑖𝑟

)
= 𝐵𝐴𝑅 ∧ 𝑡𝑟𝑢𝑒 ∧ 𝑡𝑟𝑢𝑒 = 𝐵𝐴𝑅

PC𝐼𝑛𝑡 (𝑓 𝑜𝑜) = 𝐹𝑂𝑂 ∧ 𝑡𝑟𝑢𝑒 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (PC𝐼𝑛𝑡 (𝑑𝑖𝑟)) = 𝐹𝑂𝑂 ∧ 𝐵𝐴𝑅
PC𝐼𝑛𝑡 (𝑓 𝑖𝑙𝑒_𝑎) = 𝑡𝑟𝑢𝑒 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (PC𝐼𝑛𝑡 (𝑓 𝑜𝑜)) ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (PC𝐼𝑛𝑡 (𝑑𝑖𝑟))

= (𝐹𝑂𝑂 ∧ 𝐵𝐴𝑅) ∧ 𝐵𝐴𝑅
PC𝐼𝑛𝑡 (𝑓 𝑖𝑙𝑒_𝑏) = PC𝐼𝑛𝑡 (𝑓 𝑖𝑙𝑒_𝑎)
PC𝐼𝑛𝑡 (𝑓 𝑖𝑙𝑒_𝑐) = 𝑡𝑟𝑢𝑒 ∧ 𝑡𝑟𝑢𝑒 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (PC𝐼𝑛𝑡 (𝑑𝑖𝑟)) = 𝐵𝐴𝑅

Instantiation 8 (Expressing Feature Not Defined {11}). Given
𝑚 a feature not being defined in any Kconfig files, and 𝑎 a file
referenced a Kbuild Makefile whose presence is conditioned by𝑚.
Thus,𝑚 is present in 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑎 , however is not present in the features
defined in the Kconfig files, obtained with 𝑡𝑒𝑟𝑚𝑠 (CKconfig).

(𝑚 ∈ 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑎)) ∧ (𝑚 ∉ 𝑡𝑒𝑟𝑚𝑠 (CKconfig))

As 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑎𝑖) ⊆ 𝑡𝑒𝑟𝑚𝑠 (PC𝐸𝑥𝑡 (𝑎𝑖)), anom. {11} is a special
case of def. 9, therefore 𝑎 is a missing dead file.

Instantiation 9 (Expressing Variable Not Used {12}). Given 𝑎 an
asset and 𝜙𝑝𝑟𝑒𝑑𝑠𝑎 = 𝑐𝑜𝑚𝑝 . 𝑎 is an unused variable if ¬𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑐𝑜𝑚𝑝

,
and ¬𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑐𝑜𝑚𝑝 → ¬PC(𝑐𝑜𝑚𝑝) → ¬𝑒𝑥𝑝𝑎𝑛𝑑𝑠 (𝜙𝑝𝑟𝑒𝑑𝑠𝑎) → ¬PC(𝑎) .
Thus, 𝑎 is a dead asset.

Instantiation 10 (Expressing Make–Kconfig anomalies {24}). Let
us consider 𝑠 the asset that represents the file 𝐹𝑁 , and C = CKconfig.

PC𝐼𝑛𝑡 (𝑠) = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑠 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑
(
𝜙𝑝𝑟𝑒𝑑𝑠𝑠

)
∧ 𝑒𝑥𝑝𝑎𝑛𝑑

(
𝜙𝑑𝑒𝑝𝐼𝑛𝑡𝑠

)
= 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑠 ∧ PC𝐼𝑛𝑡 (𝑐𝑜𝑚𝑝) ∧ PC𝐼𝑛𝑡 (𝑑𝑖𝑟)

To build𝑀 as it appears in anom. {24}, Nadi and Holt [31] extract
for every file a presence condition consisting of a conjunction of
the features conditioning the selection of the file (

∨
𝑓𝑖 = 𝜙𝑠𝑒𝑙𝑒𝑐𝑡𝑠),

the composite object if present (PC𝐼𝑛𝑡 (𝑐𝑜𝑚𝑝)) and its parent di-
rectory (PC𝐼𝑛𝑡 (𝑑𝑖𝑟)) in the corresponding Makefiles. Therefore,
PC𝐼𝑛𝑡 (𝑠) |= (𝐹𝑁 ∧𝑀).
PC𝐸𝑥𝑡 (𝑠) = PC𝐼𝑛𝑡 (𝑠) ∧ 𝑠𝑙𝑖𝑐𝑒 (C, 𝑡𝑒𝑟𝑚𝑠 (PC𝐼𝑛𝑡 (𝑠)) ∪ 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝐸𝑥𝑡𝑠))

|= (𝐹𝑁 ∧𝑀) ∧𝐾 (cf. 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 5.1.2)

We can then express anom. {24} in our model:

¬𝑠𝑎𝑡 (𝐹𝑁 ∧𝑀 ∧ 𝐾) ⇔ ¬𝑠𝑎𝑡 (PC𝐸𝑥𝑡 (𝑠))
¬𝑠𝑎𝑡 (¬𝐹𝑁 ∧𝑀 ∧ 𝐾) ⇔ ¬𝑠𝑎𝑡 (¬PC𝐸𝑥𝑡 (𝑠))

anom. {24} thus expresses dead (def. 6) and core defects (def. 7).

Instantiation 11 (Expressing Make–Kconfig missing defects {25}).
Same as inst. 5 withC = CKconfig, and relying on formulas from inst. 10.

5.3 Model on Kconfig

Given the configurator model and the application example already
given in section 4.2, we just have to instantiate the anomalies.

Instantiation 12 (Expressing dead feature {4}). Given 𝐹 a dead fea-
ture. The definition can be expressed in our model as ¬𝑠𝑎𝑡 (𝜙𝑑𝑒𝑝𝑠𝐹),
which itself implies ¬𝑠𝑎𝑡 (PC(𝐹)), hence 𝐹 is dead.

Instantiation 13 (Expressing false optional {5}). This definition
corresponds to the note in def. 12, thus 𝐹 is a core feature.

Instantiation 14 (Expressing missing dead feature {6}). The defini-
tion limits the presence of an undefined feature in the dependencies:

(𝑚 ∈ 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝑠𝐹)) ∧ (𝑚 ∉ F)

As 𝑡𝑒𝑟𝑚𝑠 (𝜙𝑑𝑒𝑝𝑠𝐹) ⊆ 𝑡𝑒𝑟𝑚𝑠 (PC(𝐹)), every missing dead feature
according to anom. {6} is also missing dead in our model.

Instantiation 15 (Expressing configuration-only defects {16}). The
function 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒) returns the presence impli-
cation of the feature and is defined by the authors as "the se-

lection of the feature itself and the expression of the depends on

option." This definition, expressed by our model, corresponds to
𝜙𝑒𝑛𝑎𝑏𝑙𝑒𝑓 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑 (𝜙𝑑𝑒𝑝𝑠𝑓) = PC(𝑓). Thus

¬𝑠𝑎𝑡 (𝑓 → 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑓)) ⇔ ¬𝑠𝑎𝑡 (PC(𝑓))

Therefore, 𝑓 is dead.

Johann Mortara and Philippe Collet

Table 3: Anomalies covered by the model (defects defined as dead and undead according to the authors)

Paper

Sincero et al.
[44]

Tartler et al.
[45]

Nadi and Holt
[30]

Nadi and Holt
[31]

Hengelein
[15]

Derivator

Internal Dead anom. {2} anom. {14} anom. {12} anom. {18}
consistency Core anom. {2} anom. {14} anom. {18}
External Dead anom. {1,3} anom. {13,15} anom. {19,21,22,24}

consistency Core anom. {3} anom. {15} anom. {24}
Full-mandatory anom. {13} anom. {19,21,22}

Missing feature anom. {17} anom. {11} anom. {20,23,25}

Configurator

Dead anom. {16} anom. {4}
Core anom. {5}

Missing dead anom. {6}

Other properties (e.g., unreachable symbol, file not used) anom. {10} anom. {7,8,9}

5.4 Resulting coverage

From the instantiations of the configurator model on Kconfig
and the derivator on both Kbuild and CPP, we obtain a complete
expression of the different formulas and anomalies taken as input.
A summary of the different anomalies for each paper and how
they are expressed is presented in table 3. As expected, no existing
proposal expresses defects in every space of the Linux build system.
The table confirms the inconsistencies that we manually observed
in section 3.6 between anom. {13} and anom. {15} from [45], with
the first anomaly being characterized as a full-mandatory defect
and the other as a core defect. Moreover, similar inconsistencies are
exhibited in defects from [31], as well as two anomalies that are
described as dead defects but are not called as such (anom. {12,16}).

6 THREATS TO VALIDITY

Internal threats to validity. A first internal threat could be caused
by the selection of papers made to devise the properties and the
model. However, given the narrow focus of the subject and the fact
that we sought additional work in the references of the obtained
papers, we believe that the most important studies are included.

Another internal threat concerns the accuracy of the formalisms
from the chosen studies, but their application to the kernel was
demonstrated. Besides, while we provide a formalization, there is
no proof of correctness of the formalism nor associated syntax and
semantics given in a theorem prover. As future work, we plan to
rather use modelling tools to extract representations of the different
spaces in our model and reason on properties.

External threats to validity. While the application of the proposed
models to the Linux build system is shown in the paper, there
is no demonstration of the applicability of the configurator and
derivator concepts to other build systems. A first demonstration
of the derivator concept is nevertheless done through its double
instantiation as the Kconfig and CPP preprocessor. Our future plan
also includes building a generalized framework and applying it to
other variability build systems [14, 21, 26, 27].

7 CONCLUSION

The Linux kernel is a constant subject of study for the software
variability research community. While many aspects of its build

system have been studied, no uniform model encompassing all
properties on the Kconfig, Kbuild, and CPP, has been proposed.

In this paper, we first examined the main studies on the kernel
variability to propose a complete set of definitions for the analyzed
properties. We exposed the differences in terminology and some
inconsistencies in the interpretation of similar definitions in them.
We then described a formalism based on the generic concepts of
configurator and derivator to express the whole set of consistency
properties. We showed that the configurator can be instantiated
to represent the Kconfig, while the instantiated derivators can
represent the Kbuild, selecting files, or CPP, selecting code blocks.
The obtained model enables one to categorize the previous studies
and to establish their coverage and divergences on the analyses.

As future work, we plan to implement a model-driven framework
derived from the proposed models, in which one can plug extrac-
tion processes from software artifacts and consistency checking
techniques related to some of the consistency properties. Then, we
plan to apply the models on other complex variability build systems,
such as Busybox [21, 27], JHipster [14], and MozBuild [26], used on
Firefox and other Mozilla projects. We expect the presented model
and these extensions to enable practitioners, in the Linux commu-
nity and in others, to incorporate the right consistency checking
elements in their build system.

REFERENCES

[1] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 variability bugs
in the linux kernel: a qualitative analysis. In Proceedings of the 29th ACM/IEEE

international conference on Automated software engineering. 421–432.
[2] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B France. 2011. Slic-

ing feature models. In 2011 26th IEEE/ACM International Conference on Automated

Software Engineering (ASE 2011). IEEE, 424–427.
[3] Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. 2007.

Design recovery and maintenance of build systems. In 2007 IEEE International

Conference on Software Maintenance. IEEE, 114–123.
[4] Giuliano Antoniol, Umberto Villano, Ettore Merlo, and Massimiliano Di Penta.

2002. Analyzing cloning evolution in the linux kernel. Information and Software

Technology 44, 13 (2002), 755–765.
[5] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated

analysis of feature models 20 years later: A literature review. Information systems

35, 6 (2010), 615–636.
[6] Thorsten Berger, Steven She, Rafael Lotufo, Krzysztof Czarnecki, and Andrzej

Wasowski. 2010. Feature-to-Code Mapping in Two Large Product Lines.. In SPLC.
Citeseer, 498–499.

[7] Cor-Paul Bezemer, Shane McIntosh, Bram Adams, Daniel M German, and
Ahmed E Hassan. 2017. An empirical study of unspecified dependencies in

Capturing the diversity of analyses on the Linux kernel variability

make-based build systems. Empirical Software Engineering 22, 6 (2017), 3117–
3148.

[8] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. 2012. A robust approach for variability extraction from the Linux build
system. In Proceedings of the 16th International Software Product Line Conference-

Volume 1. 21–30.
[9] Nicolas Dintzner, Arie van Deursen, and Martin Pinzger. 2017. Analysing the

Linux kernel feature model changes using FMDiff. Software & Systems Modeling

16, 1 (2017), 55–76.
[10] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2015. Analysing the

Kconfig Semantics and Its Analysis Tools. In Proceedings of the 2015 ACM SIG-

PLAN International Conference on Generative Programming: Concepts and Experi-

ences. 45–54.
[11] David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander

Egyed. 2019. A Kconfig translation to logic with one-way validation system. In
Proceedings of the 23rd International Systems and Software Product Line Conference-

Volume A. 303–308.
[12] Patrick Franz, Thorsten Berger, Ibrahim Fayaz, Sarah Nadi, and Evgeny Groshev.

2021. ConfigFix: Interactive Configuration Conflict Resolution for the Linux Ker-
nel. In 43rd IEEE/ACM International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP). ACM.
[13] Paul Gazzillo. 2017. Kmax: Finding all configurations of kbuild makefiles stat-

ically. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering. 279–290.
[14] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,

and Patrick Heymans. 2017. Yo variability! JHipster: a playground for web-apps
analyses. In Proceedings of the Eleventh International Workshop on Variability

Modelling of Software-intensive Systems. 44–51.
[15] Stefan Hengelein. 2015. Analyzing the Internal Consistency of the Linux KConfig

Model. Master’s thesis. University of Erlangen, Dept. of Computer Science.
[16] Ayelet Israeli and Dror G Feitelson. 2010. The Linux kernel as a case study in

software evolution. Journal of Systems and Software 83, 3 (2010), 485–501.
[17] Yujuan Jiang, Bram Adams, and Daniel M German. 2013. Will my patch make it?

and how fast? case study on the linux kernel. In 2013 10th Working Conference

on Mining Software Repositories (MSR). IEEE, 101–110.
[18] Kyo C Kang, SholomGCohen, James AHess, William E Novak, and A Spencer Pe-

terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

[19] Christian Kästner. 2016. KconfigReader. https://github.com/ckaestne/
kconfigreader. Last access 24.02.2021.

[20] Christian Kästner, Paolo G Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. 2011. Variability-aware parsing in the presence
of lexical macros and conditional compilation. In Proceedings of the 2011 ACM

International Conference on Object Oriented Programming Systems Languages and

Applications. 805–824.
[21] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. 2012. A variability-

aware module system. In Proceedings of the ACM international conference on

Object oriented programming systems languages and applications. 773–792.
[22] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich. 2010. Type-

chef: Toward type checking# ifdef variability in C. In Proceedings of the 2nd

International Workshop on Feature-Oriented Software Development. 25–32.
[23] Sebastian Krieter, Reimar Schröter, Thomas Thüm, Wolfram Fenske, and Gunter

Saake. 2016. Comparing algorithms for efficient feature-model slicing. In Pro-

ceedings of the 20th International Systems and Software Product Line Conference.
60–64.

[24] Michael Larabel. 2020. The Linux Kernel Enters 2020 At 27.8 Million Lines In
Git But With Less Developers For 2019. https://www.phoronix.com/scan.php?
page=news_item&px=Linux-Git-Stats-EOY2019.

[25] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
Wasowski. 2010. Evolution of the Linux kernel variability model. In International

Conference on Software Product Lines. Springer, 136–150.
[26] Guillaume Maudoux and Kim Mens. 2019. Lessons and Pitfalls in Building

Firefox with Tup. In Proceedings of the Seminar Series on Advanced Techniques

& Tools for Software Evolution (SATTOSE 2019), Bolzano, Italy, July 8-10 Day,

2019 (CEUR Workshop Proceedings, Vol. 2510), Anne Etien (Ed.). CEUR-WS.org.
http://ceur-ws.org/Vol-2510/sattose2019_paper_2.pdf

[27] Austin Mordahl, Jeho Oh, Ugur Koc, Shiyi Wei, and Paul Gazzillo. 2019. An
empirical study of real-world variability bugs detected by variability-oblivious
tools. In Proceedings of the 2019 27th ACM Joint Meeting on European Software En-

gineering Conference and Symposium on the Foundations of Software Engineering.
50–61.

[28] Johann Mortara and Philippe Collet. 2021. Capturing the diversity of analyses

over the Linux kernel variability – Companion Technical Report. https://doi.org/
10.5281/zenodo.4715969

[29] Sarah Nadi. 2014. Variability Anomalies in Software Product Lines. Ph.D. Disser-
tation. University of Waterloo.

[30] Sarah Nadi and Ric Holt. 2011. Make it or break it: Mining anomalies from Linux
Kbuild. In 2011 18th Working Conference on Reverse Engineering. IEEE, 315–324.

[31] Sarah Nadi and Ric Holt. 2012. Mining Kbuild to detect variability anomalies in
Linux. In 2012 16th European Conference on Software Maintenance and Reengi-

neering. IEEE, 107–116.
[32] Sarah Nadi and Ric Holt. 2014. The Linux kernel: A case study of build system

variability. Journal of Software: Evolution and Process 26, 8 (2014), 730–746.
[33] ThanhVu Nguyen and KimHao Nguyen. 2020. Using Symbolic Execution to

Analyze Linux KBuildMakefiles. In 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 712–716.

[34] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. 2008.
Documenting and automating collateral evolutions in Linux device drivers. ACM
SigOps Operating Systems Review 42, 4 (2008), 247–260.

[35] Leonardo Passos, Jianmei Guo, Leopoldo Teixeira, Krzysztof Czarnecki, Andrzej
Wasowski, and Paulo Borba. 2013. Coevolution of variability models and re-
lated artifacts: A case study from the Linux kernel. In Proceedings of the 17th

International Software Product Line Conference. 91–100.
[36] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven

Apel, Krzysztof Czarnecki, and Jesus Padilla. 2018. A study of feature scattering
in the linux kernel. IEEE Transactions on Software Engineering (2018).

[37] Andreas Ruprecht. 2015. Lightweight Extraction of Variability Information from

Linux Makefiles. Master’s thesis. Citeseer.
[38] Alcemir Rodrigues Santos and Eduardo Santana de Almeida. 2015. Do# ifdef-

based Variation Points Realize Feature Model Constraints? ACM SIGSOFT Soft-

ware Engineering Notes 40, 6 (2015), 1–5.
[39] Steven She. 2013. Linux Variability Analysis Tools. https://github.com/matachi/

linux-variability-analysis-tools.exconfig. Last access 24.02.2021.
[40] Steven She and Thorsten Berger. 2010. Formal semantics of the Kconfig language.

Technical note, University of Waterloo 24 (2010).
[41] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof

Czarnecki. 2010. The Variability Model of The Linux Kernel. VaMoS 10, 10 (2010),
45–51.

[42] Julio Sincero, Horst Schirmeier, Wolfgang Schröder-Preikschat, and Olaf
Spinczyk. 2007. Is the Linux Kernel a Software Product Line?. In Proc. SPLC

Workshop on Open Source Software and Product Lines.
[43] Julio Sincero and Wolfgang Schröder-Preikschat. 2008. The Linux Kernel Con-

figurator as a Feature Modeling Tool.. In SPLC (2). Citeseer, 257–260.
[44] Julio Sincero, Reinhard Tartler, Daniel Lohmann, and Wolfgang Schröder-

Preikschat. 2010. Efficient extraction and analysis of preprocessor-based variabil-
ity. In Proceedings of the ninth international conference on Generative programming

and component engineering. 33–42.
[45] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-

Preikschat. 2011. Feature consistency in compile-time-configurable system
software: Facing the Linux 10,000 feature problem. In Proceedings of the sixth

conference on Computer systems. 47–60.
[46] Reinhard Tartler, Julio Sincero, Christian Dietrich,Wolfgang Schröder-Preikschat,

and Daniel Lohmann. 2012. Revealing and repairing configuration inconsisten-
cies in large-scale system software. International Journal on Software Tools for

Technology Transfer 14, 5 (2012), 531–551.
[47] Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, and Daniel

Lohmann. 2009. Dead or alive: Finding zombie features in the Linux kernel.
In Proceedings of the First International Workshop on Feature-Oriented Software

Development. 81–86.
[48] Thomas Thüm. 2020. A BDD for Linux? the knowledge compilation challenge

for variability. In Proceedings of the 24th ACM Conference on Systems and Software

Product Line: Volume A-Volume A. 1–6.
[49] Pablo Trinidad, David Benavides, Amador Durán, Antonio Ruiz-Cortés, and

Miguel Toro. 2008. Automated error analysis for the agilization of feature
modeling. Journal of Systems and Software 81, 6 (2008), 883–896.

[50] Markus Voelter and Iris Groher. 2007. Product line implementation using aspect-
oriented and model-driven software development. In 11th International Software

Product Line Conference (SPLC 2007). IEEE, 233–242.
[51] Alexander Von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk

Beyer, and Thorsten Berger. 2015. Presence-condition simplification in highly
configurable systems. In 2015 IEEE/ACM 37th IEEE International Conference on

Software Engineering, Vol. 1. IEEE, 178–188.
[52] Martin Walch, Rouven Walter, and Wolfgang Küchlin. 2015. Formal analysis of

the Linux kernel configuration with SAT solving.. In Configuration Workshop.
131–138.

[53] Christoph Zengler and Wolfgang Küchlin. 2010. Encoding the Linux kernel con-
figuration in propositional logic. In Proceedings of the 19th European Conference

on Artificial Intelligence (ECAI 2010) Workshop on Configuration, Vol. 2010. 51–56.
[54] Wei Zhang, Haiyan Zhao, and Hong Mei. 2004. A propositional logic-based

method for verification of feature models. In International Conference on Formal

Engineering Methods. Springer, 115–130.

https://github.com/ckaestne/kconfigreader
https://github.com/ckaestne/kconfigreader
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
https://www.phoronix.com/scan.php?page=news_item&px=Linux-Git-Stats-EOY2019
http://ceur-ws.org/Vol-2510/sattose2019_paper_2.pdf
https://doi.org/10.5281/zenodo.4715969
https://doi.org/10.5281/zenodo.4715969
https://github.com/matachi/linux-variability-analysis-tools.exconfig
https://github.com/matachi/linux-variability-analysis-tools.exconfig

	Abstract
	1 Introduction
	2 Variability in the Linux kernel
	3 Diversity of analyses
	3.1 CPP internal consistency by sincero2010efficient
	3.2 Kconfig internal consistency by Hengelein hengelein2015analyzing
	3.3 Kbuild consistency by Nadi and Holt nadi2011make
	3.4 Kconfig–CPP consistency by Tartler et al. tartler2011feature
	3.5 Kconfig–Kbuild–CPP consistency by Nadi and Holt nadi2012mining
	3.6 Summary

	4 Proposed Models
	4.1 Derivator Model
	4.2 Configurator Model

	5 Instantiation on the Linux kernel
	5.1 Model on CPP
	5.2 Model on Kbuild
	5.3 Model on Kconfig
	5.4 Resulting coverage

	6 Threats to validity
	7 Conclusion
	References

