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Abstract

We study stability of the spectral gap and observable diameter for metric-

measure spaces satisfying the RCD(1,∞) condition. We show that if such a

space has an almost maximal spectral gap, then it almost contains a Gaussian

component, and the Laplacian has eigenvalues that are close to any integers,

with dimension-free quantitative bounds. Under the additional assumption

that the space admits a needle disintegration, we show that the spectral gap

is almost maximal iff the observable diameter is almost maximal, again with

quantitative dimension-free bounds.

1 Introduction

A classical topic in geometry is to understand the structure of spaces that maximize
a given geometric quantity, within a suitable class of spaces. An emblematic
example that motivates some of our work here is the Cheeger-Gromoll splitting
theorem, which states that manifold with nonnegative Ricci curvature that contain
an infinite-length geodesic must split off a line. There are many examples of results
with a similar flavor, involving quantities such as the diameter, the spectral gap,
isoperimetric-type properties, etc... We shall discuss relevant examples later in
this introduction.

Once such a result is known, it is natural to investigate the structure of spaces
that almost maximize the geometric quantity, and determine whether they are
close in some sense to having the same structure as an extremal space. When
investigating classes of compact spaces, a non-explicit stability estimate can often
be derived by a compactness argument, via Gromov’s precompactness theorem,
and showing that a sequence of spaces that saturate in the limit the geometric
constraint must converge to an extremal space. See [13, Theorem 1.5] for an
example where this strategy is used. Our work here will deal with a class of
non-compact spaces, for which this strategy is unavailable. Moreover, our focus
will be on deriving estimates that have a fully explicit dependence on the various
parameters (and in particular, making sure the estimates are dimension-free).

In this work, we shall consider metric measures spaces (X, d,m) which belong
to the class of RCD(1,∞) spaces, normalized so that m(X) = 1. These spaces
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are a natural extension of Riemannian spaces satisfying a curvature condition. It
is stronger than the Lott-Sturm-Villani curvature dimension condition CD(1,∞),
but more appropriate for the type of questions we investigate here, since it is
for example the right setting for the non-smooth generalization of the Cheeger-
Gromoll splitting theorem [20]. For some of the results we obtain here, we shall
further assume the existence of a CD(1,∞) disintegration of the metric measure
space. Such spaces are studied -for general K and N - in [12] and denoted by
CD1(K,N). These notions will be fully defined in Section 2.

Examples of metric measures spaces admitting a CD(1,∞) disintegration are
weighted Riemannian manifolds whose Bakry-Emery curvature is greater or equal
to one, as proved by Klartag [26], and RCD(1, N) m.m.s (for any 1 < N < +∞)
as proved by Cavalletti and Mondino in [13]. It seems that an obvious adaptation
of the proof [13, Theorem 3.8] yields that metric measure spaces which are both
RCD(1,∞) and CDloc(K,N), for K ∈ R and 1 < N < +∞, also meet the
CD1(1,∞) condition.

In an RCD(1,∞) space, there is a spectral gap λ1 ≥ 1 for the first eigenvalue
of the Laplacian; note that λ1 = 1 holds true for the Gauss space. In [22], Gigli,
Ketterer, Kuwada, and Ohta proved the following rigidity result:

Theorem 1.1. Let (X, d,m) be an RCD(1,∞)-space, and assume that λ1 = 1.
Then there exists an RCD(1,∞)-space (Y, dY ,mY ) such that:

• The metric space (X, d) is isometric to the product space (R, | · |) × (Y, dY )
with the product metric.

• Through the isometry above, the measure m coincides with the product mea-
sure e−x

2/2dx⊗mY .

Other rigidity results for RCD(1,∞) spaces were obtained in [31, 25]. For
smooth Riemannian manifolds endowed with their volume measure, the analogous
inequality is due to Lichnerowicz and the case of equality -which characterizes the
unit sphere- is due to Obata. Obata’s theorem has been generalized to RCD(N −
1, N)-spaces by Ketterer (with N <∞).

Recall that RCD(N − 1, N)-spaces have diameter bounded from above by π
and thus, by Gromov’s precompactness theorem, form a compact class of metric
measure spaces for the measured Gromov Hausdorff distance. Therefore Ketterer’s
result also leads to stability results for RCD(N − 1, N)-spaces with almost mini-
mal first eigenvalue (or equivalently, almost maximal diameter). In the setting of
Riemannian manifolds, the equivalence follows from work of Cheng [14] and Croke
[17]. No such compactness property is available for the RCD(1,∞) spaces, which
leaves the properties of such spaces with almost minimal first eigenvalue unknown.

Part of our work here will be to study RCD spaces with almost maximal
spectral gap, that is RCD(1,∞) spaces with λ1 ≤ 1 + ǫ. Let us recall that an
RCD(1,∞)-space has a discrete spectrum [23, Proposition 6.7]. One of our main
results is the following about higher eigenvalues:
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Theorem 1.2. Consider an RCD(1,∞)-space, and assume its spectral gap λ1 is
smaller than 1+ǫ with ǫ less than some fixed ǫ0. Then for any n ≥ 1, θ < 1/2, there
is an eigenvalue −λn of the Laplacian ∆ such that |λn − nλ1| ≤ C(n, θ, ǫ0)ǫ

1/2−θ.

Since by assumption λ1 is close to one, we hence prove that positive integers
are close to being eigenvalues of the Lpalacian when the spectral gap is almost
minimal. The integers appear here as the eigenvalues of the Ornstein-Uhlenbeck
operator, which is the Laplacian on the Gaussian space.

In this setting, higher eigenvalues are stable under measured Gromov-Hausdorff
convergence [23]. The argument in that work uses a compactness argument, so it is
not explicitly quantitative. Moreover, since the eigenfunctions are not necessarily
globally Lipschitz, it does not seem like this type of statement can be immediately
deduced from a statement on closeness to a Gaussian factor, such as Theorem 1.3
below.

In the Euclidean setting, it is known that the sequence of ordered eigenvalues is
bounded from below by the ordered eigenvalues of the Ornstein-Uhlenbeck operator
on the same space [30], as a consequence of Caffarelli’s contraction theorem. To
our knowledge, an analogous result in the full geometric setting is an open problem
at the time of writing.

In the smooth finite-dimensional setting, Petersen [33] proved that an n-dimen-
sional manifold with Ricci curvature bounded from below by n− 1, whose (n+1)-
th eigenvalue is close to n, is close in the Gromov-Hausdorff sense to a sphere.
Aubry [4] later showed that the statement still holds for the n-th eigenvalue, with
quantitative bounds, and that a control on the (n−1)-th eigenvalue is not enough.
More recently, Takatsu [38] proved convergence of the spectral structure of low-
dimensional projections of spheres of high-dimension to Gaussian spaces, which is
a particular example to which all the results presented here apply.

We shall also show that the pushforward of the reference measure by a normal-
ized eigenfunction is close to Gaussian, with dimension-free quantitative bounds,
partially extending results of [18, 16] from the Euclidean setting to the full set-
ting of RCD spaces. Similar questions for manifolds with small deficit in the
Bakry-Ledoux isoperimetric inequality were raised in [27, Remark 7.6], and can be
positively answered with the tools we use here.

Theorem 1.3. Let (M,d, µ) be an RCD(1,∞) probability space, and f be a nor-
malized eigenfunction of −∆ associated to the eigenvalue λ. Let ν = f♯µ, and γ
be the standard one-dimensional Gaussian measure. Then,

W1(ν, γ) ≤ 4× 2λ/2
√
λ− 1.

Here W1 stands for the L1 Wasserstein distance. Asymptotic normality for
eigenfunctions on manifolds was studied by E. Meckes [28], and (a variant of)
Theorem 1.3 can be directly deduced from her abstract theorem via our main
Lemma 3.3 below. When the eigenspace associated with the spectral gap is of
dimension higher than one, or if there are several eigenvalues close to one, then a
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multivariate version of 1.3 holds, and can be proved with the arguments we develop
here, as in the Euclidean setting [16].

A problem left open by this work is a complete stability estimate for Theorem
1.1. We would expect a space with almost minimal spectral gap to be close in
some sense to a product space with Gaussian factor, but we have not been able
to prove a satisfactory statement showing an approximate splitting at the level of
the metric.

A second part of our work will deal with stability of the observable diameter,
motivated by Ketterer’s work on Obata’s theorem in RCD spaces, as well as [27].
While seeking for upper bound on the diameter of an RCD(1,∞)-space is mean-
ingless, Gromov’s observable diameter is a good candidate to replace standard
diameter. Let us recall its definition.

Definition 1.4 (Observable diameter). The observable diameter Dobs of the metric-
measure space (M,d, µ) is a function of κ ∈ (0, 1) defined by

Dobs((M,d, µ);κ) := sup
f :M→R

{
inf

E Borel
{diam(E); f♯µ(E) ≥ 1− κ} ; f 1 -Lipschitz

}
.

For ease of notation, the observable diameter is also denoted by Dobs(µ;κ).

As proved in Theorem 2.10 below, the observable diameter of an RCD(1,∞)-
space is pointwise bounded from above by that of the Gauss space.

We shall prove some results connecting RCD(1,∞) spaces with almost minimal
spectral gap to those with almost maximal observable diameter. More precisely,
we prove

Theorem 1.5. Let (X, d, µ) be an RCD(1,∞) space admitting a CD(1,∞) disin-
tegration in the sense of Assumption 2.1, and whose spectral gap satisfies λ1 ≤ 1+ǫ.
Then for any θ > 0 small enough and κ ≥ C(θ)ǫ1/20−θ, the following inequalities
hold

Dobs(γ;κ −C(θ)ǫ1/20−θ) ≥ Dobs(µ;κ− C(θ)ǫ1/20−θ) ≥ Dobs(γ;κ).

The assumption on the CD(1,∞) disintegration in this result could be relaxed,
in that we only need a disintegration with respect to one particular test function,
namely an eigenfunction associated with the spectral gap.

This theorem can be compared with [11, Theorem 4.4], which proved that
under a CD(N − 1, N) condition if the spectral gap is almost minimal then the
diameter is almost maximal, with dimension-dependent exponent and constants.

Finally, we also obtain a converse result, deducing closeness of the spectral gap
from closeness of the observable diameter:

Theorem 1.6. Let (X, d, µ) be an RCD(1,∞) space admitting a CD(1,∞) disin-
tegration in the sense of Assumption 2.1, and assume that

Dobs((M,d, µ);κ) ≥ Dobs((R, | · |, γ);κ) − ǫ
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for a given 0 < κ < 1 and ǫ > 0 small enough. Then there exists C = C(κ) such
that the spectral gap λ1 satisfies

λ1 ≤ 1 + Cǫ1/22.

As a corollary, this implies rigidity of the observable diameter, under the extra
Assumption 2.1, via the main Theorem of [22]. This statement seems to be new.

The remainder of the article is as follows: in Section 2, we present some nec-
essary preliminaries on RCD spaces and needle decompositions. In Section 3, we
prove Theorems 1.2 and 1.3, and Section 4 contains the proofs of Theorems 1.5
and 1.6.

2 Preliminaries

2.1 RCD spaces

2.1.1 Definitions

In this work, we shall always work with separable, complete metric spaces, which
we shall denote by (M,d). We shall endow it with a Borel probability measure µ.
Additionally, we shall assume the metric space is geodesic: every pair of points x, y
are connected by a minimal geodesic γ : [0, 1] −→M such that γ(0) = x, γ(1) = y
and d(γ(s), γ(t)) = |t− s|d(x, y) for all s, t ∈ [0, 1].

We can endow the space of Borel probability measures on M with finite second
order moment, denoted by P2(M), with the L2 Wasserstein distance from optimal
transport. We refer to the monograph [39] for the definition of Lp Wasserstein
distances.

The relative entropy functional with respect to µ on P2(M) is defined as

Entµ(ν) :=

∫
ρ log ρdµ

if ν = ρµ is an absolutely continuous probability measure, and +∞ otherwise.
With these objects in mind, we can define the curvature-dimension condition

CD(K,∞):

Definition 2.1. The space (M,d, µ) is said to satisfy the curvature-dimension con-
dition CD(K,∞) for K ∈ R if the relative entropy is K-convex along W2-geodesics
on P2(M), that is for any pair of probability measures ν1, ν2 with finite relative
entropy with respect to µ, there is a minimal W2 geodesic (νt)t∈[0,1] connecting
them, and such that for all t ∈ [0, 1]

Entµ(νt) ≤ (1− t) Entµ(ν0) + tEntµ(ν1)−
Kt(1− t)

2
W2(ν0, ν1)

2.

The parameter K plays the role of a Ricci curvature lower bound. Indeed, when
the space is a smooth manifold endowed with its (normalized) volume measure,
it satisfies this condition iff the Ricci curvature tensor is bounded from below by
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K times the metric tensor. This definition is a particular instance of the more
general curvature dimension CD(K,N), that takes into account the dimension.
Here we shall mostly deal with the infinite-dimensional setting, so we omit the full
definition, and refer to [40] for the more general setting.

Given the metric-measure structure, we can also define the Cheeger energy

Ch(f) :=
1

2
inf
(fi)

lim inf

∫
|Lip fi|2dµ

where the infimum runs over the set of all sequences of locally-Lipschitz functions
that converge to f in L2(µ), and where Lip(f)(x) is the local Lipschitz constant.

Given an L2 function with finite Cheeger energy, there exists a minimal weak
upper gradient |∇f | ∈ L2(µ) such that

Ch(f) =
1

2

∫
|∇f |2dµ.

The Sobolev space W 1,2 is the space of L2 functions with finite Cheeger energy.
We refer to [1] for more details about these notions.

Definition 2.2. A metric-measure space (M,d, µ) that satisfies the CD(K,∞)
condition is said to satisfy the Riemannian curvature-dimension condition RCD(K,∞)
if the Cheeger energy is a quadratic form, that is

Ch(f + g) + Ch(f − g) = 2Ch(f) + 2Ch(g)

for all f, g ∈W 1,2.

The most basic example of an RCD(K,∞) with positive K is a Gaussian
measure on R with variance K−1. More generally, a probability measure on R

d

with density e−V w.r.t. the Lebesgue measure satisfies the RCD(K,∞) condition
iff HessV ≥ K.

On a smooth manifold endowed with its volume measure, the RCD(K,∞)
condition is equivalent to requiring the Ricci curvature tensor to be bounded from
below by K. More generally, if the measure has density e−V w.r.t. the volume
measure, the RCD(K,∞) condition is equivalent to the Bakry-Emery condition

Ric+HessV ≥ Kg̃

where g̃ is the Riemannian metric tensor of the manifold. However, there are also
non-smooth spaces that satisfy the RCD(K,∞) condition, including Alexandrov
spaces [34] and some stratified spaces [8].

On an RCD space, we can then define by polarization the scalar product of
two elements of W 1,2 and the Dirichlet form

〈∇f,∇g〉 := 1

4
(|∇(f + g)|2 − |∇(f − g)|2) ∈ L1(µ); E(f, g) :=

∫
〈∇f,∇g〉dµ.
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The natural analog of the Laplacian on (M,d, g) is the operator ∆ : D(∆) −→ L2

such that

E(f, g) = −
∫
g(∆f)dµ ∀g ∈W 1,2.

The domain D(∆) is dense in W 1,2. We refer to [2] for details of the construction.
Note that even when the space is a smooth manifold, ∆ is not simply the Laplace-
Beltrami operator, since it takes into account the reference measure µ, that is not
necessarily the volume measure. For example, for the Euclidean space endowed
with a measure with density e−V , the natural Laplace operator is ∆eucl−∇V · ∇,
where ∆eucl is the usual Laplacian on R

d. Finally, note that since the Cheeger
energy is used as a Dirichlet form, the induced Laplacian is a local operator, which
will allow us to use the diffusion property.

2.1.2 Properties of RCD(K,∞) spaces

An important property of RCD(K,∞) is the tensorization property, which states
that this class of spaces is stable for the product:

Proposition 2.3 (Tensorization property). If two spaces (Mi, di, µi) satisfy the
RCD(K,∞) condition, then the product space (M1 × M2, d1 ⊕ d2, µ1 ⊗ µ2) also
does. Here d1 ⊕ d2((x1, x2), (y1, y2)) =

√
d1(x1, y1)2 + d2(x2, y2)2.

In particular this property explains why rigidity statements such as Theorem
1.1 involve a splitting: the product of an RCD(1,∞) space with minimal spectral
gap and any other RCD(1,∞) space is still an RCD(1,∞) space, and still has
minimal spectral gap.

The spectral gap λ1 can be reformulated as the sharp constant in the Poincaré
inequality for µ, that is the largest constant CP such that

Varµ(f) ≤
1

CP

∫
|∇f |2dµ ∀f ∈W 1,2.

As we have mentioned in the introduction, an RCD(K,∞) space with positive
K satisfies a Poincaré inequality with constant K−1, that is λ1 ≥ K. Moreover,
as proved in [22] (with results in the smooth setting obtained in [15]), this bound
is rigid: if the sharp spectral gap of an RCD(K,∞) is equal to K, then the space
splits off a Gaussian factor that has variance K−1.

The sharp constant is indeed the inverse of the smallest positive eigenvalue λ1
of −∆, that is there exists an eigenfunction f such that

∆f = −C−1
P f.

Existence is ensured by the validity of the logarithmic Sobolev inequality, which is
strictly stronger than the Poincaré inequality, and provides enough compactness to
ensure there is a function that achieves equality in the sharp Poincaré inequality,
see [23, Proposition 6.7].
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2.2 Localization of the curvature condition

Part of our work requires an additional assumption on the metric measure space,
namely the existence of a suitable needle decomposition. A brief reminder on that
decomposition is provided below. This notion originates in Klartag’s work [26] in
the smooth setting, and was extended to metric measure spaces by Cavalletti and
Mondino [13]. Recently, [10] showed that the needle decomposition provides an
equivalent way of defining curvature-dimension conditions with finite dimension
(which unfortunately is not our setting here).

Theorem 2.4 (Needle decomposition). Let (M,d, µ) be an RCD(1, N) space (N <
+∞) and f be a centered, L1 function such that

∫
|f(x)|d(x, x0)dµ <∞.

Then the space X can be written as the disjoint union of two measurable sets Z and
T , where T admits a partition in the following sense. There exists a 1-Lipschitz
function g, a partition (Xq)q∈Q of T , a probability measure q on Q and a family
of probability measures (mq)q∈Q, each supported on Xq, such that

1. For any measurable A, µ(A ∩ T ) =
∫
mq(A)dq(q);

2. For q a.e. q, for any x, y in Xq, d(x, y) = |g(x)− g(y)|, and for any z /∈ Xq,
there exists x ∈ Xq such that |g(z) − g(x)| < d(x, z);

3. For q a.e. q, if Xq is not a singleton then (Xq, d,mq) is RCD(1, N);

4. For q a.e. q,
∫
Xq
fdmq = 0 and f = 0 µ-a.e. in Z.

Note that the properties of the needle decomposition require that ν-almost
every needle is not reduced to a singleton, and that Lip(g) = 1 almost everywhere.

The 1-Lipschitz function g is called a guiding function, and is obtained as an
optimizer in the variational problem

sup
u1−lip

∫
fudµ.

It can be interpreted as the potential in the Kantorovitch-Rubinstein dual
formulation of the L1 optimal transport problem between the positive measures
f+µ and f−µ, which have same mass when f is centered.

Since we consider infinite-dimensional spaces, the current state of knowledge on
needle decompositions does not guarantee existence of the decomposition, as the
proof uses compactness of finite-dimensional positively curved spaces. However,
it may nonetheless exist (indeed, its study in the Euclidean context goes back to
work of Payne and Weinberger [32]). So we make the following assumption for
Theorems 1.5 and 1.6.

Assumption 2.1. The space (M,d, µ) satisfies the conclusion of the above theorem
with N = ∞.
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Note that since the second moment is finite and the eigenfunction is L2, the
integrability condition

∫
|f |d(x, x0)dµ <∞ is automatically satisfied.

Proposition 2.5 (Structure of needles). Without loss of generality, for a.e. q we
can identify (Xq, d,mq) with a space of the form (R, | · |, e−ψqdx) where ψ′′

q ≥ 1
(in the weak sense) and ψq is finite in some interval I, and such that, on Xq,
g(t) = t+ cq.

Proof. Let I = {g(x), x ∈ Xq}. It is an interval of R. From the structure of the
needle, we can parameterize Xq by I, and the measure mq is of the form e−ψqdx
on I. We can then extend ψq to take the value +∞ outside I, which allows us to
identify (I, | · |, e−ψqdx) with (R, | · |, e−ψqdx).

2.3 Observable diameter

We now define the notion of observable diameter, which plays the role of diameter
for RCD(1,∞) spaces, by taking advantage of concentration inequalities. This
notion was introduced by Gromov in [24]. Informally, a control on the observable
diameter states that, even if the diameter itself is not finite, most of the mass is
concentrated inside a set of controlled diameter.

Definition 2.6. The observable diameter Dobs of the metric-measure space (M,d, µ)
is a function of κ ∈ (0, 1) defined by

Dobs((M,d, µ);κ) := sup
f :M→R

{
inf

E Borel
{diam(E); f♯µ(E) ≥ 1− κ} ; f 1 -Lipschitz

}
.

The observable diameter can be estimated by means of the separation distance
whose definition (in the case of two sets with the same lower bound on their mass)
is recalled below.

Definition 2.7. The separation distance is a function of κ ∈ (0, 1) defined by

Sep((M,d, µ);κ) := sup
A1,A2⊂X Borel

{d(A1, A2);µ(Ai) ≥ κ, i ∈ {1, 2}} .

The following inequality holds (see [37, Proposition 2.26] for a proof):

Proposition 2.8. Let (M,d, µ) be a metric measure space such that µ(M) = 1.
Then, for any κ ∈ (0, 1)

Dobs((M,d, µ);κ) ≤ Sep((M,d, µ);κ/2). (1)

Remark 2.1. In the case of the Gaussian space (R, | · |, γ), the symmetry of the
density with respect to the origin yields for any κ ∈ (0, 1)

Dobs((R, | · |, γ);κ) = Sep((R, | · |, γ);κ/2).

On RCD(1,∞) spaces, the Lévy-Gromov type isoperimetric inequality has been
proved by Ambrosio and Mondino [3]:
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Theorem 2.9. Let (X, d, µ) be an RCD(1,∞) probability space. Then, for any
Borel subset E ⊂ X it holds

P(E) ≥ 1√
2π
e−a

2
E/2,

where P stands for perimeter, and µ(E) = γ((−∞, aE ]).

As a consequence, one gets the following comparison inequality for the observ-
able diameter.

Theorem 2.10. Let (M,d, µ) be an RCD(1,∞) probability space. Then for any
κ ∈ (0, 1), the following inequalities hold

Dobs((M,d, µ);κ) ≤ Sep((M,d, µ);κ/2)

≤ Sep((R, | · |, γ);κ/2) = Dobs((R, | · |, γ);κ).
Proof. The only property that is yet to prove is the inequality involving the sep-
aration distances of (R, | · |, γ) and (M,d, µ). The proof is the same as the one of
[37, Lemma 2.32], we report it since we need the argument later in this work.

Let A1, A2 ⊂ X be two mutually disjoint sets such that µ(Ai) ≥ κ/2 for
i ∈ {1, 2}. Set r := d(A1, A2) and notice that A1 ∩ Vr(A2) = ∅, where Vr(A2)
stands for the open r-neighborhood of A2. Let us also define σ(s) := γ((−∞, s])
and note that σ is an increasing function of s. Consequently, making use of the
isoperimetric inequality for RCD(1,∞) spaces in integrated form, we infer for any
s > 0

µ(Vs(A2)) ≥ γ((−∞,−a+ δ + s]) ≥ γ((−∞,−a+ s]),

where −a+ δ := σ−1(µ(A2)) ≥ −a := σ−1(κ/2). With this notation,

Sep((R, | · |, γ);κ/2) = 2|σ−1(κ/2)| = 2a.

Now, observe that

κ/2 ≤ µ(A1) ≤ 1− µ(Vr(A2))

≤ 1− γ((−∞,−a+ r]).

Therefore, by symmetry of γ,

γ((−∞,−a]) + γ(([a− r,+∞)) = κ/2 + γ((−∞,−a+ r]) ≤ 1.

Thus, a− r ≥ −a hence 2|σ−1(κ/2)| ≥ r and the result is proved.

3 Properties of RCD(1,∞) spaces with almost minimal

spectral gap

In this section, we shall investigate properties of RCD(1,∞) spaces when the
spectral gap is close to one, and prove Theorems 1.2 and 1.3.

In the sequel, Lp norms will always be with respect to the reference measure
µ, that is

||f ||p :=
(∫

|f |pdµ
)1/p

.
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3.1 Main lemma

We shall first prove the main technical lemma that underlies the proofs of our
results, Lemma 3.3, which states that if the spectral gap is close to one, then the
gradient of an associated eigenfunction is almost constant.

We shall use the following Lp version of Poincaré inequalities:

Proposition 3.1. Under the curvature condition, for any p ≥ 1we have
∣∣∣∣
∣∣∣∣f −

∫
fdµ

∣∣∣∣
∣∣∣∣
p

≤ 2p |||∇f |||p .

This inequality is strongest for p = 1, where it corresponds to the classical
Cheeger inequality. See for example [29, Proposition 2.5] for a proof. The constant
in this formulation is not sharp, since for p = 2 this is not the best estimate on
the spectral gap.

When considering eigenfunctions in positive curvature, we have nice integrabil-
ity estimates in all Lp spaces, which are summarized in the following proposition:

Proposition 3.2 (Integrability of eigenvectors). Assume that curvature is bounded
from below by 1. Let f be an eigenfunction of −∆ with eigenvalue λ and normalized
so that ||f ||2 = 1. Then

1. ||f ||p ≤ (p − 1)λ/2 for any p ≥ 2;

2. |||∇f |||p ≤ 2λ||f ||22p ≤ (4p − 2)λ for any p ≥ 1.

Proof. The proof of (i) can be found in [7, Section 5.3].
To prove (ii), we use the gradient bound |∇Ptf |2 ≤ (e2t − 1)−1Pt(f

2) (see [7,
Theorem 4.7.2]). We apply it to the eigenfunction f with t = (ln 2)/2 to get

Γ(f)p ≤
(
2λPt(f

2)
)p

≤ 2λpPt(f
2p)

and then integrate with respect to the reference measure µ to conclude.

The key lemma in our proofs is the following result, stating that the gradient
of the eigenfunction is almost constant when λ is close to one, with quantitative
bounds in all Lp norms. A version of this result in the Euclidean setting was
derived in [18], and proved using optimal transport and Caffarelli’s contraction
theorem. The proof we present here, in addition to being more general, is simpler
even in the Euclidean setting.

Lemma 3.3 (Key Lemma). Let f be an eigenfunction of −∆ associated with
eigenvalue λ ≤ 1 + ǫ, with

∫
fdµ = 0,

∫
f2dµ = 1. Then for any p ∈ [1, 2[, we

have

|||∇f |2 − λ||p ≤ 4p(λ− 1)1/2λ1/2
(
6p − 4

2− p

)λ/2
.

Assume now λ ≤ λ for some fixed threshold λ. Then for any θ ∈ (0, 1/2) and
p ≥ 2 there exists C = C(p, θ, λ) such that

|||∇f |2 − λ||p ≤ C(λ− 1)1/2−θ.
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Proof. In the non-smooth setting, under the curvature condition we have the fol-
lowing pointwise estimate of [36, Theorem 3.4] (generalizing a result of [5, 6]) that
holds almost everywhere:

|∇|∇f |2| ≤ 2|∇f |
√

Γ2(f)− |∇f |2 (2)

This is only proved for globally Lipschitz f in [36], but we shall only use its inte-
grated version, so we can proceed by approximation, by taking hn,t = Ptmax(−n,min(f, n))
for t, n > 0, which is globally lipschitz (see for example [22, Proposition 2.5]), and
then letting n go to infinity, then using the fact that f is an eigenfunction so Ptf =
e−λtf to let t go to zero. In the smooth setting, |∇|∇f |2|2 ≤ 4||Hes f ||22|∇f |2. A
version of this estimate involving Hessians in the nonsmooth context was investi-
gated in [21].

Therefore, using Holder’s inequality, ad denoting by Γ2 the usual operator

Γ2(h) =
1

2
LΓ(h)− Γ(h,Lh),

we have for 1 ≤ p < 2

|||∇|∇f |2|||pp ≤ 2p
(∫

(Γ2(f)− |∇f |2)dµ
)p/2(∫

|∇f |2p/(2−p)dµ
)(2−p)/2

≤ 2p(λ− 1)p/2
(∫

|∇f |2dµ
)p/2(∫

|∇f |2p/(2−p)dµ
)(2−p)/2

≤ 2p(λ− 1)p/2λp/2
(
6p− 4

2− p

)λp/2

To conclude, we just apply the Lp Poincaré inequality to |∇f |2.
To obtain the inequality for p ≥ 2, using Holder’s inequality we have

|||∇f |2 − λ||p ≤ |||∇f |2 − λ||1−θ1 |||∇f |2 − λ||θp′ ≤ |||∇f |2 − λ||1−θ1 (λ+ |||∇f |2||p′)θ

with p′ suitably large enough, and we then apply Proposition 3.2.

3.2 Spectral properties

Let us start with the following general lemma:

Lemma 3.4. Given L an unbounded operator on L2(µ) with discrete spectrum.
Assume that there is a function f such that Lf = αf + g with ||f ||2 = 1 and
||g||2 ≤ ǫ. Then there is an eigenvalue of L at distance at most ǫ of α.

Proof. Let αi be the collection of eigenvalues of L, with associated orthonormal
basis of eigenfunctions fi. We can write f =

∑
βifi and g =

∑
δifi with

∑
β2i = 1

and
∑
δ2i ≤ ǫ2. Then ∑

(αi − α)βifi =
∑

δifi

and hence for any i, (αi − α)βi = δi, so that
∑

(αi − α)2β2i ≤ ǫ2. But since∑
β2i = 1, there is at least one index i such that |αi − α| ≤ ǫ.
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With all this in hand, we can now prove Theorem 1.2:

Proof of Theorem 1.2. Consider Hn the n-th Hermitte polynomial, defined via
H0 = 1, H1(x) = x and Hn+1(x) = xHn(x) − nHn−1(x). Recall that H ′′

n(x) −
xH ′

n(x) = −nHn(x), and that they form an orthogonal basis of eigenfunctions for
the one-dimensional Ornstein-Uhlenbeck generator.

Let f be a normalized eigenfunction of −∆ with eigenvalue λ. From the diffu-
sion property [36, Section 2.2],

∆Hn(f) = H ′
n(f)Lf +H ′′

n(f)|∇f |2 = −λnHn(f) +H ′′
n(f)(|∇f |2 − λ). (3)

According to Lemma 3.3, we have a suitable Lp bound on |∇f |2 − λ for all p,
and H ′′

n(f) has controlled Lp norm via Proposition 3.2, we control the L2 norm of
H ′′
n(f)(|∇f |2 − λ) by some C(n, θ, λ)(λ− 1)1/2−θ, and can then apply Lemma 3.4

to conclude.

3.3 Proof of Theorem 1.3

We shall now prove that the pushforward of the measure by the eigenfunction is
approximately Gaussian, generalizing part of the main result of [16] to the RCD
setting. The proof will be based on (a version of) Stein’s lemma, a classical result in
probability and statistics, which allows to control distances to a Gaussian target
measure via deficits in an integration-by parts formula. This was already the
strategy used in [28, 16]. We refer to [35] for the proof, and an introduction to
Stein’s method. We could also proceed by directly combining the main abstract
theorem of [28] with Lemma 3.3.

Lemma 3.5. Let γ be the standard Gaussian measure on R. Then for any µ ∈
P(R), we have

max (dTV (µ, γ),W1(µ, γ)) ≤ sup
||f ||∞,||f ′||∞≤4

∫
f ′ − xfdµ.

Here W1 stands for the L1 optimal transport distance, and dTV for the total
variation distance on P(M).

To keep the statement compact, we have not given the sharp required bounds
on f and f ′ in the integration by parts formula. If we only wish to control W1, we
can additionally assume the second derivative to be bounded. Higher-dimensional
versions of these estimates are available, although typically getting good estimates
on the total variation distance in higher dimension is much harder than estimates
on W1, due to regularity issues for solutions to certain Poisson equations.

Let g : R → R be a 1-Lipschitz function. According to Stein’s lemma,

W1(ν, γ) ≤ 4 sup
g 1-Lipschitz

∫
(g′ − xg)dν.
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Actually, the factor 4 is not necessary, if one uses a version of Stein’s lemma with
sharper constants. We have

∫
xg(x)dν =

∫
f(x)g(f(x))dµ = −λ−1

∫
Lf(x)g(f(x))dµ

= λ−1

∫
Γ(f, g ◦ f)(x)dµ = λ−1

∫
g′(f(x))Γ(f)(x)dµ

Hence, using Lemma 3.3, we get

sup
g 1-Lipschitz

∫
(g′ − xg)dν ≤ λ−1

∫
|Γ(f)− λ|dµ

≤ 4× 2λ/2
√
λ− 1.

4 Spectral gap and observable diameter

This section aims at proving that for an RCD(1,∞) space that admits CD(1,∞)
disintegration, the spectral gap is close to that of the Gaussian space if and only
if the observable diameter is close to that of the Gauss space.

4.1 Proof of Theorem 1.5

Let f be a normalized eigenfunction of −∆, with eigenvalue λ1, as in the previous
section. We consider the guiding function in the needle decomposition

g := argmax
u 1-Lipschitz

∫
ufdµ. (4)

Without loss of generality, we may assume that g is centered. Note that since f is
an eigenfunction, g also maximizes

∫
∇u · ∇fdµ.

The approach follows in the spirit the same one as in [27]. In a first lemma,
we estimate the L2-norm of f and |∇f | along many needles.

Lemma 4.1. Assume λ1 ≤ 1 + ǫ with ǫ ≤ 1. There is a set of needles Qδ such
that q(Qδ) ≥ 1− δ and for any needle q ∈ Qδ we have

1− 48
√
ǫ+ 2ǫ

δ
≤
∫
f2dmq ≤ 1 +

48
√
ǫ

δ

and ∫
f2dmq ≤

∫
|∇f |2dmq ≤

∫
f2dmq +

2ǫ

δ
.

Proof. On a.e. needle q, we have by the Poincaré inequality on the needle
∫
f2dmq ≤

∫
|f ′|2dmq ≤

∫
|∇f |2dmq.
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Therefore, by Markov’s inequality, we have

q

({
q;

∫
|∇f |2dmq ≥

∫
f2dmq + 2ǫ/δ

})
≤ δ

( ∫∫
|∇f |2dmqdq(q) −

∫∫
f2dmqdq(q)

)

2ǫ

≤ δ/2.

So for an arbitrarily large proportion of needles, we almost have equality in Poincaré’s
inequality for f , up to a deficit of order ǫ.

Then from Lemma 3.3 with p = 1,
∫ ∣∣∣∣
∫

(|∇f |2 − 1)dmq

∣∣∣∣ dq(q) ≤
∫

||∇f |2 − 1|dµ ≤ 24
√
ǫ.

Hence

q

({
q;

∣∣∣∣
∫

|∇f |2dmq − 1

∣∣∣∣ ≥ 48
√
ǫ/δ

})
≤ δ/2.

Taking the intersection, we get a set of needles of mass at least 1− δ on which

1− 48
√
ǫ

δ
≤
∫

|∇f |2dmq ≤ 1 +
48
√
ǫ

δ

and ∫
f2dmq ≤

∫
|∇f |2dmq ≤

∫
f2dmq +

2ǫ

δ
.

Reordering these bounds leads to the desired result.

Next, we prove the L2-closeness of f and g for a large set of needles.

Lemma 4.2. For any q ∈ Qδ, there exists a constant cq such that

∫
(f − g − cq)

2dmq ≤
C
√
ǫ√
δ
.

Remark 4.1. Recall that for q-a.e. q,
∫
f dmq = 0. Since the average is an L2

projection, we can therefore replace cq by
∫
gdmq in the above estimate. Moreover,

we can infer from the lemma above that

∣∣∣∣
∫
g dmq − cq

∣∣∣∣ ≤
Cǫ1/4

δ1/4
. (5)

Proof. Let Θ =
(∫
f2dmq

)−1/2
. Recall that we can identify each needle Xq with

the space (R, | · |, e−ψqdt), by Proposition 2.5. Using the results of [16] on stability
of the Bakry-Emery theorem on an Euclidean space, and since

∫
fdmq = 0, we

have ∫

R

(Θf − t)2e−ψq(t)dt ≤
√
18ǫ√
δ
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and therefore, from the parametrization of g on the needle,

∫

Xq

(Θf − g − cq)
2e−ψq(t)dt ≤

√
18ǫ√
δ
.

From Lemma 4.1, and provided
√
ǫ/δ ≤ C0, we have |Θ2 − 1| ≤ C

√
ǫ/δ; therefore

|Θ− 1|2 ≤ Cǫ/δ2.

Then
∫

R

(f − g − cq)
2e−ψq(t)dt ≤ 2(Θ − 1)2

∫

R

f2e−ψq(t)dt

+2

∫

R

(Θf − g − cq)
2e−ψq(t)dt,

≤ C
√
ǫ/
√
δ.

In the last technical lemma of this section, we show that g is almost centered
on a large set of needles.

Lemma 4.3. There exists a set of needles Qα with q(Qα) ≥ 1 − α such that for
any q ∈ Qα we have ∣∣∣∣

∫
g dmq

∣∣∣∣
2

≤ Cǫ1/5/α

Proof. Recall that we assumed g is centered with respect to µ. Therefore, since g
is 1-Lipschitz, the L2 version of the Poincaré inequality yields

1 ≥ Varµ(g) =

∫
Varmq (g)dq(q) +

∫ (∫
gdmq

)2

dq(q).

If q ∈ Qδ (which is still the set provided by Lemma 4.1) then

Varmq (g) ≥
(
Varmq (f)

1/2 −Varmq (f − g)1/2
)2

≥ 1− Cǫ1/4/δ1/4,

where we use Lemma 4.2 and (5) to get the inequality. Consequently, we obtain
∫

Varmq (g)dq(q) ≥ q(Qδ)(1 − Cǫ1/4/δ1/4) ≥ (1− δ)(1 − Cǫ1/4/δ1/4),

so that
∫ (∫

gdmq

)2

dq(q) ≤ 1− (1− δ)(1 − Cǫ1/4/δ1/4) ≤ δ + Cǫ1/4/δ1/4.

Taking δ of order ǫ1/5 and using Markov’s inequality yields the result.
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We finally prove the H1-closeness of f and g provided that the spectral gap is
close to 1.

Theorem 4.4. Let (M,d, µ) be an RCD(1,∞) space admitting CD(1,∞) disin-
tegration. Assume λ1 ≤ 1 + ǫ with ǫ < 1. For any θ small enough, there exists
C(θ) > 0 such that ∫

(f − g)2dµ ≤ C(θ)ǫ1/10−θ

and ∫
|∇f −∇g|2dµ ≤ C(θ)ǫ1/20−θ.

Proof. Let us decompose ‖f − g‖2L2 as follows:

∫
(f − g)2dµ =

∫

Qδ∩Qα

∫
(f − g)2dmqdq(q) +

∫

(Qδ∩Qα)
c

∫
(f − g)2dmqdq(q).

To estimate the first term on the right hand side, we build on Lemmas 4.2 and
4.3:

∫

Qδ∩Qα

∫
(f − g)2dmqdq(q)

=

∫

Qδ∩Qα

V armq (f − g)dq(q) +

∫

Qδ∩Qα

(∫
f − gdmq

)2

dq(q)

≤
∫

Qδ∩Qα

∫
(f − g − cq)

2dmqdq(q) +

∫

Qδ∩Qα

(∫
gdmq

)2

dq(q)

≤ C
√
ǫ/
√
δ + Cǫ1/5/α.

In order to estimate the second term, we set p and q two positive numbers with
p−1 + q−1 = 1.

∫

(Qδ∩Qα)
c

∫
(f − g)2dmqdq(q) ≤ q((Qδ ∩Qα)c)1/p

(∫
(f − g)2qdµ

)1/q

≤ 2(α+ δ)1/p

((∫
f2qdµ

)1/q

+

(∫
g2qdµ

)1/q
)

≤ 2(α+ δ)1/p((2q − 1)1+ǫ + 16q2)

≤ Cq2(α+ δ)1/p.

Here we used Proposition 3.2 to control the L2q norm of f and Proposition 3.1 to
control the L2q norm of g.

Combining the two estimates yields
∫

(f − g)2dµ ≤ C(q2(α + δ)(q−1)/q +
√
ǫ/
√
δ + Cǫ1/5/α).
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We then take α of order ǫ1/10, q large enough and δ of order say ǫ3/10 (the influence
of δ is on lower order terms anyway).

For the second estimate, we expand the norm of the gradients as follows:
∫

|∇f −∇g|2dµ =

∫
|∇f |2 + |∇g|2 − 2∇f · ∇gdµ

≤ 2 + ǫ+ 2

∫
(Lf)gdµ

= 2 + ǫ− 2λ1

∫
fgdµ

= 2 + ǫ− 2λ1

∫
f2dµ− 2λ1

∫
f(g − f)dµ

≤ ǫ+ 2λ1||f ||L2 ||f − g||L2

≤ C(θ)ǫ1/20−θ.

Proceeding as in the proof of Theorem 1.3, we also obtain

Corollary 4.5. Let (X, d, µ) be an RCD(1,∞) space admitting CD(1,∞) disin-
tegration, and whose spectral gap satisfies λ1 ≤ 1+ ǫ. Let g be the guiding function
as in (4). Then,

W1(g♯µ, γ) ≤ C(θ)ǫ1/20−θ

dTV (g♯µ, γ) ≤ 2C(θ)ǫ1/20−θ

We shall use the estimate on the total variation distance to get an estimate on
the observable diameter via the following lemma:

Lemma 4.6. Assume that µ and ν are two probability measures on a metric space
(X, d) such that dTV (µ, ν) ≤ ǫ, where ǫ > 0. Then for any κ > ǫ, the following
inequality holds

Dobs(µ;κ− ǫ) ≥ Dobs(ν;κ).

Proof. We shall argue by contradiction. Fix κ, and assume that Dobs(µ;κ − ǫ) <
Dobs(ν;κ) − t for some t > 0. Then for any f 1-Lipschitz there exists E ∈ R

such that µ(E) ≥ 1 − κ + ǫ and diam(f(E)) ≤ Dobs(ν;κ) − t. But then ν(E) ≥
1 − κ + ǫ − dTV (µ, ν) ≥ 1 − κ, and therefore, taking the sup over all f , we get
Dobs(ν;κ) ≤ Dobs(ν;κ)− t hence a contradiction.

Since the function g in Corollary 4.5 is 1-Lipschitz, by definition of observable
diameter, we infer

Dobs(µ; ·) ≥ Dobs(g♯µ, ·)
on (0, 1) (see [37] for a proof). Therefore, by combining Theorem 1, Corollary 4.5,
and Lemma 4.6, we get the proof of Theorem 1.5
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4.2 Proof of Theorem 1.6

We assume throughout this part that

Dobs((M,d, µ);κ) ≥ Dobs((R, | · |, γ);κ) − ǫ (6)

for a given 0 < κ < 1 and ǫ > 0 small enough. Our aim is to show Theorem 1.6,
namely that such an RCD-space has almost minimal spectral gap.

Let us denote by Vs(A) the s-open neighborhood of a subset A of a given metric
space ((R, | · |) in most cases).

As a consequence of Theorem 2.10, we get

Sep((M,d, µ);κ/2) ≥ Sep((R, | · |, γ);κ/2) − ǫ. (7)

Instead of the observable diameter, we shall mainly deal with the separation dis-
tance through (7). The proof mostly relies on a careful study of the 1D case.
We will then infer the bound on the spectral gap by means of the disintegration
property. In what follows, (R, | · |,m) stands for an RCD(1,∞)-space, namely
m = e−φ(x) dx is a probability measure such that φ(x)− x2/2 is convex.

4.2.1 The 1D case

In this part we assume that (R, | · |,m) is an RCD(1,∞)-space such that for some
θ > 0 and for η > 0 sufficiently small

Dobs((R, | · |,m); θ) ≥ Dobs((R, | · |, γ); θ) − η. (8)

Let us start with some basic properties regarding the Gauss measure. Recall
that σ(x) = γ(]−∞, x]).

Lemma 4.7. For 0 < κ1 ≤ a < b < 1/2 where κ1 is fixed and sufficiently small,
the following estimates hold

√
2π(b− a) ≤ σ−1(b)− σ−1(a) ≤

√
2π

κ21
(b− a). (9)

Proof. We denote by e−φγ the density of the standard Gauss measure on R. By
definition of σ−1, we have

∫ σ−1(b)

σ−1(a)
e−φγ(s) ds = b− a.

The first inequality follows readily from this equality. For the second one, we need
to estimate |σ−1(κ1)| from above. We write for κ1 < 1/2

κ1 =

∫ σ−1(κ1)

−∞
e−φγ(s) ds

≤ 1√
2π|σ−1(κ1)|

e−(σ−1(κ1))2/2.



20

From the inequality above, we infer |σ−1(κ1)| ≤ 2
√− lnκ1 as soon as σ−1(κ1) ≤

−1, which in turn implies the needed lower bound on e−φγ(s) on [σ−1(a), σ−1(b)]
for κ1 < γ(]−∞,−1]).

Remark 4.1. Recall that Sep((R, | · |, γ); θ/2) = 2|σ−1(θ/2)|. Thus, the preceding
lemma also gives bounds on the separation distance on the Gauss space .

Easy computations assert that the interval [σ−1(θ/2),−σ−1(θ/2)] is the only
closed interval of given length R := 2|σ−1(θ/2)| whose γ-measure is maximal,
namely 1−θ. More precisely, there exists a constant C(R), depending continuously
on R > 0, such that

|γ([s−R/2, s +R/2])− (1− θ)| ≥ C(R) s2, (10)

for any s sufficiently small (say, such that γ([s −R/2, s +R/2]) ≥ 1/2).

Lemma 4.8. Let (R, | · |,m) be a CD(1,∞)-space. Let A1, A2 ⊂ R be two Borel
subsets. Then, the following inequality holds

d(A1, A2) ≤ −σ−1(m(A1))− σ−1(m(A2)).

In particular, assuming min{m(A1),m(A2)} ≥ θ/2 > 0 and

d(A1, A2) ≥ Sep((R, | · |, γ); θ/2) − 2η > 0,

the following inequality holds

max{m(A1),m(A2)} ≤ θ/2 +
√

2/π η.

Proof. The proof is a simple consequence of an integrated version of the isoperi-
metric inequality: given a Borel subset A of R and t ≥ 0,

m(Vt(A)) ≥ γ((−∞, σ−1(m(A)) + t]). (11)

In particular, for r = d(A1, A2),

γ((−∞, σ−1(m(A1)) + r]) ≤ m(Vr(A1))

≤ 1−m(A2),

≤ γ((−∞, |σ−1(m(A2))|]),

where the second inequality follows from A2 ∩Vr(A1) = ∅. The inequality relating
the expressions at the ends implies

σ−1(m(A1)) + r ≤ −σ−1(m(A2))

and the first inequality is proved.
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To prove the second statement let us rewrite the first inequality as

d(A1, A2) ≤ 2|σ−1(θ/2)|+ (σ−1(θ/2)− σ−1(m(A1)) + (σ−1(θ/2)− σ−1(m(A2)).
(12)

We are left with estimating (σ−1(θ/2) − σ−1(m(Ai)) from above. According to
(9), we have

σ−1(m(Ai))− σ−1(θ/2) ≥
√
2π(m(Ai)− θ/2).

By combining (12) together with the above inequality, we get the second claim.

Remark 4.2. The proof above applies verbatim to general RCD(1,∞)-spaces since
it is mainly based on the isoperimetric inequality stated in Theorem 2.9. It gives
the same results.

In the same vein, we shall also need the following estimate:

Lemma 4.9. Let (R, | · |,m) be a CD(1,∞) space, and let A1, A2 ⊂ R be two Borel
subsets such that min{m(A1),m(A2)} ≥ θ/2 > 0 and

r := d(A1, A2) ≥ Sep((R, | · |, γ); θ/2) − 2η > 0.

Then, for any s ∈ [0, r] and i ∈ {1, 2}
m((Vs(Ai)) ≤ γ((−∞, σ−1(m(Ai)) + s]) +

√
2/π η.

Proof. We argue as in the proof of the previous lemma. Set i = 1.

m(Vs(A1)) ≤ 1−m(Vr−s(A2)),

≤ 1− γ([−σ−1(m(A2))− r + s,+∞))

≤ γ((−∞,−σ−1(m(A2)) + 2σ−1(θ/2) + 2η + s]),

≤ γ((−∞, σ−1(θ/2)) + s+ 2η]),

where we use the symmetry of γ, the inequality on r = d(A1, A2) to infer the
inequality on the third line, and m(A1) ≥ θ/2 to get the estimate in the last one.
The proof then follows from γ((c, c + δ)) ≤ 1√

2π
δ, where c is arbitrary.

Let us fix some notation. Let A1 and A2 as in Lemma 4.9. Without loss of
generality, one can assume that the interval [a−, a+] is such that (a−, a+, )∩ (A1 ∪
A2) = ∅ and a+ − a− = d(A1, A2). Up to reversing A1 and A2, we can further
assume that a− ∈ A1 and a+ ∈ A2.

Our next goal is to show that φ is uniformly close to φγ on [a−, a+]. To this
aim, we shall use properties of the optimal map T such that T♯ γ = m. Let us
recall that T is non-decreasing and 1-Lipschitz, as a consequence of Caffarelli’s
contraction theorem [9, 19].

We set

α− := σ−1(m(A1)) and α+ := σ−1(1−m(A2)) = −σ−1(m(A2)), (13)

in other terms T (α±) = a±.
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Proposition 4.10. Let (R, | · |,m = e−φ(s)ds) be a CD(1,∞) space such that for
θ > 0 and 0 < η < η0(θ),

d(A1, A2) ≥ Sep((R, | · |, γ); θ/2) − 2η > 0.

Then, up to translating m so that the median is at the origin, there exists C =
C(θ) > 0 such that for any s ∈ [a−, a+],

|φ(s)− φγ(s)| ≤ Cη1/2.

Proof. In this proof, C(θ) will be a constant that only depends on θ, but which
may change from line to line. Set δ+ := a+ − α+ and δ− := a− − α−. We first
claim that

φ(s) ≤ φγ(s− δ+) on [sl, a+]

φ(s) ≤ φγ(s− δ−) on [a−, sl],

where sl = argminφ (recall φ is 1-convex). We shall only prove the first inequality,
the second one is proved in the same way.

Setting the median of m at the origin is equivalent to enforcing T (0) = 0,
since the median of the Gaussian measure is also at the origin. Thanks to the
monotonicity of T and the Lipschitz bound recalled above, we notice that T (s) ≥
s+δ+ on (−∞, α+]. By combining this together with the fact that e−φ is decreasing
on [sl,+∞), we get on [sl − δ+, α+]

e−φ(T (s)) ≤ e−φ(s+δ+).

By definition of T , we have for almost every s,

e−φγ(s) = e−φ(T (s))T ′(s) ≤ e−φ(T (s)),

and the proof of the inequality is complete by continuity of φ and φγ .
Next, we prove that δ+ ≃ δ− ≃ T (0) = 0. Using that s 7→ T (s) − s is non-

increasing on [α−, α+], we get that

0 ≤ (T (α−)− α−)− (T (α+))− α+) = δ− − δ+. = (α+ − α−)− (a+ − a−)

By assumption on d(A1, A2) = a+−a− and using that −σ−1 is non-increasing, we
obtain

a+ − a− ≥ Sep((R, | · |, γ); θ/2) − 2η

≥ −2σ−1(θ/2)− 2η

≥ −σ−1(m(A1))− σ−1(m(A2))− 2η

≥ α+ − α− − 2η,

where we use (13) to get the last inequality. Therefore, we obtain
{

0 ≤ δ− − δ+ ≤ 2η
and δ+ ≤ T (0) = 0 ≤ δ−

(14)
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by monotonicity. As a consequence, |δ+|+ |δ−| ≤ 2η.
Now recall that by definition of α±, min(γ((−∞, α−]), γ([α+,+∞))) ≥ θ/2.

Moreover, Lemma 4.8 implies

max(γ((−∞, α−]), γ([α+,+∞))) ≤ θ/2 +
√

2/π η. (15)

Hence, (10) implies the existence of C(θ) > 0 such that

|(α+ + α−)|/2 ≤ C(θ)
√
η, (16)

By combining this together with (14), we infer
∣∣∣∣
a+ + a−

2

∣∣∣∣ ≤ C
√
η. (17)

As a consequence,

φ(s) ≤ φγ(s− δ+)

= φγ(s)− δ+s+ δ2+/2

≤ φγ(s) +C(θ)η (18)

on [a−, a+] ⊂ [−C(θ), C(θ)].
The last step of the proof relies on Markov’s inequality and the fact that φ−φγ

is a convex function. More precisely, given ν > 0, we set

Sν := {s ∈ [a−, a+] |φ(s) ≥ φγ(s)− ν}.

Observe that (a−, a+) ∩ (A1 ∪A2) = ∅ implies
∫

[a−,a+]
e−φ(s) ds ≤ 1−m(A1)−m(A2) =

∫

[α−,α+]
e−φγ(s) ds. (19)

Besides, (15) implies the existence of C > 0 such that
∫

[a−,a+]
e−φγ(s) ds ≥

∫

[α−,α+]
e−φγ(s) ds− Cη.

Using (18), we have
∫

[a−,a+]
e−φ(s) ds ≥ eν

∫

Sc
ν

e−φγ(s) ds+ e−Cη
∫

Sν

e−φγ(s) ds

≥
(
eν − 1

) ∫

Sc
ν

e−φγ(s) ds+ e−Cη
(∫

[α−,α+]
e−φγ(s) ds− C η

)
.

This estimate and (19) yield

γ(Scν) ≤ C
η

eν − 1
≤ C

η

ν
,
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which suggests to choose ν = η1/2.
Now, the convexity of h := φ−φγ forces Scν to be an interval, and the Lebesgue

measure of Sc
η1/2

is bounded from above by C(θ)η1/2. Thales’ theorem and the

convexity of h then imply minh ≥ −C(θ)η1/2 and the proof is complete.

Let us set aη := |σ−1(
√
η)|. Our goal is to extend the estimate on |φ − φγ |

from [a−, a+] to a much larger interval (depending on η). This is the content of
the next lemma.

Lemma 4.11. Let (R, | · |,m = e−φ(s)ds) be a CD(1,∞) space such that for θ > 0
and 0 < η < η0(θ)

Sep((R, | · |,m); θ/2) ≥ Sep((R, | · |, γ); θ/2) − 2η > 0.

Then, up to translating m so that the median is at the origin, there exists C =
C(θ) > 0 and bη > 0 such that, for any s ∈ [−bη, bη ],

|φ(s)− φγ(s)| ≤ Cη1/10,

and m((−∞,−bη]) ≤ γ((−∞,−bη ]) ≤ Cη1/10.

Proof. First of all, by definition of aη, γ((−∞,− aη ]) =
√
η, and since the me-

dian of m is at the origin, the Gaussian concentration inequality (which is the
integrated form of the isoperimetric inequality for RCD(1,∞) spaces states that
m((−∞, aη ]) ≤ γ((−∞,−aη ]).

Set h := φ − φγ . Recall that |h| ≤ Cη1/2 on [a−, a+] and that h is convex.
Markov’s inequality yields the existence of â+ ∈ [a−, a+] such that

|φ′(â+)− φ′γ(â+)| ≤ Cη1/4 and |a+ − â+| ≤ η1/4.

For s ≥ â+, the 1-convexity of φ yields

φ(s) ≥ φ(â+) + φ′(â+)(s− â+) + 1/2(s − â+)
2.

Noticing that φγ(â+) + φ′γ(â+)(s− â+) + 1/2(s− â+)2 = φγ(x), we infer from the
previous inequality:

φ(s) ≥ φγ(s) + E(s),

where E(s) = −Cη1/4(1 + (s− â+)).
Recall that aη = |σ−1(

√
η)| ∼

√
ln(1/η) for η ∼ 0 thus, for η small enough, there

exists a constant C such that

aη ≤ C
√
ln(1/η), (20)

and there exists a constant C such that

E(s) ≥ −Cη1/4(1 + aη) ≥ −Cη1/5
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on [â+, aη ]. Consequently,

φ ≥ φγ − Cη1/5 (21)

on [a+, aη ] ⊂ [â+, aη].
The same method applies on [− aη , â−] (where the definition of â− is clear from

the context) and leads to the same estimate φ ≥ φγ −Cη1/5.
We then have, using the estimates on the interval [a−, a+] and that |a+− â+| ≤

η1/4,
∣∣∣∣∣

∫

[− aη ,aη ]\[a−,a+]
e−φ(s) − e−φγ(s) ds

∣∣∣∣∣ = |γ([a−, a+])−m([a−, a+])

+γ([− aη, aη ]
c)−m([− aη, aη ]

c)|
≤ 2γ([aη ,+∞)) +m((−∞,− aη ])

+m([aη,+∞)) + C
√
η

≤ C
√
η.

As in the proof of Proposition 4.10, Markov’s inequality and the estimates
above imply that

Sη := {s ∈ [− aη , aη ] \ [a−, a+]| (φ− φγ)(s) ≤ η1/10}

satisfies
γ(Scη) ≤ Cη1/10.

Finally, the convexity of φ − φγ implies that Sη is the union of two intervals;
besides, thanks to Proposition 4.10, Sη contains a neighborhood of a− and a+.
Therefore Scη is the union of two intervals [− aη,− bη] ∪ [bη, aη ]. We also have

m((−∞,−bη]) ≤ γ((−∞,−bη]) ≤ γ((−∞,− aη ]) + γ((− aη ,− bη]) ≤ Cη1/10.

We are left with estimating the variance of the identity map relative to the
measure m.

Lemma 4.12. Let (R, | · |,m = e−φ(s)ds) be a CD(1,∞) space such that for θ > 0
and 0 < η < η0(θ),

Sep((R, | · |,m); θ/2) ≥ Sep((R, | · |, γ); θ/2) − 2η > 0.

Then, up to translating m so that its median is at the origin, the following estimates
hold

∣∣∣∣
∫

R

s dm(s)

∣∣∣∣ ≤ Cη1/11,
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and ∫

R

s2 dm(s) ≥ 1− Cη1/11.

In particular,
V arm(s) ≥ 1− Cη1/11.

Proof. Let us start with some estimates relative to the Gaussian measure. Using

e−φγ (bη)

bη
∼
∫ +∞

bη

e−φγ(s) ds ≤ Cη1/10,

we infer, for η small enough,

∫ +∞

bη

s e−φγ(s) ds = e−φγ(bη) ≤ C bη η
1/10 ≤ Cη1/10σ−1(η1/10) ≤ Cη1/11.

Moreover, thanks to
∫ +∞
bη

s2 e−φγ(s) ds = bη e
−φγ(bη) +

∫ +∞
bη

e−φγ(s) ds, we get
∫ +∞

bη

s2 e−φγ(s) ds ≤ Cη1/11.

Now, we use Lemma 4.11 to infer similar bounds for m. More precisely,

∣∣∣∣∣

∫

[−bη ,bη ]
s e−φ(s) ds−

∫

[− bη ,bη ]
s e−φγ(s) ds

∣∣∣∣∣ ≤
∫

[−bη ,bη ]
|s|
(
e|φ(s)−φγ(s)| − 1

)
e−φγ(s) ds

≤
∫

[−bη ,bη ]
|s|
(
eCη

1/10 − 1
)
e−φγ(s) ds

≤ 2(1 − e−φγ (bη))Cη1/10 ≤ Cη1/10.

We also have∣∣∣∣∣

∫

[−bη ,bη ]
s2e−φ(s) ds−

∫

[−bη ,bη ]
s2e−φγ(s) ds

∣∣∣∣∣ ≤
∫

[−bη ,bη]
s2
(
eCη

1/10 − 1
)
e−φγ(s) ds

≤ Cη1/10.

Last, we claim that 0 ≤ T (s) ≤ s (resp. 0 ≥ T (s) ≥ s) on [bη,+∞) ⊂
[α+,+∞) (resp. on (−∞,− bη]), since T is monotone and 1-Lipschitz and T (0) =
0.

With this property, we can estimate the remaining part of the expectation of
m: ∫

[bη ,+∞]
s e−φ(s) ds ≤

∫

[T−1(bη),+∞)
T (u) e−φγ (u) du

≤
∫

[bη ,+∞)
ue−φγ(u) du

≤ Cη1/11,

where we use the upper tail bound for the Gaussian measure. The same method
applies on (−∞,− bη], and the proof is complete.
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4.2.2 The general case

According to (7), there exists sets A1 and A2 such that

d(A1, A2) ≥ Sep((R, | · |, γ);κ/2) − 2ǫ,

and min(µ(A1), µ(A2)) ≥ κ/2.
We now introduce a needle decomposition relative to a function f defined in

terms of the sets A1 and A2 above. Precisely, we set

f = χA1
− χA2

− µ(A1) + µ(A2). (22)

This function satisfies
∫

|f(x)|d(x, x0) dµ <∞ and
∫
f dµ = 0.

Applying the needle decomposition associated to f defined on (M,d, µ), we get
that for q a.e q,

∫
Xq
f dmq = 0. This yields for a.e q

mq(A1 ∩Xq)−mq(A2 ∩Xq) = µ(A1)− µ(A2).

Therefore, according to Lemma 4.8 (see Remark 4.2), we get

|mq(A1 ∩Xq)−mq(A2 ∩Xq)| ≤
√

2/π ǫ. (23)

From this estimate, we infer the following result

Lemma 4.13. Let (M,d, µ) be an RCD(1,∞) space admitting CD(1,∞) disin-
tegration and such that (6) holds. Then, relatively to the needle decomposition
associated to f as in (22), there exists a set of needles Qδ such that q(Qδ) ≥ 1− δ,
and for any needle q ∈ Qδ, we have

min{mq(A1),mq(A2)} ≥ κ/2 −
√
8/π ǫ

δ
−
√

2/π ǫ. (24)

Proof. Since we assume there is a needle decomposition, there exists a partition
of M : M = T ⊔ Z such that µ|T admits a needle decomposition and f = 0 µ-a.e.
on Z. Now, by the very definition of f , Z ⊂ (A1 ∪A2)

c (actually Z = ∅ whenever
µ(A1) 6= µ(A2)). Therefore, we obtain

µ(Ai) =

∫

T
χAi dµ =

∫

Q
mq(Ai) dq. (25)

Recall that each needle is in particular a geodesic, thus the distance between
A1 ∩Xq and A2 ∩Xq along Xq is greater or equal to d(A1, A2), where

d(A1, A2) ≥ Sep((R, | · |, γ);κ/2) − 2ǫ > Sep((R, | · |, γ);κ/2 +
√

2/πǫ)

according to (9) and Remark 4.1. Using Theorem 2.10, we infer

d(A1, A2) > Sep((Xq , | · |,mq);κ/2 +
√

2/πǫ).



28

This inequality yields

min{mq(A1),mq(A2)} ≤ κ/2 +
√

2/πǫ,

and we can replace min by max in the above equation thanks to (23), provided
that

√
2/πǫ is replaced by 2

√
2/πǫ.

The end of the proof consists in applying Markov’s inequality in (25) combined
with max{mq(A1),mq(A2)} ≤ κ/2 +

√
8/πǫ.

Defining Qδ := {q ∈ Q|mq(A1) ≥ κ/2−
√

8/π ǫ

δ }, we get

µ(A1) ≤
∫

Qc
δ

mq(A1) dq+

∫

Qδ

mq(A1) dq

< (κ/2−
√

8/πǫ

δ
)q(Qcδ) + (κ/2 +

√
8/πǫ)(1− q(Qcδ)),

from which we infer (since µ(A1) ≥ κ/2)

q(Qcδ) ≤ δ.

Applying (23) yields the result.

For a.e. q ∈ Q√
ǫ, there exists a constant Ĉ > 0 such that

min{mq(A1),mq(A2)} ≥ κ/2 − Ĉ
√
ǫ,

while, as explained in the proof above, for almost every q,

d(A1 ∩Xq, A2 ∩Xq) ≥ d(A1, A2) ≥ Sep((Xq, | · |,mq);κ/2) − 2ǫ.

Besides, using (9) and Remark 4.1, we obtain

Sep((Xq, | · |,mq);κ/2) − 2ǫ ≥ Sep((Xq, | · |,mq);κ/2 − Ĉ
√
ǫ)−C

√
ǫ.

According to Lemma 4.12, this implies for a.e q ∈ Q√
ǫ the existence of a

constant C = C(κ) > 0 such that

V armq (s) ≥ 1− Cǫ1/22,

and q(Q√
ǫ) ≥ 1−√

ǫ. (26)

4.2.3 Proof of Theorem 1.6

The proof builds upon the decomposition relative to f as in (22). According to
Theorem 2.4, there exists a guiding function u which is 1-Lipschitz, and such that
for a.e. q ∈ Q, u(s) = s+ cq on Xq (with cq ∈ R). As a consequence, we have

∫
|∇u|2 dµ ≤ 1,
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and

V arµ(u) =

∫

X
u2 −

(∫

X
u dµ

)2

dµ

≥
∫

Q

∫

Xq

u2 dmq dq(q) −
∫

Q

(∫
u dmq

)2

dq(q)

=

∫

Q
V armq (u) dq(q),

where the inequality follows from Cauchy-Schwarz. Using (26), we then get

V arµ(u) ≥ q(Q√
ǫ)
(
1− Cǫ1/22

)
≥ 1− Cǫ1/22 ≥ (1−Cǫ1/22)

∫
|∇u|2dµ,

which gives the upper bound on the spectral gap.
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