Stability of eigenvalues and observable diameter in RCD$(1,\infty)$ spaces - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Stability of eigenvalues and observable diameter in RCD$(1,\infty)$ spaces

Max Fathi
  • Fonction : Auteur

Résumé

We study stability of the spectral gap and observable diameter for metricmeasure spaces satisfying the RCD(1, ∞) condition. We show that if such a space has an almost maximal spectral gap, then it almost contains a Gaussian component, and the Laplacian has eigenvalues that are close to any integers, with dimension-free quantitative bounds. Under the additional assumption that the space admits a needle disintegration, we show that the spectral gap is almost maximal iff the observable diameter is almost maximal, again with quantitative dimension-free bounds.
Fichier principal
Vignette du fichier
stability full spectrum v20.pdf (283.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03283609 , version 1 (12-07-2021)

Identifiants

Citer

Jérôme Bertrand, Max Fathi. Stability of eigenvalues and observable diameter in RCD$(1,\infty)$ spaces. 2021. ⟨hal-03283609⟩
43 Consultations
142 Téléchargements

Altmetric

Partager

More