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Denote by P + (n) (resp. P -(n)) the largest (resp. the smallest) prime factor of the integer n 1. In this paper, we prove a lower bound of almost-primes n x with P -(n) > x 1/v , v > 4 such that P + (n -a)

x 1/u for 1 u 1, a ∈ Z, a = 0. As an application, we study two patterns on the largest prime factors of consecutive integers with one of which without small prime factor.

Introduction

For each integer n 1, let P + (n) denote the largest prime factor of n with the convention that P + (1) = 1. The distribution of the largest prime factors of shifted primes P + (p -a) with a ∈ Z, a = 0 have been studied by many mathematicians, such as Erdős [START_REF] Erdős | On the normal number of prime factors of p -1 and some related problems concerning Euler's φ-function[END_REF], Goldfeld [START_REF] Goldfeld | On the number of primes p for which p+a has a large prime factor[END_REF], Pomerance [START_REF] Pomerance | Popular values of Euler's function[END_REF], Fouvry [START_REF] Fouvry | Théorème de Brun-Titchmarsh; application au théorème de Fermat[END_REF], Baker and Harman [START_REF] Baker | The Brun-Titchmarsh theorem on average[END_REF], Banks and Shparlinski [START_REF] Banks | On values taken by the largest prime factor of shifted primes[END_REF]. Define π(x, y) := (1.1)

In 2008, Granville [START_REF] Granville | Smooth numbers: computational number theory and beyond[END_REF] stated that the asymptotic formula π(x, y) ∼ ρ(u)π(x), y = x 1/u (

follows for all fixed u 1 from a weak form of the Elliott-Halberstam conjecture, a wellbelieved conjecture in analytic number theory. Here ρ(u) is the Dickman-de Bruijn function, and π(x) denotes the number of primes not exceeding x. Recently the second named author [START_REF] Wang | Autour des plus grands facteurs premiers d'entiers consécutifs voisins d'un entier criblé[END_REF] provided the details for proof of (1.2) under the Elliott-Halberstam conjecture.

In this paper, we consider the analogue problem via replacing prime p by almost-prime (with a limited number of prime factors). For a ∈ Z, y x and z x, we define

Φ(x, y, z) := n x, P -(n)>z P + (n-a) y 1, (1.3) 
where P -(n) denotes the smallest prime factor of integer n with the convention P -(1) = ∞.

For the case a = 0, we may refer to the work of Friedlander [START_REF] Friedlander | Integers free from large and small primes[END_REF] and Saias [START_REF] Saias | Entiers sans grand ni petit facteur premier I[END_REF][START_REF] Saias | Entiers sans grand ni petit facteur premier II[END_REF][START_REF] Saias | Entiers sans grand ni petit facteur premier III[END_REF]. Here we only consider the case a = 0. Considering the following formula for almost-primes (see [24, Chapitre III.6]):

Φ(x, z) := n x P -(n)>z 1 = xω(v) -z log z + O x (log z) 2 , z = x 1/v
for x z 2, where ω(v) is the Buchstab function, we may guess that

Φ(x, y, z) ∼ ρ(u)ω(v) x log z , y = x 1/u , z = x 1/v (1.4)
for some u, v 1.

It's not difficult to prove (1.4) with 1 v, 1 u 1 under the Elliott-Halberstam conjecture for almost-primes (replacing primes by almost-primes) by following the argument of Lemma 4.1 in [START_REF] Wang | Autour des plus grands facteurs premiers d'entiers consécutifs voisins d'un entier criblé[END_REF]. We leave the details to the interested reader.

In this paper, we first prove an unconditional result on the estimate of Φ(x, y, z) for some u, v 1.

Theorem 1. For x → ∞ and y = x 1/u , z = x 1/v , there exists a strictly positive constant c 1 (u, v) such that Φ(x, y, z) c 1 (u, v)

x log x

(1.5)

for v > 4, 1 u 1.
Remark. With the same method to (1.5), we can obtain an upper bound

Φ(x, y, z) c 2 (u, v) x log x (1.6) for 1 v 1, 1 u 1, where c 2 (u, v
) is a strictly positive constant. In fact, (1.6) is the case "q = 1" of Theorem 1 in [START_REF] Liu | Primes in arithmetic progressions with friable indices[END_REF]. An application of the upper bound (1.6) is to study the density of shifted primes with large prime factors. For 0 < θ < 1, we define T θ (x) := p x : P + (p -1) p θ , and we want to estimate T θ (x) with a good lower bound (see [START_REF] Luca | On shifted primes with large prime factors and their products[END_REF], [START_REF] Chen | On the largest prime factor of shifted primes[END_REF] and [START_REF] Feng | On the density of shifted primes with large prime factors[END_REF]). As in the very recent work of Liu, Wu and Xi [START_REF] Liu | Primes in arithmetic progressions with friable indices[END_REF], with the help of (1.6), for x → ∞ we have the following lower bound

T θ (x)        1 -4ρ(1/θ) + o(1)
x log x for 0 < θ θ 0 ,

1 -θ + o(1) x log x for θ 0 < θ 1/2, (1.7) 
where θ 0 ≈ 0.3734.

As an application of Theorem 1, we treat a problem on the largest prime factors of consecutive integers with one of which almost-prime. In [START_REF] Wang | Autour des plus grands facteurs premiers d'entiers consécutifs voisins d'un entier criblé[END_REF], the second named author first exploited this problem and proved that there exists a strictly positive constant C(β) such that

n x, P -(n)>x β P + (n)<P + (n+2) 1 C(β) + o(1) x log x (1.8) for 0 < β < 1 3 . Taking β = 1 3 -δ with 0 < δ 1 12 in (1.8)
, we obtain the lower bound

P 3 x, P -(P 3 )>x 1/3-δ P + (P 3 )<P + (P 3 +2) 1 C( 1 3 -δ) + o(1) x log x (1.9)
for 0 < δ 1 12 . Here P 3 denotes an integer having at most three prime factors counted with multiplicity, i.e. P 3 is an almost-prime. The most interesting case in this problem is undoubtedly on primes, i.e. replacing P 3 in (1.9) by a prime number p, or equivalently, extend the value of β in (1.8) to 0 < β 1 2 , considering the well-known twin prime conjecture is equivalent to

|{p x : P + (p) < P + (p + 2)}| → ∞ for x → ∞.
In addition, it should be noted that we can obtain a result similar to (1.8) directly for the small values of β by a result of Fouvry [18, Théorème 2], a theorem of Bombieri-Vinogradov type on sifted integers (without small prime factor) with an exponent of distribution > 1 2 , or applying a weighted sieve combined with a theorem of Bombieri-Vinogradov type (see Fouvry [START_REF] Fouvry | Autour du théorème de Bombieri-Vinogradov[END_REF]Théorème 2] and [START_REF] Fouvry | Répartition des suites dans les progressions arithmétiques[END_REF]Corollaire 3]).

In this paper, we treat the dual problem of (1.8), i.e. we replace the condition P + (n) < P + (n + 2) by P + (n) > P + (n + 2) with n free of small prime factor. In fact, this problem was posed by Fouvry in the thesis report that he wrote for the second named author. With the help of (1.5), and the lower bound of Φ(x, y, z) in Theorem 1, we prove that there exists a positive density of n such that P + (n) > P + (n + 2), P -(n) > x α with 0 < α < 1 4 :

Corollary 1. For x → ∞ and 0 < α < 1 4 , there exists a strictly positive constant C 1 (α) such that

n x, P -(n)>x α P + (n)>P + (n+2) 1 C 1 (α) + o(1) x log x . (1.10)
It would be interesting to extend the domain of α to 0 < α < 1 2 .

Lemmas

The first lemma is the Rosser-Iwaniec sieve [START_REF] Iwaniec | A new form of the error term in the linear sieve[END_REF]. Here we only employ the upper-bound sieve. 

λ + d w(d) d p z p∈P 1 - w(p) p F (s) + O e L 1/2 -s (log D) 1/3 , d|P (z) λ - d w(d) d p z p∈P 1 - w(p) p f (s) -O e L 1/2 -s (log D) 1/3
uniformly for all multiplicative functions w satisfying

(i) 0 < w(p) < p (p ∈ P), (ii) u<p v p∈P 1 - w(p) p -1 log v log u 1 + L log u (2 u v z).
where s = log D/ log z and F (s), f (s) are defined by the continuous solutions to the system

           sF (s) = 2e γ 1 s 2, sf (s) = 0 0 < s 2, (sF (s)) = f (s -1) s > 2, (sf (s)) = F (s -1) s > 2.
Here γ is the Euler constant.

Define S(x, y) := n x : P + (n) y , Ψ(x, y) := |S(x, y)| (2.1) and Ψ(x, y; a, q) := n∈S(x, y) n≡a(mod q)

1, Ψ q (x, y) :

= n∈S(x, y) (n, q)=1
1.

(2.

2)

The following two lemmas are on the distribution of friable numbers, obtained by Hildebrand [15, Theorem 1] and Fouvry-Tenenbaum [10, Théorème 1] respectively.

Lemma 2.2. For ε > 0, we have

Ψ(x, y) = xρ(u) 1 + O ε log(u + 1) log y
uniformly for x x 0 (ε), exp{(log 2 x) 5/3+ε } y x, where u = log x/ log y and ρ(u) is the Dickman-de Bruijn function.

Lemma 2.3. For ε > 0, we have

Ψ q (x, y) = ϕ(q) q Ψ(x, y) 1 + O log 2 (qy) log 2 x log y
uniformly for x x 0 (ε), exp{(log 2 x) 5/3+ε } y x and log 2 (q + 2) log y log(u + 1)

1-ε

, where u = log x/ log y and ϕ(n) is the Euler function.

The fourth lemma is the Bombieri-Vinogradov theorem for friable numbers, concerning the distribution of friable numbers in arithmetic progressions, averaged over a range of moduli. For Ψ(x, y; a, q) and Ψ q (x, y) defined by (2.2), we have Lemma 2.4. For any A > 0, there exists a constant B = B(A) > 0 such that

q x 1/2 /(log x) B max x x max (a, q)=1 Ψ(x , y; a, q) - Ψ q (x , y) ϕ(q) A x (log x) A (2.3)
uniformly for x y 2.

In [START_REF] Wolke | Über die mittlere verteilung der werte zahlentheoretischer funktionen auf restklassen[END_REF], Wolke proved a theorem of Bombieri-Vinogradov for sifted numbers, and announced Lemma 2.4. In 1991, Fouvry and Tenenbaum [START_REF] Fouvry | Entiers sans grand facteur premier en progressions arithmétiques[END_REF] proved Lemma 2.4 with a different method. In addition, for Lemma 2.4, we can see the work of Fouvry and Tenenbaum (also the work of Drappeau [START_REF] Drappeau | Théorèmes de type Fouvry-Iwaniec pour les entiers friables[END_REF]) with the level of the distribution of friable numbers > 1/2 for some small y, or the work of Harper [START_REF] Harper | Bombieri-Vinogradov and Barban-Davenport-Halberstam type theorems for smooth numbers[END_REF].

Proof of Theorem 1

For Φ(x, y, z) defined by (1.3) with y = x 1/u , z = x 1/v and any a ∈ Z * fixed, we apply Lemma 2.1 by taking P = {p : p is prime, p a}. 1 .

Taking D = x 1/2 /(log x) B for convenable B > 0, we see that the error term R(x, y, z) is admissible with the help of Lemma 2.4

R(x, y, z) = d D, d|P (z) λ - d n x, P + (n) y n≡-a(mod d) 1 - 1 ϕ(d) n x, P + (n) y (n, d)=1 1 |(n, a) µ( ) = d D, d|P (z) λ - d |a µ( ) m x/ , P + (m) y m≡-a (mod d) 1 - 1 ϕ(d) m x/ , P + (m) y (m, d)=1 1 d D max x x max (a , d)=1 Ψ(x , y; a , d) - Ψ d (x , y) ϕ(d) x (log x) A (3.3)
for any A > 0 and any fixed integer a = 0. Now it remains to estimate M (x, y, z). We first change the order of summation and write

M (x, y, z) = n x, (n, a)=1 P + (n) y d D d|P (z) λ - d ϕ(d)
where P (z) = p<z, p∈P p with P := {p : p an}. Note that by (3.1) we may deduce that n and a have opposite parity which implies 2|an. We apply Lemma 2.1 with w(p) = p/ϕ(p) and some large constant L getting

M (x, y, z) f v 2 -o(1) n x, (n, a)=1 P + (n) y 2<p z p an 1 - 1 p -1 = f v 2 -o(1) 2<p z p a p -2 p -1 n x, (n, a)=1 P + (n) y H(n)
where H(n) is a multiplicative function defined by

H(n) = 2<p z, p|n p -1 p -2 .
By the following formula due to Liu-Wu-Xi (see [17, (3.5) for y = x 1/u , z = x 1/v with v > 4, 1 u 1. This completes the proof of Theorem 1.

Proof of Corollary 1

For 0 < α < 1 4 , we have By taking z = x α and a = -2 in (1.5) of Theorem 1, we obtain Corollary 1.

Lemma 2 . 1 .

 21 Let D 2 and L > 1. Let P denote a set of primes, let z 2 and write P (z) := p z,p∈P p. There exists two sequences λ ± d ∞ d=1 of real numbers, vanishing for d > D or µ(d) = 0, satisfying λ ± 1 = 1, λ ± d 1, λ - * 1 µ * 1 λ + * 1, and such that d|P (z)

  So we have Φ(x, y, z) = n x+a, (n, a)=1 P + (n-a) y (n, P (z))=1 1 + O(1) = n x+a, (n, a)=1 P + (n-a) y µ * 1 (n, P (z)) + O(1) (n, a)=1 P + (n) y n≡-a(mod d) 1 + O(1).

( 3 . 1 )

 31 Then we write this in the following formΦ(x, y, z) M (x, y, z) + R(x, y, z) + O(1) , y, z) := d D, d|P (z) λ - d n x, (n, a)=1 P + (n) y n≡-a(mod d) 1 -1 ϕ(d) n x, (n, a)=1 P + (n) y (n, d)=1

  n x, P -(n)>x α P + (n)>P + (n+2) 1 n x, P -(n)>x α P + (n+2)<x α 1.
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