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Introduction

For each integer n 1, let P (n) denote the largest prime factor of n with the convention that P (1) = 1. In 1930, Dickman [START_REF] Dickman | On the frequency of numbers containing prime factors of a certain relative magnitude[END_REF] obtained the well-known result: the following asymptotic formula Ψ(x, y) = |{n x : P (n) y}| ∼ x (u) (u 1) (

holds for x → ∞ with u = log x/ log y fixed, where (u) is the Dickman function. Furthermore, one conjectured that the largest prime factors of consecutive integers n and n + 1 are "independent events", that is to say, the density of integers n with P (n) < P (n + 1) is 1/2. In this direction, in 1978 Erdős and Pomerance [START_REF] Erdös | On the largest prime factors of n and n + 1[END_REF] proved that there exists a positive proportion of integers n with P (n) < P (n + 1). More precisely, they proved that Theorem (A). For x → ∞, we have |{n x : P (n) < P (n + 1)}| > 0.0099x.

Another important problem on consecutive integers is the following. Let {ε n } 1 n<N be a finite sequence with each ε n ∈ {0, ±1}, and write

a b = 1 n<N n n + 1 εn ,
where the fraction is in its smallest terms, then define A(N ) as the maximal value of a as {ε n } 1 n<N runs through all possible 3 N -1 sequences of 0, ±1. In 1988, Nicolas [START_REF] Nicolas | Nombres hautement composés[END_REF] showed that log A(N ) In 2005, La Bretèche, Pomerance and Tenenbaum [START_REF] De La Bretèche | Products of ratios of consecutive integers[END_REF] improved the lower bound of log A(N ) to the same order of magnitude as the upper bound:

Theorem (B). For large N , we have

log A(N ) {K + o(1)}N log N, (1.2) 
where K ≈ 0.107005 is a constant.

Further, they proved that for any fixed c 0 ∈ [0, 1 5 ) and uniformly for c

∈ [0, c 0 ], x → ∞, S(x, c) 2x c 0 log 1 -v 1 -v -2c dv 1 -v + o(x), (1.3) 
where S(x, c) denotes the number of those integers n not exceeding x such that P (n) > x 1-c and P (n + 1) > x 1-c . In fact, (1.2) is an easy consequence of (1.3). Besides, from (1.3) they also improved the result of Theorem (A) and obtained Theorem (C). For x → ∞, we have

|{n x : P (n) < P (n + 1)}| > 0.05544x.
In addition, in their paper they also indicated that the constant 0.05544 can be improved to 0.05866 by using more sophisticated sieve methods thanks to an observation of Fouvry. Indeed, when using sieve methods, La Bretèche, Pomerance and Tenenbaum disposed the sum of error term by the Bombieri-Vinogradov theorem, while Fouvry used a type of convolution of the Bombieri-Vinogradov theorem, which can improve the distribution level leading an improvement of the constant.

In this paper, we consider the largest prime factors of consecutive integers in short intervals (x, x + y] with y = x θ with 3 5 < θ 1. Throughout this paper, we denote by ε an arbitrarily small positive constant, γ Euler's constant and p, p primes. For convenience, we write L = log x.

Our results are as follows.

Theorem 1. (i) Let (1.4)

Then for x → ∞ and y = x θ , we have

{x < n x + y : P (n) < P (n + 1)} {g(θ; c) + o θ,c (1)}y, (1.5) 
where

g(θ; c) := log 1 1 -c -2 c 0 log(1 -v) -1 θ -1 2 -v dv. (1.6) (ii) For 3 5 < θ 1, there is a unique c(θ) ∈ 0, min 5θ-3 2 , θ -1 2 such that g(θ) := max 0<c<min{ 5θ-3 2 , θ-1 2 } g(θ; c) = g(θ; c(θ)) > 0.
In particular, we have g(1) > g(1; 0.1778) > 0.1063. (iii) For x → ∞, we have

{n x : P (n) < P (n + 1)} > 0.1063x. (1.7)
Theorem 1.(iii) improves Fouvry's constant "0.05866" mentioned above. We shall follow Fouvry's argument [START_REF] De La Bretèche | Products of ratios of consecutive integers[END_REF]. The starting point is the following inequality

x<n x+y P (n-1)<P (n) 1 x<n x+y P (n)>n 1-c 1 - x<n x+y P (n-1)>P (n)>n 1-c 1 =: S A -S B (1.8)
with 0 < c 1 2 . So we only need to give a lower bound of S A and an upper bound of S B . To estimate S A , we shall use the asymptotic formula about the distribution of friable numbers in short intervals.

For S B , if n is counted by S B , then n is of the form n = ap+1 = bp with p > p > n 1-c , namely a < b n c . So we have

S B |{x < n x + y : n = ap + 1 = bp , a < b (x + y) c }| = b (x+y) c |{x < n x + y : n = ap + 1 = bp , a < b}| = b (x+y) c |{n ∈ A (b) : n is prime}|, where A (b) := ap + 1 b : x < ap x + y, a < b, ap + 1 ≡ 0(mod b) . (1.9)
It is because of the substitution of "a < x c " with "a < b" in the above sequence A (b) that we can improve Fouvry's constant "0.05866" to "0.1063". Then we will use Rosser-Iwaniec's sieve [START_REF] Iwaniec | A new form of the error term in the linear sieve[END_REF][START_REF] Iwaniec | Rosser's sieve[END_REF] to sieve A (b) by the following set of primes P = {p : p is prime}, (1.10) so that we can give an upper bound of S B . In addition, we also need some generalized Bombieri-Vinogradov theorems in short intervals [START_REF] Wu | Théorèmes généralisés de Bombieri-Vinogradov dans les petits intervalles[END_REF].

Theorem 2. For large N , we have

log A(N ) {K + o(1)}N log N, (1.11) 
where K ≈ 0.1108 is a constant.

Theorem 2 improves the constant K ≈ 0.107005 of Theorem (B).

Lemmas

Let A be a finite sequence of integers, P a set of primes, z 2 a real number and d a squarefree integer with all its prime factors belonging to P, and denote

A d := {a ∈ A : d | a}, P (z) := p<z, p∈P p.
We shall evaluate S(A; P, z) := |{a ∈ A : (a, P (z)) = 1}|.

Assume that |A d | may be written in the form

|A d | = ω(d) d X + r(A, d) for d | P (z),
where X is an approximation to |A| independent of d, ω is a multiplicative function satisfying 0 < ω(p) < p for p ∈ P, ω(d)d -1 X is considered as a main term and r(A, d) is an error term which we expect is small on average over d.

The first lemma is a simple consequence of [5, Theorem 1].

Lemma 2.1. Suppose that there exists a constant K 2 such that

w p<v 1 - ω(p) p -1 < log v log w 1 + K log w
for all v > w 2. Then for any D z 2, we have

S(A; P, z) XV (z) F (s) + O 1 (log y) 1/3 + d<D, d|P (z) |r(A, d)|,
where s := log D/ log z and

V (z) := p<z, p∈P 1 -ω(p)p -1 , F (s) := 2e γ s -1 (0 < s 3).
For (a, q) = 1 and 1, we define π(z; q, a, ) = p z p≡a(mod q)

1.

The second lemma is [START_REF] Wu | Théorèmes généralisés de Bombieri-Vinogradov dans les petits intervalles[END_REF]Theorem]. Lemma 2.2. Let g( ) be an arithmetic function satisfying

x |g( )| 2 -1 L λ
for some positive constant λ > 0. Define H(z, h; q, a, ) := π(z + h; q, a, ) -π(z; q, a, ) -

1 ϕ(q) (z+h)/ z/ dt log t • (2.1)
Then for any A > 0 and ε > 0, there exists a constant B = B(A, λ) > 0 such that the estimate

q Q max (a, q)=1 max h y max x/2<z x L ( , q)=1
g( )H(z, h; q, a, )

A,λ,ε yL -A holds uniformly for 3 5 + ε θ 1, Q = x θ-1/2 L -B and L = x (5θ-3)/2-ε . In particuliar, we can easily see that Lemma 2.2 covers the result of Perelli, Pintz and Salerno [START_REF] Perelli | Bombieri's theorem in short intervals[END_REF], which states that if π(z; q, a) := π(z; q, a, 1), then for any A > 0 we have

q Q max (a, q)=1 max h y max x/2<z x π(z + h; q, a) -π(z; q, a) - 1 ϕ(q) z+h z dt log t yL -A , (2.2) 
uniformly for 3 5 < θ 1 and Q = x θ-1/2 L -B , where B = B(A) is a positive constant. The third lemma is [4, Theorem 3]. Lemma 2.3. As Ψ(x, y) is defined by (1.1), then the following asymptotic formula

Ψ(x + z, y) -Ψ(x, y) ∼ z x Ψ(x, y) ∼ z (u) (2.3)
holds uniformly for 1 x/z y 5/12 and exp (log L ) 5/3+ε y x.

Proof of Theorem 1 and 2

For Theorem 1, recall that S A , S B , A (b) and P are defined in (1.8), (1.9) and (1.10) respectively. First, we shall give an upper bound of S B , and then estimate S A .

For S B , we first sieve A (b) by P, and then sum over b. Let θ and c be two positive real numbers satisfying (1.4) respectively, and z = x θ-1/2 /(bL B 0 ), where B 0 is an appropriate positive constant. So for b (x + y) For the first sum on the right hand side of (3.1), we have

a<b (a, bd)=1 1 ϕ(bd) (x+y)/a x/a dt log t = a<b (a, bd)=1 y aϕ(bd) 1 log x a + O 1 log x a - 1 log x+y a = 1 + O 1 L y ϕ(bd) a<b (a, bd)=1 1 a log(x/a)
•

By the Möbius inversion, we have

a<b (a, bd)=1 1 ϕ(bd) (x+y)/a x/a dt log t = 1 + O 1 L y ϕ(bd) a<b 1 a log(x/a) q|(a, bd) µ(q) = 1 + O 1 L y ϕ(bd) q|bd µ(q) q aq<b 1 a log(x/aq) = 1 + O 1 L y ϕ(bd) S 1 + S 2 , (3.2) 
where

S 1 := q|bd, q<L 9 
µ(q) q a<b/q 1 a log(x/aq) , S 2 := q|bd, q L 9 µ(q) q a<b/q 1 a log(x/aq) •

Denoting by τ (n) the number of divisors of n, we have

S 2 q|bd, q L 9 q -1 τ (bd)L -9 . (3.3) 
And for S 1 , by the partial summation we have

S 1 = q|bd, q<L 9 µ(q) q b/q 1 dt t log(x/tq) + O 1 L = q|bd, q<L 9 µ(q) q log log x -log q log x -log b + O 1 L = q|bd, q<L 9 µ(q) q log log x log(x/b) + O log L L ,
owing to the condition q < L 9 , we can separate the above log q from the main term. Thus we have

S 1 = q|bd µ(q) q - q|bd q L 9 µ(q) q log log x log(x/b) + O log L L = ϕ(bd) bd log log x log(x/b) + O log L L + O τ (bd) L 9 . (3.4) 
So we infer from (3.1), (3.2), (3.3) and (3.4) that

|A d (b)| = ω(d) d X + r(A (b), d)
with ω(d) = 1 and

X = y b log log x log(x/b) 1 + O log L L , r(A (b), d) = a<b (a, bd)=1 H(x, y; bd, -1, a) + O yτ (bd) ϕ(bd)L 9 .
Thus we can apply Lemma 2.1 with D = z = x θ-1/2 /(bL B 0 ) to write

S(A (b); P, z) {1 + o(1)} 2X log(x θ-1/2 /b) + d<z, d|P (z) |r(A (b), d)|,
where we have used Mertens' formula to evaluate

V (z) = p<x θ-1/2 b -1 L -B 0 1 - 1 p = e -γ log(x θ-1/2 /b) 1 + O log L L .
From this and the trivial inequality First we evaluate the error term S 4 . By the Cauchy-Schwarz inequality, it follows that

S 4 m<x θ-1/2 L -B 0 τ (m) a<b (a, m)=1 H(x, y; m, -1, a) (S 41 S 42 ) 1/2 ,
where

S 41 := m<x θ-1/2 L -B 0 a<b (a, m)=1 H(x, y; m, -1, a) , S 42 := m<x θ-1/2 L -B 0 τ (m) 2 a<b (a, m)=1 H(x, y; m, -1, a) .
For S 42 , we use a trivial estimate and for S 41 , we shall apply Lemma 2.2 with

g( ) = 1 if 0 < b 0 if b <
x (5θ-3)/2-ε since b (x + y) c x (5θ-3)/2-ε thanks to hypothesis (1.4). So we obtain

S 4 y L A 1/2 m<x θ-1/2 L -B 0 τ (m) 2 a<b y am + O(1) 1/2 y L A 1/2 yL 5 + bx θ-1/2 L -B 0 +3 1/2 y L A/2-3 (3.6) since y 1/2 x (c+θ-1/2)/2 yx -(1/2-c)/2 y with c < θ -1 2 1 
2 . Next we evaluate S 3 . By partial summation we get 

S 3 = 2y{1 + o(1)} (x+y) c 1 log log x log(x/t) dt t log(x θ-1/2 /t) = y 2 c 0 log(1 -v) -1 θ -1 2 -v dv + o θ, c ( 
S B y 2 c 0 log(1 -v) -1 θ -1 2 -v dv + o c, θ (1) . (3.8) 
Finally we evaluate S A . Noticing that 3 5 < θ 1, 0 < c < θ-1 2 1 2 and (u) = 1-log u for 1 u 2, Lemme 2.3 gives us immediately We have

S A = y log 1 1 -c + o c, θ (1) 
∂g ∂c (θ; c) = 1 1 -c -2 log(1 -c) -1 θ -1 2 -c , ∂ 2 g ∂c 2 (θ; c) = - 1 1 -c 2 θ -1 2 -c - 1 1 -c -2 log(1 -c) -1 (θ -1 2 -c) 2 •
It's obvious that ∂ 2 g ∂c 2 (θ; c) < 0 for 3 5 < θ 1 and 0 c < θ - This completes the proof of Theorem 1.

For Theorem 2, just as discussed in [START_REF] De La Bretèche | Products of ratios of consecutive integers[END_REF], the lower bound (1.11) is an easy consequence of (3.8) with y = x and 0 < c < 1/2. So we have 

2 3 +

 3 o(1) N log N, and further a brief argument of M.Langevin is presented that log A(N ) {log 4 + o(1)}N.

3 5 < θ 1

 31 and 0 < c < min 5θ-3 2 , θ -1 2 .

  c and d | P (z), we have |A d (b)| = ap + 1 b : x < ap x + y, a < b, ap + 1 ≡ 0 (mod bd) = a<b x<ap x+y ap+1≡0(mod bd) 1.With the notation (2.1) we can write as follows|A d (b)| = bd)=1H(x, y; bd, -1, a).(3.1)

9 b 9 m<x 1 / 2 L

 9912 |{n ∈ A (b) : n is prime}| S(A (b); P, z) + z, we deduce S B b (x+y) c(S(A (b); P, z) + z) {1 + o(1)}S 3 + S 4 + O yL -1 , (3.5) where S 3 := b (x+y) c 2y b log(x θ-1/2 /b) log log x log(x/b) , S 4 := b (x+y) c d<z a<b (a, bd)=1 H(x, y; bd, -1, a) , and we have used the standard estimation m x τ (m) 2 /ϕ(m) L 4 to bound yL -(x+y) c d<x θ-1/2 /(bL B 0 ) τ (bd) ϕ(bd) yL -

1 ) . ( 3 . 7 )

 137 So from (3.5), (3.6) and (3.7) we obtain
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1 2 .

 2 Thus c → ∂g ∂c (θ; c) is decreasing. Since ∂g ∂c (θ; 0) = 1 and lim c→(θ-1 2 )-∂g ∂c (θ; c) = -∞, there is a unique c(θ) ∈ 0, min{ 5θ-3 2 , θ -1 2 } such that ∂g ∂c (θ; c(θ)) c) = g(θ; c(θ)) > g(θ; 0) = 0 for 3 5 < θ 1.By Mathematica 9.0, we can find c(1) ≈ 0.1778 and g(1) = g(1, c(1)) > 0.1063. The assertion (iii) is an immediate consequence of the first two ones thanks to a simple dyadic summation.

  log A(N ) 2N (log N ){g(c) + o(1)}, where g(c) := c -(1 -c)f (c) -c 0 f (u)du, with f (u) := 4 ) ≈ 0.1108.This completes the proof of Theorem 2.
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