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Abstract

Let s(n) be the number of nonzero bits in the binary digital expansion
of the integer n. We study, for fixed k, `,m, the Diophantine system

s(ab) = k, s(a) = `, and s(b) = m,

in odd integer variables a, b. When k = 2 or k = 3, we establish a bound
on ab in terms of ` and m. While such a bound does not exist in the case
of k = 4, we give an upper bound for min{a, b} in terms of ` and m.
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1 Introduction

The multiplicative structure of integers and their digital representation seem to
be unrelated in many aspects. In recent years a number of results have been
obtained with respect to this phenomenon via a study of distribution properties
(distribution mod 1, distribution in arithmetic progressions etc.), see in partic-
ular [12,13] and their extensive lists of references for the distribution properties
of the digits of primes. Only very few results are known that relate in a concrete
way the digital structure of integers to their multiplicative decomposition. This
is mainly due to the difficulty of following the multiple carry propagations in
additions and multiplications. The aim of the present paper is to investigate via
a combinatorial approach the relationship of the binary sum of digits function,
i.e. the bits-counting function, of products of integers to those of its factors.

For a positive integer n, let s(n) denote the number of nonzero digits in the
binary expansion of n (e.g., s(23) = s((10111)2) = 4). We are interested in the
Diophantine system with odd integer variables a, b,

s(ab) = k, s(a) = `, and s(b) = m, (1)
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where k, `,m ≥ 2 are arbitrary but fixed integers. Natural questions are the
following: If k is fixed, are a and b bounded in terms of ` and m? If yes, what
would such bounds look like?

Since s(ab) ≤ s(a)s(b) for all integers a, b (carry propagations can only cancel
out nonzero bits but never create additional ones), it is immediate that we need
k ≤ `m as a necessary condition for the existence of solutions in (1). However,
it is far from clear for which triples (k, `,m) such solutions exist, or even more
generally, whether there are finitely of infinitely many solutions in odd a, b for
the system (1) for a given triple (k, `,m). Part of the motivation to study (1)
also comes from a paper of Hare, Laishram, Stoll [8] where the authors studied
the solution set of the equation s(a2) = s(a) = k, which is a particular instance
of (1). For example, they showed that s(a2) = s(a) = 8 only allows finitely many
odd solutions a, whereas s(a2) = s(a) = 12 has infinitely many odd solutions a.
Note also, that due to a classical result of Stolarsky [18], we have

lim inf
a→∞

s(a2)/s(a) = 0,

so that it may not be too rare to have integers a such that a2 has a much lower
number of nonzero bits than the integer a itself (the results hold true also for
higher powers and in a more general context, see [9, 11, 14–16]). Before going
any further, let us first mention several related results for the nonzero bits of
powers of integers from the literature that we will translate into our language.

A direct elementary calculation shows that s(a2) = 2 implies a = 3. Larger
values already demand more sophisticated tools. Szalay [19] showed that the
only solutions of s(a2) = 3 are a = 2n + 1 (n ≥ 1), a = 7 and a = 23, and his
proof is based on a deep result of Beukers [4] on the generalized Ramanujan–
Nagell equation. Various other results are known for other powers of integers.
We mention in particular the results of Corvaja and Zannier [7], and Bennett,
Bugeaud and Mignotte [2], who showed that for all d there are only finitely
many solutions of s(ad) = 4 and that for all d ≥ 5 the equation s(ad) = 4
has no solution. The proofs are based on the Subspace Theorem, linear forms
in logarithms and Padé approximations. To get an idea about the difficulty of
these innocent looking problems, let us mention that there is so far no method
at disposal to decide whether the only odd solutions to s(a2) = 4 are a =
13, 15, 47, 111. For more on the problem of powers with few nonzero digits,
see [1,3,10] and the references given therein. For a result on the digits of smooth
numbers, see [6]. The occurrence of an additional variable b in (1) adds more
freedom and more possible solutions.

The system (1), for k = 2, can also be seen as an investigation of the digits
of the factors of the famous Fermat numbers 2n + 1. These are exactly those
integers n with s(n) = 2, so writing n = ab and considering (1) leads to the
question of the digital expansion of the factors of Fermat numbers. The problem
to factorize 2n+1 is a notorious difficult and classical problem in computational
number theory (see Brillhart, Lehmer, Selfridge [5]) and the size of the largest
prime factor is of considerable interest in number theory, too (see Stewart [17]).
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The well-known, still widely open question concerning Fermat numbers is to
know whether s(p) = 2 has infinitely many solutions in primes p.

In the present paper we tackle the cases k = 2, 3, 4 for the system (1). In
particular, we show that for k = 2, 3 the system (1) only has finitely many (in
principle, effectively computable) solutions for fixed ` and m, while the situation
changes for k = 4.

The structure of the paper is as follows. In Section 2 we state our main
results. We then proceed directly to the proofs (Sections 3, 4, 5 and 6). Our
combinatorial key lemma appears in Section 3, it will be exploited in several
ways throughout the paper.

2 Main results

Our first main result deals with the case k = 2 for (1).

Theorem 2.1. Let `,m ≥ 2 be integers, and a, b ≥ 1 be odd integers with
s(a) = ` and s(b) = m. If s(ab) = 2, then

ab < 2−4+2`m.

There is an obvious infinite solution set for k = 3 and ` = m = 2 for (1),
namely, a = b = 2c + 1 for c ≥ 1. Avoiding this case, we get an analogous result
to Theorem 2.1 for k = 3.

Theorem 2.2. Let `,m ≥ 2 be integers with max{`,m} ≥ 3. Moreover, let
a, b ≥ 1 be odd integers with s(a) = ` and s(b) = m. If s(ab) = 3, then

ab < 2−13+4`m. (2)

An analogous result to Theorems 2.1 and 2.2 does not hold for the case of
s(ab) = 4. In fact, we have the following:

Theorem 2.3. For all integers L ≥ 1 there exist integers `,m ≥ L such that
there are infinitely many pairs (a, b) of positive odd integers with

s(a) = `, s(b) = m, and s(ab) = 4.

While it is not possible to bound the product ab in this case, we can still
bound min{a, b} in terms of s(a) and s(b).

Theorem 2.4. Let `,m ≥ 3 be integers, and a, b ≥ 1 be odd integers with
s(a) = ` and s(b) = m. If s(ab) = 4, then we have

min{a, b} < 218`m.
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3 Key lemma and proof of Theorem 2.1

The following is our key lemma that we will use throughout the paper.

Lemma 3.1. Let Λ be a nonempty finite set. For each n ∈ Λ, let cn be a
nonnegative integer. Suppose that

s

(∑
n∈Λ

2cn

)
= 1.

Then, for all n,m ∈ Λ, we have

|cn − cm| ≤ max{0,−2 + Card Λ},

where Card denotes the cardinality.

Proof. Suppose Card Λ ≥ 2 and let c′ = minn cn and c′′ = maxn cn. If there
were only one n such that c′ = cn then s

(∑
n∈Λ 2cn

)
≥ 2 since the term 2c

′

contributes to the sum with one bit and all the other terms at least with one
bit, which is impossible. This means that, in order to have s

(∑
n∈Λ 2cn

)
= 1,

the term 2c
′

has to generate a carry that is transported as far as to interact with
2c
′′
. This directly implies the bound (which is sharp in this general setting).

We now turn to the proof of Theorem 2.1. Recall that m, ` ≥ 2. Put

a =

`−1∑
i=0

2ai , b =

m−1∑
j=0

2bj ,

where a`−1 > · · · > a1 > a0 = 0, and bm−1 > · · · > b1 > b0 = 0. By s(ab) = 2,
we see that ab can be written as

ab = 2x + 1,

for some x > 0. Since carry propagation goes from the lower to the higher
significant digits, we observe that a1 = b1 since otherwise we would end up with
at least three binary digits. Put

Λ = {(i, j) | 0 ≤ i ≤ `− 1, 0 ≤ j ≤ m− 1, (i, j) 6= (0, 0)} .

Since Card Λ ≥ 2 we can apply Lemma 3.1 with c(i,j) = ai + bj to get

0 < (a`−1 + bm−1)− (a1 + 0) ≤ −2 + Card Λ = −3 + `m. (3)

Similarly,

0 ≤ (a`−1 + bm−1)− (a1 + a1) ≤ −3 + `m. (4)

Therefore, by (3) and (4),

2a1 ≤ a`−1 + bm−1 ≤ a1 − 3 + `m,
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and so
a1 ≤ −3 + `m.

Using (3) again, we obtain

a`−1 + bm−1 ≤ a1 − 3 + `m ≤ −6 + 2`m.

Since a < 21+a`−1 and b < 21+bm−1 , we deduce that

ab < 22+a`−1+bm−1 ≤ 2−4+2`m,

which finishes the proof of Theorem 2.1.

4 Proof of Theorem 2.2

As before, we put

a =

`−1∑
i=0

2ai , b =

m−1∑
j=0

2bj ,

where a`−1 > · · · > a1 > a0 = 0, and bm−1 > · · · > b1 > b0 = 0. By s(ab) = 3,
the integer ab can be written as

ab = 2x + 2y + 1,

where x > y > 0.
We now distinguish two cases whether a1 6= b1 or a1 = b1. The second case

is more involved since the carry then cancels out one binary digit and we have
to inspect the possible interactions in more detail.

— The case a1 6= b1:

First we consider the case of a1 6= b1. Without loss of generality, we may
assume that a1 < b1. Again, as carries propagate from the lower to the higher
significant digits, we have y = a1. It is easily seen that ` ≥ 3. In fact, if ` = 2,
then we have

2x =
∑

0≤i≤1
1≤j≤m−1

2ai+bj = (1 + 2a1)

 ∑
1≤j≤m−1

2bj

 ,

a contradiction. Suppose now ` ≥ 3. Since

2x =
∑

(i,j)6=(0,0),(1,0)

2ai+bj ,

applying Lemma 3.1 with

Λ = {(i, j) | 0 ≤ i ≤ `− 1, 0 ≤ j ≤ m− 1, (i, j) 6= (0, 0), (1, 0)}
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and c(i,j) = ai + bj , we get

0 < (a`−1 + bm−1)−min{a2, b1} ≤ −2 + Card Λ = −4 + `m.

Thus, we see

2 min{a2, b1} ≤ a2 + b1 ≤ a`−1 + bm−1 ≤ min{a2, b1} − 4 + `m,

and so min{a2, b1} ≤ −4 + `m and

a`−1 + bm−1 ≤ −8 + 2`m.

Thus, we obtain

ab < 22+a`−1+bm−1 ≤ 2−6+2`m < 2−13+4`m.

— The case a1 = b1:

In what follows, we assume that a1 = b1. If a`−1 + bm−1 ≤ a1− 4 + `m, then
we get (2) in the same way as above. Thus, we may assume that

a`−1 + bm−1 ≥ a1 − 3 + `m. (5)

Let
Ξ := {(i, j) | 0 ≤ i ≤ `− 1, 0 ≤ j ≤ m− 1, (i, j) 6= (0, 0)} .

Consider (
`−1∑
i=0

2ai

)m−1∑
j=0

2bj

 = 1 +
∑

(i,j)∈Ξ

2ai+bj = 1 + 2y + 2x. (6)

By ordering all the sums ai + bj in increasing order (there might be multiple
equal terms), we can regroup several (smaller) sums to generate 2x and all the
other ones to generate 2y. More precisely, there exist nonempty subsets Ξ1,Ξ2

of Ξ satisfying the following:

(i) Ξ = Ξ1 ∪ Ξ2 is a disjoint union.

(ii)

2y =
∑

(i,j)∈Ξ1

2ai+bj , 2x =
∑

(i,j)∈Ξ2

2ai+bj .

Note that this decomposition is in general not unique and that Card Ξk ≤
−2 + `m for k = 1, 2. Using Lemma 3.1, we see for k = 1, 2 that

|(ai + bj)− (ai′ + bj′)| ≤ max{0,−2 + Card Ξk} ≤ −4 + `m (7)

for all (i, j), (i′, j′) ∈ Ξk. In particular, (5) implies that

(`− 1,m− 1) ∈ Ξ2, (1, 0), (0, 1) ∈ Ξ1.
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Now we add further assumptions on Ξ1 and Ξ2. In the case of y ≥ a1 +b1, and if
necessary by changing the order of terms in (6), we may assume that (1, 1) ∈ Ξ1.
In either case we therefore have (and note, for further reference)

y < a1 + b1 or (1, 1) ∈ Ξ1. (8)

In what follows, we consider the following three cases:

• Case 1: (i0, 0) ∈ Ξ2 for some 2 ≤ i0 ≤ `− 1.

• Case 2: (0, j0) ∈ Ξ2 for some 2 ≤ j0 ≤ m− 1.

• Case 3: (i, 0) ∈ Ξ1 for all 1 ≤ i ≤ `−1 and (0, j) ∈ Ξ1 for all 1 ≤ j ≤ m−1.

We first consider Case 1. Using (7), we have

ai0 + bm−1 ≤ a`−1 + bm−1 ≤ ai0 − 4 + `m,

and so

−4 + `m ≥ bm−1 ≥ b1 = a1, 2−3+`m > b. (9)

We divide the set A := {ai | 1 ≤ i ≤ `− 1} as follows:

A1 := {ai | ai ≤ a1 − 4 + `m} = {a1 < a2 < · · · < aτ},
A2 := {ai | ai > a1 − 4 + `m} = {a1+τ < · · · < a`−1}.

Note that by this definition of τ we have

aτ − a1 ≤ −4 + `m. (10)

If A2 is empty, then we have τ = `− 1. Thus, we see that

a < 21+a`−1 ≤ 21+a1−4+`m ≤ 2−7+2`m

by (9) and (10), which implies ab < 2−10+3`m < 2−13+4`m.
Suppose now that A2 is not empty. Using (7) again, we see

{(i, 0) | τ + 1 ≤ i ≤ `− 1} ∩ Ξ1 = ∅,

and so
{(i, 0) | τ + 1 ≤ i ≤ `− 1} ⊂ Ξ2.

In particular, again by (7),

a`−1 + bm−1 − a1+τ ≤ −4 + `m. (11)

We claim that

a1+τ − aτ ≤ −3 + `m. (12)
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Suppose on the contrary that a1+τ − aτ ≥ −2 + `m. Let

a′ :=

τ∑
i=0

2ai , a′′ :=

`−1∑
i=τ+1

2ai−a1+τ .

We observe that
ab = a′b+ a′′b2a1+τ

and by (9),
a′b < 21+aτ · 2−3+`m = 2−2+`m+aτ ≤ 2a1+τ .

Therefore, since s(b) ≥ 2, we get s(ab) = s(a′b) + s(a′′b) ≥ 2 + 2 = 4, a
contradiction. Hence, we proved (12).

We combine now (9), (10), (12), and (11) and deduce that

a`−1 + bm−1 = a1 + (aτ − a1) + (aτ+1 − aτ ) + (a`−1 + bm−1 − a1+τ )

≤ (−4 + `m) + (−4 + `m) + (−3 + `m) + (−4 + `m) = −15 + 4`m,

which implies (2).
In the same way as above, we can prove (2) in Case 2.
In what follows, we consider Case 3. We recall (8). First, we suppose y <

a1 + b1. Then we see that for all 1 ≤ i ≤ `−1 and 1 ≤ j ≤ m−1 that (i, j) 6∈ Ξ1

by y < ai + bj . Hence,

Ξ1 = {(i, 0) | 1 ≤ i ≤ `− 1} ∪ {(0, j) | 1 ≤ j ≤ m− 1},
Ξ2 = {(i, j) | 1 ≤ i ≤ `− 1, 1 ≤ j ≤ m− 1}.

In particular, we get

2x =

(
`−1∑
i=1

2ai

)m−1∑
j=1

2bj

 ,

which contradicts (`,m) 6= (2, 2).
Now, suppose (1, 1) ∈ Ξ1. Since (1, 1), (1, 0) ∈ Ξ1, we get by (7) and a1 = b1

that
(a1 + b1)− a1 = a1 ≤ −4 + `m.

On the other hand, (`− 1, 0), (1, 0) ∈ Ξ1 implies

a`−1 ≤ a1 − 4 + `m ≤ −8 + 2`m.

In the same way, by using (0,m − 1), (1, 0) ∈ Ξ1, we get bm−1 ≤ −8 + 2`m.
Hence, we deduce

ab < 2−14+4`m.

This completes the proof of Theorem 2.2. .
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5 Proof of Theorem 2.3

We prove the result via a specific construction (other constructions are possible,
too). Put f(X) := X9 + 1. Observe that

f(X) = (X + 1)(X2 −X + 1)(X6 −X3 + 1)

= (X2 −X + 1)(X7 +X6 −X4 −X3 +X + 1). (13)

For any positive integer n, set

a0 = a0(n) := 22n − 2n + 1,

b0 = b0(n) := 27n + 26n − 24n − 23n + 2n + 1.

By (13) we have a0b0 = 29n + 1. Since s(a0) = n+ 1 and s(b0) = 3n+ 2 we see
that for any positive integer L and n sufficiently large we have

s(a0) ≥ L, s(b0) ≥ L. (14)

We now fix a positive integer n satisfying (14). Put ` := s(a0)(≥ L) and m′ :=
s(b0)(≥ L). For a positive integer N , we set

a(N) := a0, b(N) := b0(2N + 1) = 2Nb0 + b0.

If N is sufficiently large, depending on ` and n, then we get

s(a(N)) = `, s(b(N)) = s(2Nb0) + s(b0) = 2s(b0) = 2m′ =: m.

Moreover,

s(a(N)b(N)) = s((2N + 1)a0b0) = s(2N+9n + 2N + 29n + 1) = 4.

Hence, we obtain Theorem 2.3.

6 Proof of Theorem 2.4

The proof of Theorem 2.4 follows the same line of argument as used in Theo-
rems 2.1 and 2.2. We start off again with putting

a =

`−1∑
i=0

2ai , b =

m−1∑
j=0

2bj ,

where a`−1 > · · · > a1 > a0 = 0, and bm−1 > · · · > b1 > b0 = 0. By s(ab) = 4,
we see that ab can be written as

ab = 2x3 + 2x2 + 2x1 + 1,

where x3 > x2 > x1 > 0. Let

Ξ := {(i, j) | 0 ≤ i ≤ `− 1, 0 ≤ j ≤ m− 1, (i, j) 6= (0, 0)} .
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Similarly as before, and by considering the carry propagation in the multiplica-
tion, we have (

`−1∑
i=0

2ai

)m−1∑
j=0

2bj

 = 2x3 + 2x2 + 2x1 + 1,

and there exist nonempty subsets Ξk (k = 1, 2, 3) of Ξ satisfying the following:

(i) Ξ = Ξ1 ∪ Ξ2 ∪ Ξ3 is a disjoint union.

(ii)

2xk =
∑

(i,j)∈Ξk

2ai+bj

for k = 1, 2, 3.

From Lemma 3.1 we deduce the following two direct facts that we will use in
the sequel.

Lemma 6.1. Let i, i′, j, j′ be indices with 0 ≤ i, i′ ≤ `−1 and 0 ≤ j, j′ ≤ m−1.
If |(ai+ bj)− (ai′ + bj′)| ≥ `m, then (i, j) ∈ Ξ and (i′, j′) ∈ Ξ belong to different
Ξk and Ξk′ .

Lemma 6.2. Let S1 and S2 be subsets of Ξ. Assume that, for all (i, j) ∈ S1

and (i′, j′) ∈ S2, we have

(ai + bj)− (ai′ + bj′) ≥ `m.

Then we have

s

 ∑
(i,j)∈S1∪S2

2ai+bj

 = s

 ∑
(i,j)∈S1

2ai+bj

+ s

 ∑
(i,j)∈S2

2ai+bj

 .

Let

S(a) := {ai | 1 ≤ i ≤ `− 1}, S(b) := {bj | 1 ≤ j ≤ m− 1}.

We shall define the partition

S(a) =

r(a)⋃
i=1

S(a; i), S(b) =

r(b)⋃
j=1

S(b; j)

of S(a) and S(b) into subsets such that any two elements in one subset have
difference at most `m (we will define r(a) and r(b) below). We define κ(a; j) ∈ N
and S(a; j) ⊂ S(a) inductively. First we set κ(a; 1) := 1 and

S(a; 1) := {ai | aκ(a;1) ≤ ai ≤ `m+ aκ(a;1)}.
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Suppose that κ(a; j) and S(a; j) (j = 1, 2, . . . , p) are defined. If

S(a) = ∪1≤j≤p S(a; j),

then the process is terminated and we put r(a) := p. Otherwise, we denote the
minimal element of S(a)\(∪1≤j≤p S(a; j)) by aκ(a;p+1). Let

S(a; p+ 1) := {ai | aκ(a;p+1) ≤ ai ≤ `m+ aκ(a;p+1)}.

The process ends in at most ` steps. In fact, for any 1 ≤ p ≤ r(a) the set
S(a; p) is not empty since aκ(a;p) ∈ S(a; p). Similarly, we define κ(b; j) ∈ N and
S(b; j) ⊂ S(b) for j = 1, 2, . . . , r(b). For all 1 < p ≤ r(a) and 1 < q ≤ r(b), we
have

aκ(a;p) − aκ(a;p−1) > `m, bκ(b;q) − bκ(b;q−1) > `m. (15)

The next lemma shows that the conditions on s(ab) restricts the possible values
of (r(a), r(b)) to a small set.

Lemma 6.3. We have (r(a), r(b)) ∈ {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}.

Proof. Without loss of generality we may assume that r(a) ≤ r(b). By the in-
equalities (15) and by applying Lemma 6.2 for the sets S(b, p), p = 1, 2, . . . , r(b),
we get

4 = s(ab) = 1 + s

 ∑
(i,j)∈Ξ

2ai+bj

 ≥ 1 + r(b),

and so r(b) ≤ 3. In particular, we verified the case of r(a) = 1.
In what follows, we may assume that r(a) ≥ 2. Suppose that r(b) = 3. Set

y1 := aκ(a;1) + bκ(b;1), y2 := aκ(a;1) + bκ(b;2),

y3 := aκ(a;2) + bκ(b;2), y4 := aκ(a;2) + bκ(b;3).

The inequalities (15) imply for any 2 ≤ p ≤ 4 that yp − yp−1 ≥ `m. Thus, we
get by Lemma 6.1 that

4 = s(ab) = 1 + s

 ∑
(i,j)∈Ξ

2ai+bj

 ≥ 1 + 4 = 5,

a contradiction. Hence, we obtain 2 = r(b) ≥ r(a) ≥ 2, and so r(a) = r(b) =
2.

We are now ready to prove Theorem 2.4 by contradiction. Assume that
min{a, b} ≥ 218`m, and so

a`−1 ≥ 18`m, bm−1 ≥ 18`m. (16)

Without loss of generality we may assume that

bm−1 − b1 ≥ a`−1 − a1. (17)

We divide the proof of Theorem 2.4 into three cases that will be dealt with in
the following three subsections:
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• Case 1:

a`−1 − a1 ≤ 4`m, bm−1 − b1 ≤ 13`m. (18)

• Case 2:

a`−1 − a1 ≤ 4`m, bm−1 − b1 > 13`m. (19)

• Case 3:

a`−1 − a1 > 4`m. (20)

6.1 Case 1: a`−1 − a1 ≤ 4`m and bm−1 − b1 ≤ 13`m

Let i, i′ be any indices with 1 ≤ i, i′ ≤ `− 1. Using (16) and (18), we have

ai ≥ a1 ≥ a`−1 − 4`m ≥ 14`m, (21)

ai − ai′ ≥ −4`m. (22)

Similarly, for any 1 ≤ j, j′ ≤ m− 1,

bj ≥ b1 ≥ bm−1 − 13`m ≥ 5`m, (23)

bj − bj′ ≥ −13`m. (24)

Putting

T1 :=

`−1∑
i=1

2ai +

m−1∑
j=1

2bj , T2 :=

`−1∑
i=1

m−1∑
j=1

2ai+bj ,

we see that ab = 1 + T1 + T2. We claim by Lemma 6.2 that 4 = s(ab) =
1 + s(T1) + s(T2). In fact, let 1 ≤ i, i′ ≤ ` − 1 and 1 ≤ j ≤ m − 1. Then,
using (22) and (23), we get

(ai + bj)− ai′ = (ai − ai′) + bj ≥ −4`m+ 5`m = `m.

Similarly, (21) and (24) imply that, for any 1 ≤ i ≤ `− 1 and 1 ≤ j, j′ ≤ m− 1,
(ai + bj)− bj′ ≥ 14`m− 13`m = `m.

Hence, we obtain s(T1) + s(T2) = 3. Observing s(T2) ≥ 2 by ` ≥ 3 and
m ≥ 3, we get s(T1) = 1 and s(T2) = 2. By s(T2) = 2 and `,m ≥ 3, there exists
an integer z ≥ 2 such that T2 = 2a1+b1(1 + 2z). In particular,

`−1∑
i=1

2ai−a1
m−1∑
j=1

2bj−b1 ≡ 1 (mod 4). (25)

On the other hand, using s(T1) = 1 and `,m ≥ 3, we see that a1 = b1 and that
one of the following holds:{

a2 = 1 + a1 and b2 > 1 + a1 = 1 + b1, or

a2 > 1 + a1 and b2 = 1 + a1 = 1 + b1.
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This implies
`−1∑
i=1

2ai−a1
m−1∑
j=1

2bj−b1 ≡ 3 (mod 4),

which contradicts (25). This finishes the proof of Theorem 2.4 for the setting of
the first case.

6.2 Case 2: a`−1 − a1 ≤ 4`m and bm−1 − b1 > 13`m

In the same way as in the previous subsection, we get for any 1 ≤ i, i′ ≤ ` − 1
that

ai ≥ 14`m, ai − ai′ ≥ −4`m. (26)

We claim that there exists 2 ≤ p ≤ r(b) such that

bκ(b;p) − b−1+κ(b;p) > 5`m. (27)

Suppose on the contrary that there does not exist 2 ≤ p ≤ r(b) satisfying (27).
Since r(b) ≤ 3 by Lemma 6.3, we get

bm−1 − b1 ≤ r(b) · `m+ (r(b)− 1) · 5`m
≤ 3`m+ 2 · 5`m = 13`m,

which contradicts (19).
We now take the maximal integer p with 2 ≤ p ≤ r(b) that satisfies (27).

Put

Λ1 := {j ∈ Z | 1 ≤ j ≤ −1 + κ(b; p)},
Λ2 := {j ∈ Z | κ(b; p) ≤ j ≤ m− 1}.

For any j ∈ Λ2 and j′ ∈ Λ1, we have

bj − bj′ ≥ 5`m. (28)

On the other hand, let j, j′ ∈ Λ2. Using r(b) ≤ 3 again, we get

|bj − bj′ | ≤ (r(b)− 1)`m+ (r(b)− 2) · 5`m
≤ 2`m+ 5`m = 7`m,

and so

bj − bj′ ≥ −7`m. (29)

Putting

T1 :=

`−1∑
i=1

2ai +
∑

j∈Λ1∪Λ2

2bj +

`−1∑
i=1

∑
j∈Λ1

2ai+bj ,

T2 :=

`−1∑
i=1

∑
j∈Λ2

2ai+bj ,

13



we have ab = 1 + T1 + T2. We claim by Lemma 6.2 that 4 = s(ab) = 1 +
s(T1) + s(T2). Now we fix any indices 1 ≤ i ≤ ` − 1 and j ∈ Λ2. First, for any
1 ≤ i′ ≤ `− 1, we get by (26) and (28) that

(ai + bj)− ai′ = (ai − ai′) + bj ≥ −4`m+ 5`m = `m.

Similarly, (26) and (29) imply that, for any j′ ∈ Λ1 ∪ Λ2,

(ai + bj)− bj′ ≥ 14`m− 7`m ≥ `m.

Moreover, if 1 ≤ i′ ≤ `− 1 and j′ ∈ Λ1, then (26) and (28) imply that

(ai + bj)− (ai′ + bj′) = (ai − ai′) + (bj − bj′) ≥ `m.

Hence, we obtain s(T1) + s(T2) = 3. On the other hand, we have s(T2) ≥ 2
by ` ≥ 3. Moreover, applying Lemma 6.1 to (0, j) with j ∈ Λ2 and (0, j′) with
j′ ∈ Λ1, we see that s(T1) ≥ 2 by (28), a contradiction. Hence, we verified the
second case.

6.3 Case 3: a`−1 > 4`m

Combining (17) and (20), we have

bm−1 − b1 ≥ a`−1 − a1 > 4`m, (30)

and so r(a) ≥ 2, r(b) ≥ 2. Lemma 6.3 implies r(a) = r(b) = 2. For 1 ≤ p ≤ 2,
we set

Λp := {i | 1 ≤ i ≤ `− 1, ai ∈ S(a; p)},
Θp := {j | 1 ≤ j ≤ m− 1, bj ∈ S(b; p)}.

Observe that, for any i ∈ Λ2 and 0 ≤ i′ ≤ `− 1,

ai − ai′ ≥ −`m. (31)

Similarly, if j ∈ Θ2 and 0 ≤ j′ ≤ m− 1, then

bj − bj′ ≥ −`m. (32)

Moreover, for any i ∈ Λ2 and i′ ∈ Λ1 ∪ {0}, we see that

ai − ai′ ≥ 4`m− `m− `m = 2`m, (33)

by (30). Similarly, for any j ∈ Θ2 and j′ ∈ Θ1 ∪ {0},

bj − bj′ ≥ 2`m. (34)

Putting

T1 :=
∑

i∈Λ1∪Λ2

2ai +
∑

j∈Θ1∪Θ2

2bj +
∑
i∈Λ1

∑
j∈Θ2

2ai+bj +
∑
i∈Λ2

∑
j∈Θ1

2ai+bj ,

T2 :=
∑
i∈Λ2

∑
j∈Θ2

2ai+bj ,
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we see that ab = 1 + T1 + T2. We claim by Lemma 6.2 that 4 = s(ab) =
1 + s(T1) + s(T2). Now we fix any indices i ∈ Λ2 and j ∈ Θ2. First, for any
i′ ∈ Λ ∪ {0} and 0 ≤ j′ ≤ m− 1, we get by (32) and (33) that

(ai + bj)− (ai′ + bj′) ≥ 2`m− `m = `m.

Similarly, for any 0 ≤ i′ ≤ `− 1 and j′ ∈ Θ1 ∪{0}, we see by (31) and (34) that
(ai + bj)− (ai′ + bj′) ≥ `m.

Hence, we obtain s(T1)+s(T2) = 3. On the other hand, applying Lemma 6.1
to (i, 0) with i ∈ Λ2 and (i′, 0) with i′ ∈ Λ1, we get s(T1) ≥ 2 by (33). Conse-
quently, we obtain s(T1) = 2 and s(T2) = 1. In particular, Λ2 = {` − 1} and

Θ2 = {m− 1} by s(T2) = 1. Setting a′ :=
∑`−2
i=1 2ai and b′ :=

∑m−2
j=1 2bj , we see

that

ab = 1 + (a′ + b′ + a′b′)

+ (2a`−1 + 2bm−1 + a′2bm−1 + b′2a`−1) + 2a`−1+bm−1

= 1 + 2x1 + 2x2 + 2x3 , (35)

where 0 < x1 < x2 < x3. Using Lemma 6.2, we shall prove the following:
2x1 = a′ + b′ + a′b′,

2x2 = 2a`−1 + 2bm−1 + a′2bm−1 + b′2a`−1 ,

2x3 = 2a`−1+bm−1 .

(36)

First, we observe that a′, 2a`−1 , and 2a`−1+bm−1 are subsums of 2x1 , 2x2 , and 2x3

in (35), respectively. In fact, for any 1 ≤ i ≤ ` − 2, we get a`−1 − ai ≥ `m
by (33), and (a`−1 + bm−1)−a`−1 = bm−1 ≥ `m by (30). Similarly, b′ and 2bm−1

are subsums of 2x1 and 2x2 in (35), respectively.
For the proof of (36), it suffices to show that a′2bm−1 , b′2a`−1 , and a′b′ are

subsums of 2x2 , 2x2 , and 2x1 in (35), respectively. We fix indices i, i′ with 1 ≤
i, i′ ≤ `− 2. Then we note that (a`−1 + bm−1)− (ai + bm−1) = a`−1 − ai ≥ `m
by (33) and that

(ai + bm−1)− ai′ = bm−1 + (ai − ai′) ≥ 4`m− `m ≥ `m

by (30) and i, i′ ∈ Λ1(= {1, 2, . . . , ` − 2}). Thus, a′2bm−1 is a subsum of 2x2

in (35). In particular, Lemma 6.1 implies for any 1 ≤ i ≤ `− 2 that

ai ≤ `m (37)

because both of 2bm−1 and a′2bm−1 are subsums of 2x2 in (35). Similarly, b′2a`−1

is a subsum of 2x2 in (35) and bj ≤ `m for any 1 ≤ j ≤ m− 2.
Finally, let 1 ≤ i ≤ `− 2 and 1 ≤ j ≤ m− 2. Then (34) and (37) imply that

bm−1 − (ai + bj) = (bm−1 − bj)− ai ≥ 2`m− `m = `m.

Hence, a′b′ is a subsum of 2x1 in (35). This finishes the proof of (36).
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Using (36), we get

1 + 2x1 =

(
1 +

`−2∑
i=1

2ai

)1 +

m−2∑
j=1

2bj

 ≡ 1 (mod 4) (38)

by ` ≥ 3 and m ≥ 3. On the other hand, using (36) again, we observe that

s
(
2a`−1 + 2bm−1 + a′2bm−1 + b′2a`−1

)
= s (2x2) = 1,

which implies that a`−1 = bm−1 because a′ and b′ are even. Moreover,

1 = s(2 + a′ + b′) = s

2 +

`−2∑
i=1

2ai +

m−2∑
j=1

2bj

 .

Thus, one of the following holds:{
a1 = 1 and b1 ≥ 2, or

a1 ≥ 2 and b1 = 1.

Therefore, (
1 +

`−2∑
i=1

2ai

)1 +

m−2∑
j=1

2bj

 ≡ 3 (mod 4),

which contradicts (38). This concludes the proof of Theorem 2.4.
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