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PRODUCTS OF INTEGERS WITH FEW NONZERO DIGITS

Let s(n) be the number of nonzero bits in the binary digital expansion of the integer n. We study, for fixed k, , m, the Diophantine system

and s(b) = m, in odd integer variables a, b. When k = 2 or k = 3, we establish a bound on ab in terms of and m. While such a bound does not exist in the case of k = 4, we give an upper bound for min{a, b} in terms of and m.

Introduction

The multiplicative structure of integers and their digital representation seem to be unrelated in many aspects. In recent years a number of results have been obtained with respect to this phenomenon via a study of distribution properties (distribution mod 1, distribution in arithmetic progressions etc.), see in particular [START_REF] Martin | Propriétés locales des chiffres des nombres premiers[END_REF][START_REF] Mauduit | Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF] and their extensive lists of references for the distribution properties of the digits of primes. Only very few results are known that relate in a concrete way the digital structure of integers to their multiplicative decomposition. This is mainly due to the difficulty of following the multiple carry propagations in 2010 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n: 11A63 (primary), and 11B83 (secondary). K e y w o r d s: sum of digits; digital expansion; factors. The first author is supported by JSPS KAKENHI Grant Number 19K03439. The second author is supported by the French PIA project "Lorraine Université d'Excellence", reference ANR-15-IDEX-04-LUE, and by the projects ANR-18-CE40-0018 (EST) and ANR-20-CE91-0006 (ArithRand).

additions and multiplications. The aim of the present paper is to investigate via a combinatorial approach the relationship of the binary sum of digits function, i.e. the bits-counting function, of products of integers to those of its factors.

For a positive integer n, let s(n) denote the number of nonzero digits in the binary expansion of n (e.g., s(23) = s((10111) 2 ) = 4). We are interested in the Diophantine system with odd integer variables a, b, s(ab) = k, s(a) = , and s(b

) = m, (1) 
where k, , m ≥ 2 are arbitrary but fixed integers. Natural questions are the following: If k is fixed, are a and b bounded in terms of and m? If yes, what would such bounds look like?

Since s(ab) ≤ s(a)s(b) for all integers a, b (carry propagations can only cancel out nonzero bits but never create additional ones), it is immediate that we need k ≤ m as a necessary condition for the existence of solutions in [START_REF] Bennett | Perfect powers with three digits[END_REF]. However, it is far from clear for which triples (k, , m) such solutions exist, or even more generally, whether there are finitely of infinitely many solutions in odd a, b for the system (1) for a given triple (k, , m). Part of the motivation to study (1) also comes from a paper of Hare, Laishram, Stoll [START_REF] Hare | The sum of digits of n and n 2[END_REF] where the authors studied the solution set of the equation s(a 2 ) = s(a) = k, which is a particular instance of (1). For example, they showed that s(a 2 ) = s(a) = 8 only allows finitely many odd solutions a, whereas s(a 2 ) = s(a) = 12 has infinitely many odd solutions a. Note also, that due to a classical result of Stolarsky [START_REF] Stolarsky | The binary digits of a power[END_REF], we have lim inf a→∞ s(a 2 )/s(a) = 0, so that it may not be too rare to have integers a such that a 2 has a much lower number of nonzero bits than the integer a itself (the results holds true also for higher powers and in a more general context, see [START_REF] Hare | Stolarsky's conjecture and the sum of digits of polynomial values[END_REF][START_REF] Madritsch | On simultaneous digital expansions of polynomial values[END_REF][START_REF] Mei | The sum of digits of polynomial values[END_REF][START_REF] Melfi | On simultaneous binary expansions of n and n 2[END_REF][START_REF] Saunders | Sums of digits in q-ary expansions[END_REF]). Before going any further, let us first mention several related results for the nonzero bits of powers of integers from the literature that we will translate into our language.

A direct elementary calculation shows that s(a 2 ) = 2 implies a = 3. Larger values already demand more sophisticated tools. Szalay [START_REF] Szalay | The equations 2 n ±2 m ±2 l = z 2 , Indag[END_REF] showed that the only solutions of s(a 2 ) = 3 are a = 2 n + 1 (n ≥ 1), a = 7 and a = 23, and his proof is based on a deep result of Beukers [START_REF] Beukers | On the generalized Ramanujan-Nagell equation I[END_REF] on the generalized Ramanujan-Nagell equation. Various other results are known for other powers of integers. We mention in particular the results of Corvaja and Zannier [START_REF] Corvaja | Finiteness of odd perfect powers with four nonzero binary digits[END_REF], and Bennett, Bugeaud and Mignotte [START_REF] Bennett | Perfect powers with few binary digits and related Diophantine problems[END_REF], who showed that for all d there are only finitely many solutions of s(a d ) = 4 and that for all d ≥ 5 the equation s(a d ) = 4 has no solution. The proofs are based on the Subspace Theorem, linear forms in logarithms and Padé approximations. To get an idea about the difficulty of these innocent looking problems, let us mention that there is so far no method at disposal to decide whether the only odd solutions of s(a 2 ) = 4 are a = 13, 15, 47, 111. For more on the problem of powers of few nonzero digits, see [START_REF] Bennett | Perfect powers with three digits[END_REF][START_REF] Bennett | Perfect powers with few binary digits and related Diophantine problems II[END_REF][START_REF] Luca | The Diophantine equation x 2 = p a ± p b + 1[END_REF] and the references given therein. For a result on the digits of smooth numbers, see [START_REF] Bugeaud | On the digital representation of smooth numbers[END_REF]. The occurrence of an additional variable b in (1) adds more freedom and more possible solutions.

The system (1), for k = 2, can also be seen as an investigation of the digits of the factors of the famous Fermat numbers 2 n + 1. These are exactly those integers n with s(n) = 2, so writing n = ab and considering (1) leads to the question of the digital expansion of the factors of Fermat numbers. The problem to factorize 2 n + 1 is a notorious difficult and classical problem in computational number theory (see Brillhart, Lehmer, Selfridge [START_REF] Brillhart | New primality criteria and factorizations of 2 m ± 1[END_REF]) and the size of the largest prime factor is of considerable interest in number theory, too (see Stewart [START_REF] Stewart | On divisors of Fermat, Fibonacci, Lucas, and Lehmer numbers[END_REF]). The well-known, still widely open question concerning Fermat numbers is to know whether s(p) = 2 has infinitely many solutions in primes p.

In the present paper we tackle the cases k = 2, 3, 4 for the system (1). In particular, we show that for k = 2, 3 the system (1) only has finitely many (in principle, effectively computable) solutions for fixed and m, while the situation changes for k = 4.

The structure of the paper is as follows. In Section 2 we state our main results. We then proceed directly to the proofs (Sections 3, 4, 5 and 6). Our combinatorial key lemma appears in Section 3, it will be exploited in several ways throughout the paper.

Main results

Our first main result deals with the case k = 2 for (1). (

) 2 
An analogous result to Theorems 2.1 and 2.2 does not hold for the case of s(ab) = 4. In fact, we have the following: While it is not possible to bound the product ab in this case, we can still bound min{a, b} in terms of s(a) and s(b). 

Key lemma and proof of Theorem 2.1

The following is our key lemma that we will use throughout the paper. Lemma 3.1. Let Λ be a nonempty finite set. For each n ∈ Λ, let c n be a nonnegative integer. Suppose that

s n∈Λ 2 cn = 1.
Then, for all n, m ∈ Λ, we have

|c n -c m | ≤ max{0, -2 + Card Λ},
where Card denotes the cardinality. P r o o f. Suppose Card Λ ≥ 2 and let c = min n c n and c = max n c n . If there were only one n such that c = c n then s n∈Λ 2 cn ≥ 2 since the term 2 c contributes to the sum with one bit and all the other terms at least with one bit, which is impossible. This means that, in order to have s n∈Λ 2 cn = 1, the term 2 c has to generate a carry that is transported as far as to interact with 2 c . This directly implies the bound (which is sharp in this general setting).

We now turn to the proof of Theorem 2.1. Recall that m, ≥ 2. Put

a = -1 i=0 2 ai , b = m-1 j=0 2 bj , where a -1 > • • • > a 1 > a 0 = 0, and b m-1 > • • • > b 1 > b 0 = 0. By s(ab) = 2,
we see that ab can be written as

ab = 2 x + 1,
for some x > 0. Since carry propagation goes from the lower to the higher significant digits, we observe that a 1 = b 1 since otherwise we would end up with at least three binary digits. Put

Λ = {(i, j) | 0 ≤ i ≤ -1, 0 ≤ j ≤ m -1, (i, j) = (0, 0)} .
Since Card Λ ≥ 2 we can apply Lemma 3.1 with

c (i,j) = a i + b j to get 0 < (a -1 + b m-1 ) -(a 1 + 0) ≤ -2 + Card Λ = -3 + m. (3) 
Similarly,

0 ≤ (a -1 + b m-1 ) -(a 1 + a 1 ) ≤ -3 + m. (4) 
Therefore, by ( 3) and ( 4),

2a 1 ≤ a -1 + b m-1 ≤ a 1 -3 + m,
and so a 1 ≤ -3 + m.

Using (3) again, we obtain

a -1 + b m-1 ≤ a 1 -3 + m ≤ -6 + 2 m.
Since a < 2 1+a -1 and b < 2 1+bm-1 , we deduce that

ab < 2 2+a -1 +bm-1 ≤ 2 -4+2 m ,
which finishes the proof of Theorem 2.1.

Proof of Theorem 2.2

As before, we put

a = -1 i=0 2 ai , b = m-1 j=0 2 bj , where a -1 > • • • > a 1 > a 0 = 0, and b m-1 > • • • > b 1 > b 0 = 0. By s(ab) = 3,
the integer ab can be written as

ab = 2 x + 2 y + 1,
where x > y > 0.

We now distinguish two cases whether a 1 = b 1 or a 1 = b 1 . The second case is more involved since the carry then cancels out one binary digit and we have to inspect in more detail the possible interactions.

-The case a 1 = b 1 :

First we consider the case of a 1 = b 1 . Without loss of generality, we may assume that a 1 < b 1 . Again, as carries propagate from the lower to the higher significant digits, we have y = a 1 . It is easily seen that ≥ 3. In fact, if = 2, then we have

2 x = 0≤i≤1 1≤j≤m-1 2 ai+bj = (1 + 2 a1 )   1≤j≤m-1 2 bj   , a contradiction. Suppose now ≥ 3. Since 2 x = (i,j) =(0,0),(1,0) 2 ai+bj , applying Lemma 3.1 with Λ = {(i, j) | 0 ≤ i ≤ -1, 0 ≤ j ≤ m -1, (i, j) = (0, 0), (1, 0)} and c (i,j) = a i + b j , we get 0 < (a -1 + b m-1 ) -min{a 2 , b 1 } ≤ -2 + Card Λ = -4 + m.
Thus, we see

2 min{a 2 , b 1 } ≤ a 2 + b 1 ≤ a -1 + b m-1 ≤ min{a 2 , b 1 } -4 + m,
and so min{a 2 , b 1 } ≤ -4 + m and

a -1 + b m-1 ≤ -8 + 2 m.
Thus, we obtain

ab < 2 2+a -1 +bm-1 ≤ 2 -6+2 m < 2 -13+4 m . -The case a 1 = b 1 :
In what follows, we assume that [START_REF] Bennett | Perfect powers with few binary digits and related Diophantine problems[END_REF] in the same way as above. Thus, we may assume that

a 1 = b 1 . If a -1 + b m-1 ≤ a 1 -4 + m, then we get
a -1 + b m-1 ≥ a 1 -3 + m. ( 5 
) Let Ξ := {(i, j) | 0 ≤ i ≤ -1, 0 ≤ j ≤ m -1, (i, j) = (0, 0)} . Consider -1 i=0 2 ai   m-1 j=0 2 bj   = 1 + (i,j)∈Ξ 2 ai+bj = 1 + 2 y + 2 x . (6) 
By ordering all the sums a i + b j in increasing order (there might be multiple equal terms), we can regroup several (smaller) sums to generate 2 x and all the other ones to generate 2 y . More precisely, there exist nonempty subsets Ξ 1 , Ξ 2 of Ξ satisfying the following:

(i) Ξ = Ξ 1 ∪ Ξ 2 is a disjoint union.
(ii)

2 y = (i,j)∈Ξ1 2 ai+bj , 2 x = (i,j)∈Ξ2 2 ai+bj .
Note that this decomposition is in general not unique and that Card Ξ k ≤ -2 + m for k = 1, 2. Using Lemma 3.1, we see for k = 1, 2 that

|(a i + b j ) -(a i + b j )| ≤ max{0, -2 + Card Ξ k } ≤ -4 + m (7) 
for all (i, j), (i , j ) ∈ Ξ k . In particular, (5) implies that

( -1, m -1) ∈ Ξ 2 , (1, 0), (0, 1) ∈ Ξ 1 .
Now we add further assumptions on Ξ 1 and Ξ 2 . In the case of y ≥ a 1 + b 1 , and if necessary by changing the order of terms in (6), we may assume that (1, 1) ∈ Ξ 1 .

In either case we therefore have (and note, for further reference)

y < a 1 + b 1 or (1, 1) ∈ Ξ 1 . (8) 
In what follows, we consider the following three cases:

• Case 1: (i 0 , 0) ∈ Ξ 2 for some 2 ≤ i 0 ≤ -1.
• Case 2: (0, j 0 ) ∈ Ξ 2 for some 2 ≤ j 0 ≤ m -1.

• Case 3: (i, 0) ∈ Ξ 1 for all 1 ≤ i ≤ -1 and (0, j) ∈ Ξ 1 for all 1 ≤ j ≤ m-1.

We first consider Case 1. Using (7), we have

a i0 + b m-1 ≤ a -1 + b m-1 ≤ a i0 -4 + m,
and so

-4 + m ≥ b m-1 ≥ b 1 = a 1 , 2 -3+ m > b. (9) 
We divide the set A := {a i | 1 ≤ i ≤ -1} as follows:

A 1 := {a i | a i ≤ a 1 -4 + m} = {a 1 < a 2 < • • • < a τ }, A 2 := {a i | a i > a 1 -4 + m} = {a 1+τ < • • • < a -1 }.
Note that by [START_REF] Corvaja | Finiteness of odd perfect powers with four nonzero binary digits[END_REF],

a τ -a 1 ≤ -4 + m. ( 10 
)
If A 2 is empty, then we have τ = -1. Thus, we see that

a < 2 1+a -1 ≤ 2 1+a1-4+ m ≤ 2 -7+2 m
by ( 9) and ( 10), which implies ab < 2 -10+3 m < 2 -13+4 m . Suppose now that A 2 is not empty. Using ( 7) again, we see

{(i, 0) | τ + 1 ≤ i ≤ -1} ∩ Ξ 1 = ∅,
and so

{(i, 0) | τ + 1 ≤ i ≤ -1} ⊂ Ξ 2 .
In particular, again by [START_REF] Corvaja | Finiteness of odd perfect powers with four nonzero binary digits[END_REF],

a -1 + b m-1 -a 1+τ ≤ -4 + m. (11) 
We claim that

a 1+τ -a τ ≤ -3 + m. (12) 
Suppose on the contrary that a 1+τ -a τ ≥ -2 + m. Let

a := τ i=0 2 ai , a := -1 i=τ +1
2 ai-a1+τ .

We observe that ab = a b + a b2 a1+τ

and by [START_REF] Hare | Stolarsky's conjecture and the sum of digits of polynomial values[END_REF],

a b < 2 1+aτ • 2 -3+ m = 2 -2+ m+aτ ≤ 2 a1+τ .
Therefore, since s(b) ≥ 2, we get s(ab) = s(a b) + s(a b) ≥ 2 + 2 = 4, a contradiction. Hence, we proved [START_REF] Martin | Propriétés locales des chiffres des nombres premiers[END_REF]. We combine now ( 9), ( 10), [START_REF] Martin | Propriétés locales des chiffres des nombres premiers[END_REF], and [START_REF] Madritsch | On simultaneous digital expansions of polynomial values[END_REF] and deduce that

a -1 + b m-1 = a 1 + (a τ -a 1 ) + (a τ +1 -a τ ) + (a -1 + b m-1 -a 1+τ ) ≤ (-4 + m) + (-4 + m) + (-3 + m) + (-4 + m) = -15 + 4 m, which implies (2).
In the same way as above, we can prove (2) in Case 2.

In what follows, we consider Case 3. We recall [START_REF] Hare | The sum of digits of n and n 2[END_REF]. First, we suppose y < a 1 + b 1 . Then we see that for all 1 ≤ i ≤ -1 and 1 ≤ j ≤ m -1 that (i, j) ∈ Ξ 1 by y < a i + b j . Hence,

Ξ 1 = {(i, 0) | 1 ≤ i ≤ -1} ∪ {(0, j) | 1 ≤ j ≤ m -1}, Ξ 2 = {(i, j) | 1 ≤ i ≤ -1, 1 ≤ j ≤ m -1}.
In particular, we get

2 x = -1 i=1 2 ai   m-1 j=1 2 bj   , which contradicts ( , m) = (2, 2).
Now, suppose (1, 1) ∈ Ξ 1 . Since (1, 1), (1, 0) ∈ Ξ 1 , we get by [START_REF] Corvaja | Finiteness of odd perfect powers with four nonzero binary digits[END_REF] and

a 1 = b 1 that (a 1 + b 1 ) -a 1 = a 1 ≤ -4 + m.
On the other hand, ( -

1, 0), (1, 0) ∈ Ξ 1 implies a -1 ≤ a 1 -4 + m ≤ -8 + 2 m.
In the same way, by using (0, m -1), (1, 0

) ∈ Ξ 1 , we get b m-1 ≤ -8 + 2 m. Hence, we deduce ab < 2 -14+4 m .
This completes the proof of Theorem 2.2. .

Proof of Theorem 2.3

We prove the result via a specific construction (other constructions are possible, too). Put f (X) := X 9 + 1. Observe that

f (X) = (X + 1)(X 2 -X + 1)(X 6 -X 3 + 1) = (X 2 -X + 1)(X 7 + X 6 -X 4 -X 3 + X + 1). ( 13 
)
For any positive integer n, set

a 0 = a 0 (n) := 2 2n -2 n + 1, b 0 = b 0 (n) := 2 7n + 2 6n -2 4n -2 3n + 2 n + 1.
By [START_REF] Mauduit | Sur un problème de Gelfond: la somme des chiffres des nombres premiers[END_REF] we have a 0 b 0 = 2 9n + 1. Since s(a 0 ) = n + 1 and s(b 0 ) = 3n + 2 we see that for any positive integer L and n sufficiently large we have

s(a 0 ) ≥ L, s(b 0 ) ≥ L. ( 14 
)
We now fix a positive integer n satisfying [START_REF] Mei | The sum of digits of polynomial values[END_REF]. Put := s(a 0 )(≥ L) and m := s(b 0 )(≥ L). For a positive integer N , we set

a (N ) := a 0 , b (N ) := b 0 (2 N + 1) = 2 N b 0 + b 0 .
If N is sufficiently large, depending on and n, then we get

s(a (N ) ) = , s(b (N ) ) = s(2 N b 0 ) + s(b 0 ) = 2s(b 0 ) = 2m =: m.
Moreover,

s(a (N ) b (N ) ) = s((2 N + 1)a 0 b 0 ) = s(2 N +9n + 2 N + 2 9n + 1) = 4.
Hence, we obtain Theorem 2.3.

Proof of Theorem 2.4

The proof of Theorem 2.4 follows the same line of argument as used in Theorems 2.1 and 2.2. We start off again with putting

a = -1 i=0 2 ai , b = m-1 j=0 2 bj , where a -1 > • • • > a 1 > a 0 = 0, and b m-1 > • • • > b 1 > b 0 = 0. By s(ab) = 4,
we see that ab can be written as

ab = 2 x3 + 2 x2 + 2 x1 + 1,
where

x 3 > x 2 > x 1 > 0. Let Ξ := {(i, j) | 0 ≤ i ≤ -1, 0 ≤ j ≤ m -1, (i, j) = (0, 0)} .
Similarly as before, and by considering the carry propagation in the multiplication, we have

-1 i=0 2 ai   m-1 j=0 2 bj   = 2 x3 + 2 x2 + 2 x1 + 1,
and there exist nonempty subsets Ξ k (k = 1, 2, 3) of Ξ satisfying the following:

(i) Ξ = Ξ 1 ∪ Ξ 2 ∪ Ξ 3 is a disjoint union. (ii) 2 x k = (i,j)∈Ξ k 2 ai+bj for k = 1, 2 , 3. 
P r o o f. Without loss of generality we may assume that r(a) ≤ r(b). First we consider the case of r(a) = 1. By the inequalities [START_REF] Melfi | On simultaneous binary expansions of n and n 2[END_REF] and by applying Lemma We are now ready to prove Theorem 2.4 by contradiction. Assume that min{a, b} ≥ 2 18 m , and so

a -1 ≥ 18 m, b m-1 ≥ 18 m. (16) 
Without loss of generality we may assume that

b m-1 -b 1 ≥ a -1 -a 1 . (17) 
We divide the proof of Theorem 2.4 into three cases that will be dealt with in the following three subsections:

• Case 1:

a -1 -a 1 ≤ 4 m, b m-1 -b 1 ≤ 13 m. (18) 
• Case 2:

a -1 -a 1 ≤ 4 m, b m-1 -b 1 > 13 m. (19) 
• Case 3: Let i, i be any indices with 1 ≤ i, i ≤ -1. Using ( 16) and ( 18), we have

a -1 -a 1 > 4 m. (20 
a i ≥ a 1 ≥ a -1 -4 m ≥ 14 m, (21) 
a i -a i ≥ -4 m. (22) 
Similarly, for any 1 ≤ j, j ≤ m -1,

b j ≥ b 1 ≥ b m-1 -13 m ≥ 5 m, ( 23 
) b j -b j ≥ -13 m. (24) 
Putting

T 1 := -1 i=1 2 ai + m-1 j=1 2 bj , T 2 := -1 i=1 m-1 j=1
2 ai+bj , we see that ab = 1 + T 1 + T 2 . We claim by Lemma 6.2 that 4 = s(ab) = 1 + s(T 1 ) + s(T 2 ). In fact, let 1 ≤ i, i ≤ -1 and 1 ≤ j ≤ m -1. Then, using ( 22) and ( 23), we get

(a i + b j ) -a i = (a i -a i ) + b j ≥ -4 m + 5 m = m.
Similarly, ( 21) and (24) imply that, for any 1

≤ i ≤ -1 and 1 ≤ j, j ≤ m -1, (a i + b j ) -b j ≥ 14 m -13 m = m.
Hence, we obtain s(T 1 ) + s(T 2 ) = 3. Observing s(T 2 ) ≥ 2 by ≥ 3 and m ≥ 3, we get s(T 1 ) = 1 and s(T 2 ) = 2. By s(T 2 ) = 2 and , m ≥ 3, there exists an integer z ≥ 2 such that T 2 = 2 a1+b1 (1 + 2 z ). In particular, (25)

On the other hand, using s(T 1 ) = 1 and , m ≥ 3, we see that a 1 = b 1 and that one of the following holds:

a 2 = 1 + a 1 and b 2 > 1 + a 1 = 1 + b 1 , or a 2 > 1 + a 1 and b 2 = 1 + a 1 = 1 + b 1 .
This implies

-1 i=1 2 ai-a1 m-1 j=1
2 bj -b1 ≡ 3 (mod 4), which contradicts (25). This finishes the proof of Theorem 2.4 for the setting of the first case.

In the same way as in the previous subsection, we get for any 1 ≤ i, i ≤ -1 that 

a i ≥ 14 m, a i -a i ≥ -4 m. (26) 
m-1 -b 1 ≤ r(b) • m + (r(b) -1) • 5 m ≤ 3 m + 2 • 5 m = 13 m,
which contradicts [START_REF] Szalay | The equations 2 n ±2 m ±2 l = z 2 , Indag[END_REF]. We now take the maximal integer p with 2 ≤ p ≤ r(b) that satisfies (27). Put

Λ 1 := {j ∈ Z | 1 ≤ j ≤ -1 + κ(b; p)}, Λ 2 := {j ∈ Z | κ(b; p) ≤ j ≤ m -1}.
For any j ∈ Λ 2 and j ∈ Λ 1 , we have

b j -b j ≥ 5 m. (28) 
On the other hand, let j, j ∈ Λ 2 . Using r(b) ≤ 3 again, we get

|b j -b j | ≤ (r(b) -1) m + (r(b) -2) • 5 m ≤ 2 m + 5 m = 7 m,
and so

b j -b j ≥ -7 m. (29) 
Putting

T 1 := -1 i=1 2 ai + j∈Λ1∪Λ2 2 bj + -1 i=1 j∈Λ1 2 ai+bj , T 2 := -1 i=1 j∈Λ2
2 ai+bj , we have ab = 1 + T 1 + T 2 . We claim by Lemma 6.2 that 4 = s(ab) = 1 + s(T 1 ) + s(T 2 ). Now we fix any indices 1 ≤ i ≤ -1 and j ∈ Λ 2 . First, for any 1 ≤ i ≤ -1, we get by ( 26) and ( 28) that

(a i + b j ) -a i = (a i -a i ) + b j ≥ -4 m + 5 m = m.
we see that ab = 1 + T 1 + T 2 . We claim by Lemma 6.2 that 4 = s(ab) = 1 + s(T 1 ) + s(T 2 ). Now we fix any indices i ∈ Λ 2 and j ∈ Θ 2 . First, for any i ∈ Λ ∪ {0} and 0 ≤ j ≤ m -1, we get by (32) and ( 33) that

(a i + b j ) -(a i + b j ) ≥ 2 m -m = m.
Similarly, for any 0 ≤ i ≤ -1 and j ∈ Θ 1 ∪ {0}, we see by ( 31) and ( 34) that

(a i + b j ) -(a i + b j ) ≥ m.
Hence, we obtain s(T 1 )+s(T 2 ) = 3. On the other hand, applying Lemma 6.1 to (i, 0) with i ∈ Λ 2 and (i , 0) with i ∈ Λ 1 , we get s(T 1 ) ≥ 2 by (33). Consequently, we obtain s(T 1 ) = 2 and s(T 2 ) = 1. In particular, Λ 2 = { -1} and Θ 2 = {m-1} by s(T 2 ) = 1. Setting a := 

+ (2 a -1 + 2 bm-1 + a 2 bm-1 + b 2 a -1 ) + 2 a -1 +bm-1 = 1 + 2 x1 + 2 x2 + 2 x3 , (35) 
where 0 < x 1 < x 2 < x 3 . Using Lemma 6.2, we shall prove the following:

     2 x1 = a + b + a b , 2 x2 = 2 a -1 + 2 bm-1 + a 2 bm-1 + b 2 a -1 , 2 x3 = 2 a -1 +bm-1 . (36) 
First, we observe that a , 2 a -1 , and 2 a -1 +bm-1 are subsums of 2 x1 , 2 x2 , and 2 x3 in (35), respectively. In fact, for any 1 ≤ i ≤ -2, we get a -1 -a i ≥ m by (33), and (a -1 + b m-1 ) -a -1 = b m-1 ≥ m by (30). Similarly, b and 2 bm-1 are subsums of 2 x1 and 2 x2 in (35), respectively. For the proof of (36), it suffices to show that a 2 bm-1 , b 2 a -1 , and a b are subsums of 2 x2 , 2 x2 , and 2 x1 in (35), respectively. We fix indices i, i with 1 ≤ i, i ≤ -2. Then we note that (a -1 + b m-1 ) -(a i + b m-1 ) = a -1 -a i ≥ m by (33) and that (a i + b m-1 ) -a i = b m-1 + (a i -a i ) ≥ 4 m -m ≥ m by (30) and i, i ∈ Λ 1 (= {1, 2, . . . , -2}). Thus, a 2 bm-1 is a subsum of 2 x2 in (35). In particular, Lemma 6.1 implies for any 1 ≤ i ≤ -2 that 

Theorem 2 . 1 .

 21 Let , m ≥ 2 be integers, and a, b ≥ 1 be odd integers with s(a) = and s(b) = m. If s(ab) = 2, then ab < 2 -4+2 m . There is an obvious infinite solution set for k = 3 and = m = 2 for (1), namely, a = b = 2 c + 1 for c ≥ 1. Avoiding this case, we get an analogous result to Theorem 2.1 for k = 3. Theorem 2.2. Let , m ≥ 2 be integers with max{ , m} ≥ 3. Moreover, let a, b ≥ 1 be odd integers with s(a) = and s(b) = m. If s(ab) = 3, then ab < 2 -13+4 m .

Theorem 2 . 3 .

 23 For all integers L ≥ 1 there exist integers , m ≥ L such that there are infinitely many pairs (a, b) of positive odd integers with s(a) = , s(b) = m, and s(ab) = 4.

Theorem 2 . 4 .

 24 Let , m ≥ 3 be integers, and a, b ≥ 1 be odd integers with s(a) = and s(b) = m. If s(ab) = 4, then we have min{a, b} < 2 18 m .

≥ 1 +

 1 6.2 for (0, b κ(b;p) ) (p = 1, 2, . . . , r(b)), we get 4 = s(ab) = 1 + s r(b), and so r(b) ≤ 3. Next, we consider the case of r(a) ≥ 2. Suppose that r(b) ≥ 3. Set y 1 := a κ(a;1) + b κ(b;1) , y 2 := a κ(a;1) + b κ(b;2) , y 3 := a κ(a;2) + b κ(b;2) , y 4 := a κ(a;2) + b κ(b;3) . The inequalities (15) imply for any 2 ≤ p ≤ 4 that y p -y p-1 ≥ m. Thus, we get by Lemma 6.1 that 4 = s(ab) = 1 + s Hence, we obtain 2 = r(b) ≥ r(a) ≥ 2, and so r(a) = r(b) = 2.

) 6 . 1 .

 61 Case 1: a -1 -a 1 ≤ 4 m and b m-1 -b 1 ≤ 13 m

2

  bj -b1 ≡ 1 (mod 4).

We claim that there exists 2 ≤

 2 p ≤ r(b) such that b κ(b;p) -b -1+κ(b;p) > 5 m. (27) Suppose on the contrary that there does not exist 2 ≤ p ≤ r(b) satisfying (27). Since r(b) ≤ 3 by Lemma 6.3, we get b

- 2 i=1 2 2 j=1 2

 2222 ai and b := mbj , we see that ab = 1 + (a + b + a b )

≥ 3 and m ≥ 3 .

 3 a i ≤ m (37)because both of 2 bm-1 and a 2 bm-1 are subsums of2 x2 in (35). Similarly, b 2 a -1 is a subsum of 2 x2 in (35) and b j ≤ m for any 1 ≤ j ≤ m -2. Finally, let 1 ≤ i ≤ -2 and 1 ≤ j ≤ m -2. Then (34) and (37) imply that b m-1 -(a i + b j ) = (b m-1 -b j ) -a i ≥ 2 m -m = m.Hence, a b is a subsum of 2 x1 in (35). This finishes the proof of (On the other hand, using (36) again, we observe thats 2 a -1 + 2 bm-1 + a 2 bm-1 + b 2 a -1 = s (2 x2 ) = 1, which implies that a -1 = b m-1 becausea and b are even. Moreover, 1 = s(2 + a + b ) = s of the following holds: a 1 = 1 and b 1 ≥ 2, or a 1 ≥ 2 and b 1 = 1. 38). This concludes the proof of Theorem 2.4.
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From Lemma 3.1 we deduce the following two direct facts that we will use in the sequel. Lemma 6.1. Let i, i , j, j be indices with 0 ≤ i, i ≤ -1 and 0 ≤ j, j ≤ m -1. If |(a i + b j ) -(a i + b j )| ≥ m, then (i, j) ∈ Ξ and (i , j ) ∈ Ξ belong to different Ξ k and Ξ k . Lemma 6.2. Let S 1 and S 2 be subsets of Ξ. Assume that, for all (i, j) ∈ S 1 and (i , j ) ∈ S 2 , we have

We shall define the partition Suppose that κ(a; j) and S(a; j) (j = 1, 2, . . . , p) are defined. If S(a) = ∪ 1≤j≤p S(a; j), then the process is terminated and we put r(a) := p. Otherwise, we denote the minimal element of S(a)\(∪ 1≤j≤p S(a; j)) by a κ(a;p+1) . Let

The process ends in at most steps. In fact, for any 1 ≤ p ≤ r(a) the set S(a; p) is not empty since a κ(a;p) ∈ S(a; p). Similarly, we define κ(b; j) ∈ N and S(b; j) ⊂ S(b) for j = 1, 2, . . . , r(b). For all 1 < p ≤ r(a) and 1 < q ≤ r(b), we have

The next lemma shows that the conditions on s(ab) restricts the possible values of (r(a), r(b)) to a small set. Similarly, ( 26) and (29) imply that, for any j

Moreover, if 1 ≤ i ≤ -1 and j ∈ Λ 1 , then ( 26) and (28) imply that

Hence, we obtain s(T 1 ) + s(T 2 ) = 3. On the other hand, we have s(T 2 ) ≥ 2 by ≥ 3. Moreover, applying Lemma 6.1 to (0, j) with j ∈ Λ 2 and (0, j ) with j ∈ Λ 1 , we see that s(T 1 ) ≥ 2 by (28), a contradiction. Hence, we verified the second case. 

and so r(a) ≥ 2, r(b) ≥ 2. Lemma 6.3 implies r(a) = r(b) = 2. For 1 ≤ p ≤ 2, we set

Observe that, for any i ∈ Λ 2 and 0 ≤ i ≤ -1,

Similarly, if j ∈ Θ 2 and 0 ≤ j ≤ m -1, then

Moreover, for any i ∈ Λ 2 and i ∈ Λ 1 ∪ {0}, we see that