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Abstract
We introduce a family of block-additive automatic sequences, that are obtained
by allocating a weight to each couple of digits, and defining the nth term of the
sequence as being the total weight of the integer n written in base k. Under
an additional difference condition on the weight function, these sequences can
be interpreted as generalized Golay–Shapiro sequences, and we prove that they
have the same correlations of order 2 as sequences of symbols chosen uniformly
and independently at random. The speed of convergence is very fast and is
independent of the prime factor decomposition of k. This extends recent work
of Tahay. The proof relies on direct observations about base-k representations
of integers and combinatorial considerations. We also provide extensions of our
results to higher-dimensional block-additive sequences.

1 Introduction

A k-automatic sequence on a finite set G is a sequence u ∈ GN that can be com-
puted by a deterministic finite automaton with output (DFAO) in the following
way: the n-th term of the sequence is a function of the state reached by the
automaton after reading the representation of the integer n in base k. Alterna-
tively, a k-automatic sequence can also be defined as a sequence generated by
a k-uniform morphism. We refer to the book of Allouche and Shallit [4] for a
complete survey on automatic sequences.

Although automatic sequences are deterministic sequences having a very
simple algorithmic description, some of them exhibit a complex behaviour. In
this work, we are interested in exploring “how random” an automatic sequence

1



can look like. There are many different ways to measure the “random aspect”
of a deterministic sequence. Here, we will study families of automatic sequences
having the same discrete correlations of order 2 as sequences of symbols chosen
uniformly and independently at random. We also provide explicit estimates for
the speed of convergence.

The sequences we will consider are block-additive sequences. They are ob-
tained by allocating a weight to each couple of digits, and defining the nth term
of the sequence as being the total weight of the integer n written in base k.
This weight is obtained by sliding the representation of the integer n in base k
with a window of length 2 (or more generally, of length L ≥ 1), and summing
all the weights read. The name block-additive was already used in previous ar-
ticles [7, 13]. With the terminology of Cateland [6], these sequences are digital
sequences. In the special case where the weight matrix is a difference matrix, we
will say that the automatic sequence obtained is a generalized Golay–Shapiro
sequence, and prove that it has the same correlations of order 2 as a sequence
of symbols chosen uniformly and independently at random.1

As we will comment on further in the article, our terminology of general-
ized Golay–Shapiro sequences is consistent with the definitions of [9, 15], and
also intersects previous notions of generalized Golay–Shapiro sequences, such
as the one of Queffélec [14] (see [9] for further references). For other general-
izations of the Golay–Shapiro sequence that we will not investigate here, see
Allouche and Liardet [2], Allouche and Shallit [3], and Mauduit and Rivat [12].
More specifically, we will not treat sequences such as those proposed by Mendès
France that count 1w1 in base 2 where w is an arbitrary finite non-empty binary
string (these sequences are investigated in [2, Section 3]). Some alternative d-
dimensional extensions of the Golay–Shapiro sequence are also proposed in [8]
and [5].

As in the articles of Grant et al. [9] and Tahay [15], we study the correlations
of order 2 of generalized Golay–Shapiro sequences, but rather than making use
of exponential sums, we here only employ direct arguments relying on the base-
k decomposition of the integers n and n + r, for a fixed r. This approach
highlights the combinatorial role played by the difference condition defining a
difference matrix, and allows to obtain more precise estimates on the correlations
of order 2. Furthermore, in addition to studying the asymptotic proportion of
integers n satisfying un = un+r, we provide results on the proportion of integers
for which (un, un+r) = (i, j), for any possible value of the couple (i, j) ∈ G2.
Precisely, we prove that the limit is equal to 1/|G|2 for all (i, j) ∈ G2 and for
any r ∈ N \ {0}, as for an i.i.d. sequence of symbols uniformly drawn in G.
After considering the one-dimensional case, we also mention extensions of our
results to higher-dimensional block-additive sequences.

1Golay–Shapiro sequences are often referred to as Rudin–Shapiro sequences. In our paper,
we prefer to give credit to the historical timeline of discovery as given by Allouche [1, Remark
1].
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2 Definitions and presentation of the results

In all the article, we denote by N the set of non-negative integers, and for an
integer n ≥ 2, we use the notation Zn = Z/nZ.

2.1 Block-additive sequences of rank 2

For k ∈ N \ {0}, we define Σk = {0, . . . , k − 1}, and we denote by [n]k the
representation of the integer n ∈ N in base k. By definition, it is the unique
sequence x = (xi)i∈N ∈ ΣN

k containing finitely many non-zero values, such that

n =
∑
i∈N

xik
i.

We will write
[n]k = x0 x1 x2 x3 · · · .

We also introduce the notation `n = min{i ∈ N : xj = 0 for all j > i}, and we
define

σk(n) =
∑
i∈N

xi =

`n∑
i=0

xi,

the k-ary sum-of-digits function.

Definition 1. Let (G,+) be a finite abelian group, let k ∈ N \ {0}, and let
f : Σk ×Σk → G be a function satisfying f(0, 0) = 0. We say that the sequence
u = (un)n∈N ∈ GN is a block-additive sequence (of rank 2) in base k of weight
function (or matrix) f if for any integer n ∈ N, we have

un =
∑
i∈N

f(xi, xi+1),

where [n]k = x.

Example 1 (Prouhet–Thue–Morse sequence). The Prouhet–Thue–Morse se-
quence (or Thue–Morse sequence) is given by

un ≡ σ2(n) (mod 2), n ∈ N.

It is a block-additive sequence in base k = 2, with G = Z2, and weight function
f : Σ2 × Σ2 → G defined by f(i, j) = i, for any (i, j) ∈ G2. The first terms
are given by u = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . .). We represent below a
DFAO computing this sequence.

q0|0start q1|1

0

1

1

0
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Example 2 (Classical Golay–Shapiro sequence). The (classical) Golay–Shapiro
sequence (or Rudin–Shapiro sequence) on G = Z2 can be defined as the block-
additive sequence in base k = 2 of weight function f : Σ2 × Σ2 → G given by
f(i, j) = ij, for any (i, j) ∈ G2. In other words, un gives the parity count of the
number of (possibly overlapping) occurrences of the block 11 in the binary ex-
pansion of n. The first terms are given by u = (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, . . .).

The following proposition is straightforward. For the sake of completeness,
we include the proof.

Proposition 1. If a sequence is block-additive in base k, then it is a k-automatic
sequence.

Proof. Let Q = G× Σk, q0 = (0, 0), let δ : Q× Σk → Q be defined by

δ((g, i), j) = (g + f(j, i), j),

and let τ : Q → G be defined by τ(g, i) = g. The DFAO (Q,Σk, δ, q0, τ)
computes the block-additive sequence u = (un)n∈N of weight function f , by
reading the representation of the integer n in base k starting with the most
significant digit, and using the output map τ .

Remark 1. Alternatively, a block-additive sequence has the following morphic
description. Again, let Q = G×Σk and q0 = (0, 0), and let φ : Q∗ → Q∗ be the
k-uniform morphism satisfying, for a state s = (g, i) ∈ Q, φ(s) = s0 · · · sk−1,
with sj = (g + f(j, i), j). Consider the fixed point φω(q0) ∈ QN. Then, the
letter-to-letter projection of φω(q0) by τ is the block-additive sequence of the
function f .

Example 3. We represent below the DFAO given by the proof of Proposition 1
for the (classical) Golay–Shapiro sequence.

(0, 0)|0start (0, 1)|0

(1, 1)|1(1, 0)|1

0

0

1

1

0

1

1

0
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With the notations q0 = (0, 0), q1 = (0, 1), q2 = (1, 0), q3 = (1, 1), the 2-uniform
morphism described above is here given by

φ(q0) = q0q1, φ(q1) = q0q2, φ(q2) = q3q1, φ(q3) = q3q2,

with τ(q0) = τ(q1) = 0, τ(q2) = τ(q3) = 1.

2.2 Difference matrices and generalized Golay–Shapiro se-
quences

Definition 2. Let (G,+) be a finite abelian group, and let k ∈ N \ {0}. A
difference matrix of size k is a matrix D = (d(i, j))(i,j)∈Σk×Σk

∈ GΣk×Σk satis-
fying the following difference condition: for every (i, j) ∈ Σk × Σk with i 6= j,
and every g ∈ G,

card
{
h ∈ Σk : d(i, h)− d(j, h) = g

}
=

k

|G|
.

In other words, D is a difference matrix if for any (i, j) ∈ Σk×Σk with i 6= j,
the set {d(i, h) − d(j, h) : h ∈ Σk} contains every element of G equally often.
Note that the difference condition requires the integer k to be a multiple of |G|.
We introduce the notation π = k/|G|, and thus we have π ∈ N\{0}. We denote
by D(G, k) the set of difference matrices of size k over the group G.

Definition 3. A block-additive sequence is a generalized Golay–Shapiro se-
quence if its weight function f is such that the matrix (f(i, j))(i,j)∈Σk×Σk

∈
GΣk×Σk is a difference matrix.

Example 4. 1. The Thue–Morse sequence is not a generalized Golay–Shapiro

sequence, since its weight function is given by the matrix

(
0 0
1 1

)
, which

does not belong to D(Z2, 2).

2. The classical Golay–Shapiro sequence is a generalized Golay–Shapiro se-

quence, since its weight function is given by the matrix

(
0 0
0 1

)
, which

belongs to D(Z2, 2).

Let us present different ways to construct difference matrices, and thus to
define generalized Golay–Shapiro sequences.

Example 5. Let p be a prime number, and let G = Zp. Then, the matrix D =
(d(i, j))(i,j)∈Σp×Σp

defined by d(i, j) ≡ ij (mod p) is a difference matrix. The
block-additive sequences thus obtained correspond to Queffélec’s generalization
of the Golay–Shapiro sequence [14, Section 4]. By definition, if [n]p = x, we
have un ≡

∑
i∈N xixi+1 (mod p).

• As a particular case, for p = 2, the difference matrix is given by

(
0 0
0 1

)
,

and we recover the classical Golay–Shapiro sequence.
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• For p = 3, the difference matrix is given by

0 0 0
0 1 2
0 2 1

.

Example 6. For k = 3, another example of a difference matrix on G = Z3 is

given by

0 1 1
1 0 1
1 1 0

. In the sequence obtained, the term un counts (modulo

3) the number of blocks of distinct digits in the base-3 decomposition of the
integer n.

It can be seen that for an even integer k ≥ 4, there exists no difference matrix
of size k on G = Zk. Indeed, if k is even, we have

∑k−1
i=0 i ≡ k/2 (mod k). But if∑k−1

h=0 (d(i1, h)− d(i2, h)) ≡ k/2 (mod k) and
∑k−1
h=0 (d(i2, h)− d(i3, h)) ≡ k/2

(mod k), then
∑k−1
h=0 (d(i1, h)− d(i3, h)) ≡ 0 (mod k), so that we obtain a con-

tradiction.
However, the following theorem shows the existence of difference matrices

at least for all powers of prime numbers. We include the proof for the sake of
clearness.

Theorem 1. [10, Theorem 6.6] For any prime number p and any integers
m,n ∈ N \ {0} such that m ≤ n, there exists a finite abelian group G of order
pm such that the set D(G, pn) is non-empty.

Proof. Let H = Fpm , and G = Fpn be the finite fields with respectively pm

and pn elements. We can represent the elements of G by polynomials of the
form β0 +β1x+ · · ·+βn−1x

n−1, with β0, . . . , βn−1 ∈ Zp. The group (H,+) can
be seen as the subgroup of (G,+) made of the polynomials of degrees smaller
or equal to m. Let ϕ : G → H be the function which maps the element
β0 + β1x+ · · ·+ βn−1x

n−1 to the element β0 + β1x+ · · ·+ βm−1x
m−1, and for

two polynomials (α(x), β(x)) ∈ G2, let d(α(x), β(x)) = ϕ(α(x) · β(x)), where ·
denotes the multiplication in the field G. Then, one can check that the matrix
D = (d(i, j))(i,j)∈Σpn×Σpn

(we identify Σpn with G, using any bijection) is a
difference matrix on (G,+) ∼= ((Zp)n,+).

Note that there exist difference matrices which do not belong to the families
described in the proof of Theorem 1 (see [11, p.127] and [10, Table 6.37]). For
example, the matrix 

0 0 0 0 0 0
0 0 1 1 2 2
0 1 0 2 1 2
0 1 2 0 2 1
0 2 1 2 0 1
0 2 2 1 1 0


is an element of D(Z3, 6) that is not covered by Theorem 1.

The enumeration and the classification of difference matrices is a complex
task. We refer to [10, 11] for an indepth study of these questions and various
examples of difference matrices.
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2.3 Main results

We can now state our main results, in the one-dimensional case. We use the
notation logk(N) for the logarithm of N to base k.

Theorem 2. If u is a generalized Golay–Shapiro sequence, then for any r ∈
N \ {0}, g ∈ G, and N ∈ N,∣∣∣ 1

N
card

{
n ∈ J0, N − 1K : un+r − un = g

}
− 1

|G|

∣∣∣ ≤ r k
1 + logk(N)

N
.

The limit 1/|G| is thus the same as for an i.i.d. sequence of symbols uniformly
distributed in G. But the convergence is here much faster than in the random
case, since the error term is of order log(N)/N , while for i.i.d. sequences, the
central limit theorem tells us that it is of order 1/

√
N .

Remark 2. For k prime or a prime power, the bound in Theorem 2 is the same
as the one obtained by Tahay [15, Theorem 4]. This is natural since the un-
derlying objects (generalizations of the Golay–Shapiro sequence) are the same.
However, our generalization of the Golay–Shapiro sequence to other composed
k is different from Tahay [15]: it is directly based on one single difference ma-
trix of size k, while Tahay’s construction uses the prime factor decomposition
of k and, as a side effect, the error term in his result is N−1/d where d denotes
the number of different primes appearing in the prime factor decomposition of
k [15, Theorem 5]. The size of our error term for our generalized objects is
log(N)/N , as N →∞, which is much smaller for fixed r and is independent of
the arithmetic structure of k.

Theorem 3. If u is a generalized Golay–Shapiro sequence, then for any r ∈
N \ {0}, and any (i, j) ∈ G2,

lim
N→∞

1

N
card

{
n ∈ J0, N − 1K : (un, un+r) = (i, j)

}
=

1

|G|2
.

Remark 3. Tahay obtained several results on the mean value of the discrete
correlation coefficients along the integers. The discrete correlation coefficient
equals 0 if two symbols are identical, and 1 otherwise [15, Definition 1]. Theo-
rem 3 gives a local result that is uniform in the values of the two symbols.

3 Discrete correlations of order 2 of generalized
Golay–Shapiro sequences

The aim of this section is to prove Theorem 2 and Theorem 3. Namely, we prove
that generalized Golay–Shapiro sequences have the same discrete correlations
of order 2 as i.i.d. sequences of symbols, and give a tight estimate of the speed
of convergence.
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3.1 Frequencies of letters in generalized Golay–Shapiro se-
quences

In this section, we present some first general results on generalized Golay–
Shapiro sequences, that we will need afterwards.

Lemma 1. A generalized Golay–Shapiro sequence is a primitive morphic se-
quence.

Proof. As in the proof of Proposition 1, let Q = G×Σk, and let M be the matrix
indexed by Q and with values in {0, 1}, defined by M((g, i), (g′, i′)) = 1 if and
only if there exists j ∈ Σk such that (g′, i′) = (g + f(j, i), j). Equivalently,
M((g, i), (g′, i′)) is given by the number of j ∈ Σk such that (g′, i′) = (g +
f(j, i), j). This matrix thus describes the allowed transitions in the DFAO
given in the proof of Proposition 1, or equivalently, the incidence matrix of
the k-uniform morphism defined in Remark 1. We prove that all the entries of
M2|G|+3 are positive (the bound might be not optimal), where we recall that the
entries of Mn correspond to the number of paths (i.e. consecutive transitions
in the DFAO) of length n from one state to another.

Let s1 = (g1, i1) and s2 = (g2, i2) be two elements of Q. By the difference
condition, there exists at least one h ∈ G such that f(1, h) − f(0, h) = g2 −
g1 − f(0, 1) − f(0, i1) − f(i2, 0). From the state i1, let us read in the DFAO
the sequence (0, h, 0, h, 0, h, . . . , 0, h, 0, h, 1, 0, i2), made of |G| times the pattern
(0, h), followed by the pattern (1, 0, i2). Then, the new state will be s2, since

f(0, i1) + f(h, 0) + f(0, h) + f(h, 0) + · · ·+ f(0, h) + f(h, 0) + f(1, h) + f(0, 1) + f(i2, 0)

= |G|f(h, 0) + (|G| − 1)f(0, h) + f(1, h) + f(0, 1) + f(0, i1) + f(i2, 0)

= f(1, h)− f(0, h) + f(0, 1) + f(0, s1) + f(s2, 0) = g2 − g1.

The conclusion follows.

Proposition 2. If u is a generalized Golay–Shapiro sequence, then any pattern
has a frequency in the sequence u. Furthermore, the frequency of each element
of G (corresponding to patterns of length 1) is equal to 1/|G|.

Proof. The existence of the frequencies for all patterns follows from the fact
that the sequence φω(q0) ∈ QN is a primitive morphic sequence, where φ is the
morphism given in Remark 1. Furthermore, each element of Q has exactly k
preimages, since to state s = (g, j) ∈ Q, one can arrive from the state (g −
f(j, i), i), for any i ∈ G (by reading j). The vector of frequencies being the
unique eigenvector to the eigenvalue k, all the elements of Q have the same
frequency in φω(q0), and consequently, each element of G has the same frequency
in the image of φω(q0) by τ .

3.2 Fibre of an integer

We now introduce the notion of fibre of an integer, that will be useful in our
context to study correlations of order 2 of generalized Golay–Shapiro sequences.
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Let r ∈ N \ {0} be a fixed integer. For n ∈ N, let us introduce the represen-
tations of n and n+ r in base k as follows

[n]k = x,

[n+ r]k = y.

We define the integer

cn = min{i ∈ N : xj = yj for all j > i}.

Note that cn depends on r, but that for the sake of shortness, we do not mention
this dependence in the notation. The integer cn measures how far the carry
propagates when adding r to n. By definition, xcn 6= ycn and for every j > cn,
we have xj = yj . We illustrate the definition of cn below:

[n]k = x0 x1 · · · xcn xcn+1 xcn+2 · · ·
[n+ r]k = y0 y1 · · · ycn xcn+1 xcn+2 · · · (1)

We define the fibre of n as the set

Fr(n) = {m ∈ N : x′ = [m]k satisfies x′i = xi for every i ∈ N \ {cn + 1}}
= {n+ (α− xcn+1) kcn+1 : α ∈ Σk}.

Thus, we have

Fr(n) = { x0 x1 · · · xcn 0 xcn+2 xcn+3 · · · ,
x0 x1 · · · xcn 1 xcn+2 xcn+3 · · · ,
x0 x1 · · · xcn 2 xcn+2 xcn+3 · · · ,

...
x0 x1 · · · xcn k − 1 xcn+2 xcn+3 · · · }.

Note that if m ∈ Fr(n), then cm = cn, so that

m ∈ Fr(n) ⇐⇒ n ∈ Fr(m).

Furthermore, let m ∈ Fr(n), and let x′ = [m]k, y′ = [m + r]k. Then by
definition, y′cn+1 = x′cn+1, and for every i ∈ N \ {cn + 1}, we have y′i = yi, as
represented below:

[m]k = x′ = x0 x1 · · · xcn x′cn+1 xcn+2 · · ·
[m+ r]k = y′ = y0 y1 · · · ycn x′cn+1 xcn+2 · · · (2)

Let u be a block-additive sequence in base k of weight f , and recall the
notation π = k/|G|. For n ∈ N, we also introduce the notation ∆r(n) =
un+r − un.

Proposition 3. If u is a generalized Golay–Shapiro sequence, then for any
n ∈ N, and any g ∈ G, we have

card{m ∈ Fr(n) : ∆r(m) = g} = π.

9



Proof. By definition of a block-additive sequence, with the notations of Equa-
tion (1), we have

∆r(n) =
∑
i∈N

f(yi, yi+1)−
∑
i∈N

f(xi, xi+1)

=

cn∑
i=0

(
f(yi, yi+1)− f(xi, xi+1)

)
.

If m ∈ Fr(n), with the notations of Equation (2), we have

∆r(m) =

cn∑
i=0

(f(y′i, y
′
i+1)− f(x′i, x

′
i+1)),

so that

∆r(m)−∆r(n) =
(
f(y′cn , y

′
cn+1)− f(x′cn , x

′
cn+1)

)
−
(
f(ycn , ycn+1)− f(xcn , xcn+1)

)
=
(
f(ycn , x

′
cn+1)− f(xcn , x

′
cn+1)

)
−
(
f(ycn , xcn+1)− f(xcn , xcn+1)

)
.

It follows that for all g ∈ G,

card{m ∈ Fr(n) : ∆r(m)−∆r(n) = g} = card
{
α ∈ Σk : f(ycn , α)−f(xcn , α)−An = g

}
,

with An = f(ycn , xcn+1)− f(xcn , xcn+1).
Consequently, if u is a generalized Golay–Shapiro sequence, then for any

n ∈ N, and any g ∈ G, we have

card{m ∈ Fr(n) : ∆r(m)−∆r(n) = g} = π,

and Proposition 3 follows.

3.3 Proof of Theorem 2

Using the notion of fibre developed above, we obtain the following proposition,

from which Theorem 2 directly follows, since
∑
g∈G card

{
n ∈ J0, N − 1K :

∆r(n) = g
}

= N .

Proposition 4. If u is a generalized Golay–Shapiro sequence, then for any
g ∈ G,

card
{
n ∈ J0, N − 1K : ∆r(n) = g

}
≥ πN

k
− π r k − π r σk(N)

≥ N

|G|
− π r k(1 + logk(N)).
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Proof. Let N ∈ N \ {0}, and let a = [N ]k. We determine the conditions under
which an integer n ∈ J0, N −1K satisfies Fr(n) ⊂ J0, N −1K. Recall the notation
`N = min{i ∈ N : ai = 0 for all j > i}. We can thus write

[N ]k = a0 a1 · · · a`N−1 a`N 0 0 · · ·

• If n = a′`N k
`N + αk`N−1 + γ, for some α ≤ k − 1, a′`N < a`N , and

γ < k`N−1 − r, then cn ≤ `N − 2, so that Fr(n) ⊂ J0, N − 1K.

[n]k = x0 x1 · · · x`N−2︸ ︷︷ ︸
γ<k`N−1−r

α a′`N︸︷︷︸
<a`N

0 0 · · ·

[n+ r]k = x′0 x
′
1 · · · x′`N−2 α a′`N 0 0 · · ·

• If n = a`N k
`N + a′`N−1 k

`N−1 +αk`N−2 + γ, for some α ≤ k− 1, a′`N−1 <

a`N−1, and γ < k`N−2 − r, then cn ≤ `N − 3, so that Fr(n) ⊂ J0, N − 1K.

[n]k = x0 x1 · · · x`N−3︸ ︷︷ ︸
γ<k`N−2−r

α a′`N−1︸ ︷︷ ︸
<a`N−1

a`N 0 0 · · ·

[n+ r]k = x′0 x
′
1 · · · x′`N−3 α a′`N−1 a`N 0 0 · · ·

• If n = a`N k
`N + a`N−1 k

`N−1 + a′`N−2 k
`N−2 + αk`N−3 + γ, for some

α ≤ k − 1, a′`N−2 < a`N−2, and γ < k`N−3 − r, then cn ≤ `N − 4, so that
Fr(n) ⊂ J0, NK.

[n]k = x0 x1 · · · x`N−4︸ ︷︷ ︸
γ<k`N−3−r

α a′`N−2︸ ︷︷ ︸
<a`N−2

a`N−1 a`N 0 0 · · ·

[n+ r]k = x′0 x
′
1 · · · x′`N−4 α a′`N−2 a`N−1 a`N 0 0 · · ·

• And so on, the last condition that will be of interest for us being that if
n = a`N k

`N +a`N−1 k
`N−1 + . . .+a`r+3 k

`r+3 +a′`r+2 k
`r+2 +αk`r+1 + γ,

for some α ≤ k − 1, a′`r+2 < a`r+2, and γ < k`r+1 − r, then cn ≤ `r, so
that Fr(n) ⊂ J0, N − 1K.

The number of different integers n ∈ J0, N−1K satisfying Fr(n) ⊂ J0, N−1K
that we have exhibited above is equal to

a`N k(k
`N−1 − r) + a`N−1k(k

`N−2 − r) + a`N−2k(k
`N−3 − r) + . . .+ a`r+2k(k

`r+1 − r)

= N − (a`r+1k
`r+1 + a`rk

`r + . . .+ a1k + a0)− r k (a`N + a`N−1 + a`N−2 + . . .+ a`r+2)

> N − r k2 − r k σk(N).

For the last inequality, observe that a`r+1k
`r+1 + a`rk

`r + . . . + a1k + a0 <
k`r+2 ≤ r k2. Proposition 4 then directly follows from Proposition 3.
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3.4 Correlation matrix

In order to prove Theorem 3, we first introduce the notion of correlation matrix,
and formulate the previous results using this terminology.

Let u ∈ GN be a fixed sequence. For r ∈ N \ {0}, (i, j) ∈ G2 and n ∈ N, we
define

δri,j(n) =

{
1 if (un, un+r) = (i, j),

0 otherwise;

and

Cri,j(N) =
1

N

N−1∑
n=0

δri,j(n).

As a consequence of Proposition 2, if u is a generalized Golay–Shapiro se-
quence, then for any r ∈ N\{0} and (i, j) ∈ G2, the sequence Cri,j(N) converges
when N goes to infinity, so that we can also introduce

Cri,j = lim
N→∞

Cri,j(N).

We define the correlation matrix as the matrix Cr = (Cri,j)(i,j)∈G2 of size |G| ×
|G|. By Proposition 2, for any i ∈ G, the asymptotic frequency of the symbol i
is equal to ∑

j∈G
Cri,j =

1

|G|
.

As a consequence of Proposition 4, we obtain the following results.

Corollary 1. If u is a generalized Golay–Shapiro sequence, then for any (i, j) ∈
G2, ∑

`∈G

Cri−`,j−`(N) ≥ 1

|G|
− π r k 1 + logk(N)

N
.

Corollary 2. If u is a generalized Golay–Shapiro sequence, then for any (i, j) ∈
G2, ∑

`∈G

Cri−`,j−` =
1

|G|
.

Proof. It is a consequence from Corollary 1 and the observation that∑
(i,j)∈G2

Cri,j = 1.

Note that this result refines the estimates of Tahay concerning the discrete
correlation coefficient (cf. Remark 3) that detects whether two symbols differ
or not. In our language, he proved that∑

i∈G
Cri,i =

1

|G|
.

12



3.5 Proof of Theorem 3

With the notations above, Theorem 3 is equivalent to the next proposition, that
we now prove. Note that this result is stronger than Corollary 2 as it gives the
values of the individual terms in the sum.

Proposition 5. If u is a generalized Golay–Shapiro sequence, then for any
(i, j) ∈ G2,

Cri,j =
1

|G|2
.

Proof. Let us fix some α ∈ Σk and consider the integers n ∈ J0, k2N+1− 1K that
are such that the base-k decomposition x = [n]k of n satisfies xN+1 = α. In
other words, n = m1 k

N+1 +αkN +m2, for some integers m1,m2 ∈ J0, kN − 1K.
Assuming furthermore that m2 < kN − r, we will have cn < N , so that

(un, un+r) = (ukm1+α, ukm1+α) + (uαkN+m2
, uαkN+m2+r),

by definition of a block-additive sequence.
The proof will be based on the following idea: when taking independently

at random some integers m1,m2 uniformly distributed in J0, kN − 1K, the dis-
tribution of ukm1+α converges to the uniform distribution on G when N goes
to infinity, while for the second term (uαkN+m2

, uαkN+m2+r), the distribution
is asymptotically given by the values Ci,j of the correlation matrix. Now, we
have (un, un+r) = (i, j) if ukm1+α = ` for some ` and (uαkN+m2

, uαkN+m2+r) =
(i− `, j − `). Using the independence of m1 and m2, we thus obtain

Cri,j =
∑
α∈Σk

1

k

∑
`∈G

1

|G|
Ci−`,j−` =

∑
α∈Σk

1

k

1

|G|
1

|G|
=

1

|G|2
,

since we already know by Corollary 2 that for any (i, j) ∈ G2,
∑
`∈G Ci−`,j−` =

1
|G| .

More formally, let us introduce the following notations, for any i, j, ` ∈ G,

Aα` (N) = card{m ∈ J0, kN − 1K : ukm+α = `}
Br,αi,j (N) = card{m ∈ J0, kN − r − 1K : δri,j(αk

N +m) = 1}.

We claim that for any α ∈ Σk,

lim
N→∞

Aα` (N)

kN
=

1

|G|
, and lim

N→∞

∑
`∈G

Br,αi−`,j−`(N)

kN
=

1

|G|
.

For the first limit, we use the same tools as for Proposition 2. Let φ be the
primitive morphism given in Remark 1, so that the sequence u is the image of
φω(q0) by τ . One can see that the sequence (ukn+α)n∈N is the image of φω(q0)
by the function τ ′ : Q→ G defined by τ ′(g, i) = g+ f(i, α). As we have already
seen in the proof of Proposition 2, all the elements of Q have the same frequency
in φω(q0). Consequently, each element of G has the same frequency in the image
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of φω(q0) by τ ′. Indeed, for any g′ ∈ G and i ∈ Σk, there exists exactly one
g ∈ G such that τ ′(g, i) = g′, so that the cardinal of τ ′−1({g′}) does not depend
on the choice of g′.

For the second limit, observe that

lim
N→∞

∑
`∈G

Br,αi−`,j−`(N)

kN

= lim
N→∞

∑
`∈G

(αkN + kN − r) · Cri−`,j−`(αkN + kN − r)− αkN · Cri−`,j−`(αkN )

kN

=
∑
`∈G

(α+ 1) · Cri−`,j−` − α · Cri−`,j−`

=
1

|G|
.

Now, for any (i, j) ∈ G2, we have

k2N+1−1∑
n=0

δri,j(n) ≥
∑
α∈Σk

∑
`∈G

AN` (α) BNi−`,j−`(α).

It follows that

Cri,j(k
2N+1) ≥ 1

k

∑
α∈Σk

∑
`∈G

AN` (α)

kN
BNi−`,j−`(α)

kN
.

When N goes to infinity, we know that the limit of the left term exists and is
equal to Cri,j . We thus obtain

Cri,j ≥
1

|G|2
.

Since
∑

(i,j)∈G2 Cri,j = 1, this ends the proof.

4 Higher dimensional generalized Golay–Shapiro
sequences

We propose the following natural extension of Def. 1 and 3 in dimension d. For
greater readability, we represent the elements of Σdk as column vectors.

Definition 4. Let (G,+) be a finite abelian group, and let k ∈ N\{0}. We say

that the sequence u = (un1,...,nd
)(n1,...,nd)∈Nd ∈ GNd

is a d-dimensional block-

additive sequence in base k if there exists a map f : Σdk × Σdk → G satisfying
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f


0

...
0

 ,

0
...
0


 = 0, such that for any integer n ∈ Nd, we have

un1,...,nd
=
∑
i∈N

f


x

1
i
...
xdi

 ,

x
1
i+1
...

xdi+1


 =

∑
i∈N

f(xi, xi+1),

where x = (xi)i∈N =

x
1

...
xd

 =

(x1
i )i∈N
...

(xdi )i∈N

 =

[n1]k
...

[nd]k

.

We say furthermore that the sequence u is a generalized d-dimensional
Golay–Shapiro sequence if the function f satisfies, for every (i, j) ∈ Σdk × Σdk
with i 6= j, and for every g ∈ G,

card
{
h ∈ Σdk : f(i, h)− f(j, h) = g

}
=

kd

|G|
.

Equivalently, this amounts to saying that the matrix (f(i, j))(i,j)∈Σd
k×Σd

k
is a

difference matrix.

The definition above can be extended to d-dimensional sequences for which
the base ki may depend on the component i ∈ {1, . . . , d} (in the difference
condition, kd is then replaced by the product k1 . . . kd). However, for simplicity,
we restrict ourselves to the case of a unique base k.

Let r ∈ Nd \ {(0, . . . , 0)}. For n = (n1, . . . , nd) ∈ Nd, we introduce the
representations of n and n+ r in base k as follows

[n]k = x =

x
1

...
xd

 , [n+ r]k = y =

y
1

...
yd

 ,

and we define the integer

cn = min{i ∈ N : xj = yj for all j > i},

which measures how far the carry propagates when adding r to n.
We define again the fibre of n as the set

Fr(n) = {m ∈ N : x′ = [m]k satisfies x′i = xi for every i ∈ N \ {cn + 1}},

and use the notation ∆r(n) = un+r − un.
Since the d-dimensional sequence has d components that are all 1-dimensional

and independent, the previous arguments can be repeated verbatim.

Proposition 6. If u is a generalized d-dimensional Golay–Shapiro sequence,
then for any n ∈ N, and any g ∈ G, we have

card{m ∈ Fr(n) : ∆r(m) = g} = π.
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We also extend the notations δr and Cr to d-dimensional sequences. Pre-
cisely, for N = (N1, . . . , Nd), we define

Cri,j(N) =
1

N1 · · ·Nd

∑
{n∈Nd :n<N}

δri,j(n),

where the notation n < N means that for all i ∈ {1, . . . , d}, ni < Ni. We also
introduce

Cri,j = lim
N1,...,Nd→∞

Cri,j(N).

Following the previous lines, one can show as in the one-dimensional case
that if u is a generalized d-dimensional Golay–Shapiro sequence, then for any
(i, j) ∈ G2, ∑

`∈G

Cri−`,j−` =
1

|G|
,

which also allows to obtain the following extension of Proposition 5.

Proposition 7. If u is a generalized d-dimensional Golay–Shapiro sequence,
then for any (i, j) ∈ G2,

Cri,j =
1

|G|2
.

Example 7. In Figures 1 and 2, we present four different examples of gener-
alized Golay–Shapiro sequences, for d = 2, k = 2, G = Z2. For each example,
the values of the function f : Σ2

2 → Z2 is given by a matrix, with the elements
of Σ2

2 sorted in the lexicographic order. On the first line of the matrix, one can
thus read successively

f

((
0
0

)
,

(
0
0

))
, f

((
0
0

)
,

(
0
1

))
, f

((
0
0

)
,

(
1
0

))
, f

((
0
0

)
,

(
1
1

))
,

and then on the second line

f

((
0
1

)
,

(
0
0

))
, f

((
0
1

)
,

(
0
1

))
, . . .

and so on. On the pictures, the cell (n1, n2) ∈ N2 is colored in blue if un1,n2
= 1

and in white if un1,n2 = 0. The corner corresponding to the value u0,0 is the
bottom-left corner.

Let us present in more detail the first example. For i, j ∈ Σ2
2, the weight

function satisfies f(i, j) = 0 if i = j, and f(i, j) = 1 otherwise. As an example,
we compute below u436,48.

[436]2 = 0 0 1 0 1 1 0 1 1 0 0 · · ·
[48]2 = 0 0 0 0 1 1 0 0 0 0 0 · · ·
u436,48 ≡ 0 + 1 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 0 + · · · ≡ 0 (mod 2)
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The following table gives the first values of un1,n2 , for (n1, n2) ∈ J0, 23 − 1K2.

7 1 0 1 0 0 1 0 1
6 0 0 1 1 1 1 0 0
5 1 1 1 1 1 1 1 1
4 0 1 1 0 0 1 1 0
3 1 0 0 1 0 1 1 0
2 0 0 0 0 1 1 1 1
1 1 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0 1
n2�n1

0 1 2 3 4 5 6 7

These values are also contained in the bottom-left 8 × 8-squares of the two
pictures that are on the first part of Figure 1.

Concerning the second example (second part of Figure 1), it can be seen
that the weight function satisfies

f

((
i1
i2

)
,

(
j1
j2

))
≡ i1j1 + i2j2 (mod 2).

As a consequence, the sequence obtained can also be computed by um,n =
vm + vn, where v is the classical one-dimensional Golay–Shapiro sequence.

5 Extensions and open questions

5.1 Block-additive sequences of rank larger than 2

Until now, we have only considered block-additive functions of rank 2. More
generally, we can consider the notion of block-additive functions of rank L, for
an integer L ≥ 1, in the sense of Cateland [6].

Definition 5. Let (G,+) be a finite abelian group, let k ∈ N \ {0}, and for an
integer L ≥ 1, let f : ΣLk → G be a function satisfying f(0, 0, . . . , 0) = 0. We
say that the sequence u = (un)n∈N ∈ GN is a block-additive sequence (of rank
L) in base k of weight function f if for any integer n ∈ N, we have

un =
∑
i∈N

f(xi, xi+1, . . . , xi+L−1),

where [n]k = x.

Let (G,+) be a finite abelian group, and let k ∈ N \ {0}. For an integer
L ≥ 2, we say that the function d : ΣLk → G satisfies the difference condition (of
rank L) if for every (i, j) ∈ Σk×Σk with i 6= j, for every (x2, . . . , xL−1) ∈ ΣL−2

k ,
and for every g ∈ G,

card{h ∈ Σk : d(i, x2, . . . , xL−1, h)− d(j, x2, . . . , xL−1, h) = g} =
k

|G|
.

The difference condition is a sufficient condition for obtaining the same re-
sults as in Section 3, for block-additive sequences of rank L with L ≥ 2.
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Matrix


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



Terms in J0, 25 − 1K2 Terms in J0, 27 − 1K2

Matrix


0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0



Terms in J0, 25 − 1K2 Terms in J0, 27 − 1K2

Figure 1: Examples of generalized 2-dimensional Golay–Shapiro sequences in
base 2
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Matrix


0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0



Terms in J0, 25 − 1K2 Terms in J0, 27 − 1K2

Matrix


0 0 1 1
0 1 0 1
0 0 0 0
0 1 1 0



Terms in J0, 25 − 1K2 Terms in J0, 27 − 1K2

Figure 2: Examples of generalized 2-dimensional Golay–Shapiro sequences in
base 2
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Example 8. Let us set k = 2, G = Z2, and let f : Σ3
k → G be defined by

f(x, y, z) =

{
0 if x = y = z,

1 otherwise.

This function satisfies the difference condition. Consequently, the block-additive
sequence u = (un)n∈N of weight function f , which is such that un counts (mod-
ulo 2) the number of blocks different from 000 and 111 in the binary represen-
tation of n, has the same correlations of order 2 as a binary sequence chosen
uniformly at random.

Open question 1. How can we generate functions satisfying the difference con-
dition of rank L? Could there be a weaker condition on the weight function for
which the block-additive sequences obtained would have the same correlations
of order 2?

5.2 Can an automatic sequence look even more random?

Another possible direction of research consists in trying to construct block-
additive sequences for which not only the correlations of order 2, but also cor-
relations of higher order would be the same as for uniform random sequences.
Precisely, for integers 0 < r1 < · · · < r`−1, and for a choice (i0, . . . , i`−1) ∈ G`,
we introduce

δri0,...,i`−1
(n) =

{
1 if (un, un+r1 , . . . , un+r`−1

) = (i0, . . . , i`−1),

0 otherwise,

and we look at the asymptotic behaviour of 1
N

∑N−1
n=0 δ

r
i0,...,i`−1

(n), when N goes
to infinity. We say that a sequence has the same correlations of order ` as a
uniform random sequence if for any choice of 0 < r1 < · · · < r`−1, and for any
(i0, . . . , i`−1) ∈ G`,

lim
N→∞

1

N

N−1∑
n=0

δri0,...,i`−1
(n) =

1

|G|`
.

Open question 2. For a given ` ≥ 3, is it possible to construct a block-additive
sequence having the same correlations of order ` as a uniform random sequence?

Note that it is not possible to construct an automatic sequence such that
for every ` ≥ 1, the correlations of order ` would be the same as for a uniform
random sequence. Indeed, this would in particular imply the sequence to be
normal, while the complexity of an automatic sequence is at most linear.
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