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THE SUM-OF-DIGITS FUNCTION ON ARITHMETIC

PROGRESSIONS

LUKAS SPIEGELHOFER AND THOMAS STOLL

Abstract. Let s2 be the sum-of-digits function in base 2, which returns the number
of non-zero binary digits of a nonnegative integer n. We study s2 along arithmetic
subsequences and show that — up to a shift — the set of m-tuples of integers that
appear as an arithmetic subsequence of s2 has full complexity.

1. Results

The binary sum-of-digits function s2 is an elementary object studied in number the-
ory. It is defined by the equation

s2(εν2ν + · · ·+ ε02
0) = εν + · · ·+ ε0,

where εi ∈ {0, 1} for 0 ≤ i ≤ ν. Despite the simplicity of definition, the behaviour of s2
on arithmetic progressions is not fully understood. Cusick’s conjecture on the sum-of-
digits function [3, 9] concerns this area of research: for an integer t ≥ 0, we define the
limit

ct = lim
N→∞

1

N
|{n : 0 ≤ n < N, s2(n+ t) ≥ s2(n)}| .

(The limit exists, see for example Bésineau [2]. In fact, the set in this definition is
periodic with period 2k for some k.) Cusick’s conjecture states that

(1.1) ct > 1/2

for all t ≥ 0. Drmota, Kauers, and the first author [3] proved that ct > 1/2 for almost
all t in the sense of asymptotic density; we also wish to note the works by Emme and
Prikhod’ko [6] and Emme and Hubert [4, 5], and the recent partial result by the first
author [9].

In the current note, motivated by Cusick’s conjecture, we are concerned with the
(m + 1)-tuple

(
s2(n), s2(n + t), . . . , s2(n + mt)

)
, where t ≥ 0 and m ≥ 1 are integers.

We aim to understand the set of tuples that can occur, as n and t run. In fact, our
theorem states that, up to a shift, all tuples occur.

Theorem 1.1. Assume that k1, . . . , km ∈ Z. There exist n and t such that for 1 ≤ ` ≤
m,

k` = s2(n+ `t)− s2(n).
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This is a generalization of the statement that the Thue–Morse sequence t has full
arithmetic complexity, meaning that every finite word ω ∈ {0, 1}L occurs as an arith-
metic subsequence of t. This was first proved in [1] and also follows from Müllner and
the first named author [8], and Konieczny [7].

Theorem 1.1 is not hard to prove for m = 1. We present three arguments leading to
this fact.

(1) Assume first that k ≥ 0. Set n = 2k+1 and t = 2k − 1. Then s2(n+ t) = k + 1
and s2(n) = 1, yielding k = s2(n+ t)−s2(n). If k < 0, we set n = 2−k+1−1 and
t = 1. Then s2(n) = −k+1 and s2(n+t) = 1, which yields s2(n+t)−s2(n) = k.
Alternatively, we may also write, as in the case m = 2 presented below, t = 2c−1
and n = 2c−1 (2a − 1), for positive integers a and c. We obtain s2(n + t) = c
and s2(n) = a, and clearly the difference c− a runs through all integers.

(2) We have s2(n + 1) − s2(n) = 1 − ν2(n + 1) ≤ 1, where ν2(m) = max{k ≥
0 : 2k | m} for m ≥ 1 is the 2-adic valuation of m. This formula follows by
considering the number of 1s with which the binary expansion of n ends. Since
s2(2

`) = 1 and s2(2
`+1 − 1) = ` + 1, we obtain the fact that s2(n) attains all

values in {1, . . . , ` + 1} as n varies in {2`, . . . , 2`+1 − 1}. Let k ∈ Z be given
and set ` = 2|k|. Choose n ∈ {2`, . . . , 2`+1 − 1} such that s2(n) = |k| + 1 and
n′ ∈ {2`+1, . . . , 2`+2−1} such that s2(n

′) = |k|+1+k. Then s2(n
′)−s2(n) = k,

which implies the statement.
(3) Consider the densities

δ(k, t) = lim
N→∞

1

N
|{n : 0 ≤ n < N, s2(n+ t)− s2(n) = k}|

(as it was the case for ct, this asymptotic density exists [2]). These quantities
satisfy the following recurrence [3]:

δ(k, 1) =

{
2k−2, k ≤ 1;

0 otherwise;

δ(k, 2t) = δ(k, t);

δ(k, 2t+ 1) =
1

2
δ(k − 1, t) +

1

2
δ(k + 1, t+ 1).

From this, it is very easy to show that δ(k, t) > 0 for all k ≤ s2(t). For k given,
choose t in such a way that s2(t) ≥ k; the positivity of the density δ(k, t) implies
that there exists an n such that s2(n+ t)− s2(n) = k.

For m = 2, it is also possible to obtain the statement by elementary considerations:
consider integers a, c ≥ 1, b, d ≥ 0 and choose the integers n and t in such a way that
the binary expansions look as follows:

a︷ ︸︸ ︷ b︷ ︸︸ ︷
n : 1 · · · 110 · · · 0 1 · · · 10 · · · 0
t : 11 · · · 1 0 · · · 01 · · · 1.︸ ︷︷ ︸

c
︸ ︷︷ ︸
d

The sums of digits of n, n + t and n + 2t respectively are a + b, b + c + d and c + d
respectively. By varying the variables, we can obtain the statement for all integers k1
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and k2 such that k2 ≤ k1. For the case k1 < k2, we use the following configuration of
the integers n and t, where a, d ≥ 1 and c ≥ 0:

a︷ ︸︸ ︷
n : 1 · · · 110 · · · 0
t : 1 · · · 10 · · · 011 · · · 1.︸ ︷︷ ︸

c
︸ ︷︷ ︸

d

The sums of digits of n, n+ t and n+ 2t are a, d and c+d respectively, and we see that
we obtain all pairs (k1, k2) ∈ Z2 such that k1 ≤ k2.

However, the method quickly experiences difficulties, as multiplication by 3 is not a
shift of the binary digits anymore. While we believe that the case m = 3 can be made
work by some effort, a general principle is not apparent. Therefore we choose a different
approach.

We prove Theorem 1.1 by induction on m, the cases m = 1, 2 having been discussed
above. Assume that m ≥ 3 and let k1, . . . , km ∈ Z be given. By induction hypothesis,
there exist t0 and n0 such that k` = s2(n0 + `t0)− s2(n0 + (`− 1)t0) for 1 ≤ ` < m. Set
k′m = s2(n0 + mt0) − s2(n0 + (m − 1)t0). We are going to show that we may vary k′m
by steps of ±1, thus yielding the full statement.

By concatenation of binary expansions, it is sufficient to show the following statement.

(1.2)
There exist t1, n1 such that s2(n1 + `t1)− s2(n1 + (`− 1)t1) = 0 for 1 ≤ ` < m

and s2(n1 +mt1)− s2(n1 + (m− 1)t1) = ±1.

This concatenation is straightforward and summarized in the following lemma, which
we will also use again in a moment.

Lemma 1.2. Let ` ≥ 1, m ≥ 1, n0, . . . , nk−1 and t0, . . . , tk−1 be nonnegative integers.
There exist nonnegative integers n and t such that

s2(n+ `t)− s2(n+ (`− 1)t) =
∑

0≤j<k

(
s2(nj + `tj)− s2(nj + (`− 1)tj)

)
for 1 ≤ ` ≤ m.

Proof. The base case k = 1 is trivial; it is sufficient to prove the statement for k = 2,
the general case following easily from repeated application of this case.

Let N be so large that n0 + mt0 < 2N , and set n = 2Nn1 + n0 and t = 2N t1 + t0.
Since no carry propagation between the digits below and above N occurs, we can add
up the contribution of the two blocks in order to yield the statement. �

We reduce the problem further, using this block representation again: choose tj = 1
for all 0 ≤ j < k; it is sufficient to find a k ≥ 1 and nonnegative integers nj for 0 ≤ j < k
such that ∑

0≤j<k
(s2(nj + `)− s2(nj + `− 1)) =

{
0, if 1 ≤ ` < m;

±1, if ` = m.
(1.3)

In order to show (1.3), we use the telescoping sum∑
a≤j<a+2L

g(j) = s2(a+ 2L)− s2(a) = g
(⌊
a/2L

⌋)
,
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where g(j) = s2(j + 1) − s2(j). This representation yields for 1 ≤ ` ≤ m, where L is
chosen such that 2L ≤ m < 2L+1,∑

2·2L−m+`≤j<3·2L−m+`

g(j) = g
(
2 + b(−m+ `)/2Lc

)
=

{
g(1) = 0, if 1 ≤ ` < m;

g(2) = 1, if ` = m;

∑
2L−m+`≤j<2·2L−m+`

g(j) = g
(
1 + b(−m+ `)/2Lc

)
=

{
g(0) = 1, if 1 ≤ ` < m;

g(1) = 0, if ` = m;∑
3·2L+1+`≤j<4·2L+1+`

g(j) = g(3) = −1 for 1 ≤ ` ≤ m.

The first of these three identities yields the “+”-part of (1.3) by choosing k = 2L and
nj = 2 · 2L −m+ j for 0 ≤ j < k.

The “−”-part is obtained from the second and third identities: by considering the
disjoint union J = [2L −m, 2 · 2L −m) ∪ [3 · 2L+1, 4 · 2L+1), we have∑

j∈J
(s2(j + `)− s2(j + `− 1)) =

{
0, if 1 ≤ ` < m;

−1, if ` = m.

The statement follows by merging the two intervals and choosing nj accordingly. This
finishes the proof of our theorem.

2. Possible extensions

From our proof, it is possible to effectively construct integers n and t such that
s2(n + `t) − s2(n) = k` for 1 ≤ ` ≤ m. In particular, this yields integers n and t such
that tn+`t = ω` for 1 ≤ ` ≤ m, where (ω1, . . . , ωm) ∈ {0, 1}m and t is the Thue–Morse
sequence on {0, 1}. (Note that we also used t(2λ + n) = 1 − t(n) for n < 2λ.) This
gives a constructive result concerning the problem of full arithmetic complexity of the
Thue–Morse sequence considered in [1, 7, 8].

As an extension of the presented line of research, we are interested in the proportion
of cases in which s2(n + `t) − s2(n) = k` occurs (for 1 ≤ ` ≤ m). For this, we define
more generally

δ(k, ε, t) = dens {n ∈ N : s2(n+ `t+ ε`)− s2(n) = k` for 1 ≤ ` ≤ m} ,
where k = (k1, . . . , km) ∈ Zm and ε = (ε1, . . . , εm) ∈ Nm. This generalizes the array δ
defined before. As in the one-dimensional case, the densities in this definition actually
exist, and they satisfy the following recurrence relation:

δ(k, ε, 2t) =
1

2
δ(k′, ε′, t) +

1

2
δ(k′′, ε′′, t),

where k′` = k` − (ε` mod 2), k′′` = k` + 1 − ((ε` + 1) mod 2), ε′` = bε`/2c and ε′′` =
b(ε` + 1)/2c; moreover,

δ(k, ε, 2t+ 1) =
1

2
δ(k′, ε′, t) +

1

2
δ(k′′, ε′′, t),

where k′` = k` − ((ε` + `) mod 2), k′′` = k` + 1− ((ε` + `+ 1) mod 2), ε′` = b(ε` + `)/2c
and ε′′` = b(ε` + `+ 1)/2c. This recurrence is the reason for the introduction of ε in the



THE SUM-OF-DIGITS FUNCTION ON ARITHMETIC PROGRESSIONS 5

definition of δ(k, ε, t). To our knowledge, these identities are new; we give the idea of
proof. We have

δ(k, ε, 2t) =
1

2
dens{n ∈ N : s(2n+ 2`t+ ε`)− s(2n) = k` for 1 ≤ ` ≤ m}

+
1

2
dens{n ∈ N : s(2n+ 2`t+ ε` + 1)− s(2n+ 1) = k` for 1 ≤ ` ≤ m},

and using the identities s(2n) = s(n) and s(2n+ 1) = s(n) + 1, we obtain

s(2n+ 2`t+ ε`) = s (2(n+ `t+ bε`/2c) + (ε` mod 2)) = s
(
n+ `t+ ε′`

)
+ (ε` mod 2),

therefore s(2n + 2`t + ε`) − s(2n) = k` is equivalent to s (n+ `t+ ε′`) − s(n) = k′`.
Analogous computations are valid for ε` replaced by ε` + 1, ε` + ` and ε` + ` + 1
respectively, which yields the claim.

This recurrence can be used to prove statements on the densities δ(k, ε, t). The gen-
eral intuitive idea is that the differences s(n+jt)−s(n), for 1 ≤ j ≤ m, should be almost
independent for most t; in the light of this consideration, we consider generalizations of
Cusick’s conjecture and of Emme and Hubert’s result [4]. On the one hand, we may
ask for multidimensional generalizations of (1.1), relating the relative sizes of the values
s2(n), s2(n + t), . . . , s2(n + mt) to one another. We propose the following conjecture,
extending (1.1).

Conjecture 1. Assume that m ≥ 1 is an integer. For an integer t ≥ 0, define

c
(m)
t = dens{n ∈ N : s(n) ≤ s(n+ jt) for 1 ≤ j ≤ m}.

Then for all t ≥ 0,

c
(m)
t >

1

2m
.

The statement is wrong for any larger constant in place of 1/2m. Also, define

C
(m)
t = dens{n ∈ N : s(n) ≤ s(n+ t) ≤ s(n+ 2t) ≤ · · · ≤ s(n+mt)}.

Then for all t ≥ 0,

C
(m)
t >

1

2mm!
.

The constant 1/(2mm!) is maximal.

On the other hand, we could ask for the overall shape of them-dimensional probability
distribution defined by δ(·, ε, t).

Problem 1. Prove a multidimensional generalization of the theorem by Emme and
Hubert [4]: for most t, the densities dens{n ∈ N : s2(n+`t)−s2(n) = k` for 1 ≤ ` ≤ m}
should define a probability distribution that is close to a multivariate Gaussian law.

We can now understand the intuition behind the constants in Conjecture 1: a bi-
variate normal distribution with mean (0, 0) has one quarter of its total weight in the
quadrant {(x, y) ∈ R2 : 0 ≤ x, 0 ≤ y}, and analogous considerations hold for higher

dimensions. Concerning the values C
(2)
t , a bivariate normal distribution with mean

(0, 0) has one eighth of its total weight in the octant {(x, y) ∈ R2 : 0 ≤ x ≤ y}, which
corresponds to the complex closed region {re2πix : r ≥ 0, 1/8 ≤ x ≤ 1/4}. Noting the
fact that s(n + 2t) ≥ s(n + t) if and only if s(n + 2t) − s(n) ≥ s(n + t) − s(n), we see
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the link between the densities δ(k, ε, t) with k lying in this octant and the values C
(2)
t .

Concerning higher dimensions, we note that the m! sets

{x ∈ Rm : ‖m‖ ≤ 1, 0 ≤ xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(m)},
where σ is a permutation of {1, . . . ,m}, are unions of line segments [0, z], where ‖z‖ = 1;
they are pairwisely congruent (using a linear transformation that is a permutation
matrix in the canonical base); an intersection of two distinct sets of this form has
measure zero, and their union comprises a fraction 1/2m of the unit ball inm dimensions.

We implemented the computation of the densities δ(k, ε, t) for two dimensions in the
Sage computer algebra system [11], and the resulting Sage worksheet is available from

the website of the first named author [10]. We obtain c
(2)
t ≥ c

(2)
951 = 94299/262144 =

0.3597 . . . > 1/4 for t ≤ 210 and C
(2)
t ≥ c

(2)
991 = 43947/262144 = 0.1676 · · · > 1/8 for

t ≤ 210. The implementation involves nine two-dimensional arrays of rational numbers
(corresponding to the nine possibilities (ε1, ε2) ∈ {0, 1, 2}2) and each of these calcula-
tions took about 5 minutes on a standard machine. We note that we did not optimize
the Sage code, and certainly this computation can be sped up significantly.

Other conjectures similar to Conjecture 1 are conceivable: what about the other
octants and quadrants A in the plane (including the borders)? Is it always true that 1/8
resp. 1/4 is a lower bound for the density dens{n ∈ N :

(
s(n+t)−s(n), s(n+2t)−s(n)

)
∈

A}? We leave this question open for future discussion, but we note that the analogous
problem in one dimension is true for almost all t: we also have

c̃t = dens{n ∈ N : s(n+ t) ≤ s(n)} > 1/2

for t in a set having asymptotic density 1 [3]. In other words, usually the median of the
probability distribution defined by δ(·, t) is very close to the mean value (which is 0).
We believe that c̃t ≥ 1/2 is true for all t, which complements Cusick’s conjecture (1.1)
(note that c̃1 = 1/2, thus there is no strict inequality).

We expect that nontrivial statements on both Conjecture 1 and Problem 1, at least
for small m, can be obtained by extending the study of moments set forward by Emme
and Hubert [4]. This is certainly not easy and will introduce technical difficulties that
have to be surmounted.
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