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Let s2 be the sum-of-digits function in base 2, which returns the number of non-zero binary digits of a nonnegative integer n. We study s2 along arithmetic subsequences and show that -up to a shift -the set of m-tuples of integers that appear as an arithmetic subsequence of s2 has full complexity.

Results

The binary sum-of-digits function s 2 is an elementary object studied in number theory. It is defined by the equation

s 2 (ε ν 2 ν + • • • + ε 0 2 0 ) = ε ν + • • • + ε 0 ,
where ε i ∈ {0, 1} for 0 ≤ i ≤ ν. Despite the simplicity of definition, the behaviour of s 2 on arithmetic progressions is not fully understood. Cusick's conjecture on the sum-ofdigits function [START_REF] Drmota | On a Conjecture of Cusick Concerning the Sum of Digits of n and n + t[END_REF][START_REF] Spiegelhofer | Approaching Cusick's conjecture on the sum-of-digits function[END_REF] concerns this area of research: for an integer t ≥ 0, we define the limit c t = lim N →∞ 1 N |{n : 0 ≤ n < N, s 2 (n + t) ≥ s 2 (n)}| .

(The limit exists, see for example Bésineau [START_REF] Bésineau | Indépendance statistique d'ensembles liés à la fonction "somme des chiffres[END_REF]. In fact, the set in this definition is periodic with period 2 k for some k.) Cusick's conjecture states that (1.1) c t > 1/2 for all t ≥ 0. Drmota, Kauers, and the first author [START_REF] Drmota | On a Conjecture of Cusick Concerning the Sum of Digits of n and n + t[END_REF] proved that c t > 1/2 for almost all t in the sense of asymptotic density; we also wish to note the works by Emme and Prikhod'ko [START_REF] Emme | On the Asymptotic Behavior of Density of Sets Defined by Sumof-digits Function in Base 2[END_REF] and Emme and Hubert [START_REF] Emme | Central Limit Theorem for Probability Measures Defined by Sum-ofdigits Function in Base 2[END_REF][START_REF]Normal distribution of correlation measures of binary sum-of-digits functions[END_REF], and the recent partial result by the first author [START_REF] Spiegelhofer | Approaching Cusick's conjecture on the sum-of-digits function[END_REF]. In the current note, motivated by Cusick's conjecture, we are concerned with the (m + 1)-tuple s 2 (n), s 2 (n + t), . . . , s 2 (n + mt) , where t ≥ 0 and m ≥ 1 are integers. We aim to understand the set of tuples that can occur, as n and t run. In fact, our theorem states that, up to a shift, all tuples occur. Theorem 1.1. Assume that k 1 , . . . , k m ∈ Z. There exist n and t such that for

1 ≤ ≤ m, k = s 2 (n + t) -s 2 (n).
This is a generalization of the statement that the Thue-Morse sequence t has full arithmetic complexity, meaning that every finite word ω ∈ {0, 1} L occurs as an arithmetic subsequence of t. This was first proved in [START_REF] Avgustinovich | Arithmetical complexity of infinite words[END_REF] and also follows from Müllner and the first named author [START_REF] Müllner | Normality of the Thue-Morse sequence along Piatetski-Shapiro sequences, II[END_REF], and Konieczny [START_REF] Konieczny | Gowers norms for the Thue-Morse and Rudin-Shapiro sequences[END_REF].

Theorem 1.1 is not hard to prove for m = 1. We present three arguments leading to this fact.

(1) Assume first that k ≥ 0. Set n = 2 k+1 and t = 2 k -1. Then

s 2 (n + t) = k + 1 and s 2 (n) = 1, yielding k = s 2 (n + t) -s 2 (n). If k < 0, we set n = 2 -k+1 -1 and t = 1. Then s 2 (n) = -k +1 and s 2 (n+t) = 1, which yields s 2 (n+t)-s 2 (n) = k.
Alternatively, we may also write, as in the case m = 2 presented below, t = 2 c -1 and n = 2 c-1 (2 a -1), for positive integers a and c. We obtain s 2 (n + t) = c and s 2 (n) = a, and clearly the difference c -a runs through all integers.

(2) We have 

s 2 (n + 1) -s 2 (n) = 1 -ν 2 (n + 1) ≤ 1, where ν 2 (m) = max{k ≥ 0 : 2 k | m} for m ≥ 1
(n) = |k| + 1 and n ∈ {2 +1 , . . . , 2 +2 -1} such that s 2 (n ) = |k| + 1 + k. Then s 2 (n ) -s 2 (n) = k, which implies the statement. (3) Consider the densities δ(k, t) = lim N →∞ 1 N |{n : 0 ≤ n < N, s 2 (n + t) -s 2 (n) = k}|
(as it was the case for c t , this asymptotic density exists [START_REF] Bésineau | Indépendance statistique d'ensembles liés à la fonction "somme des chiffres[END_REF]). These quantities satisfy the following recurrence [START_REF] Drmota | On a Conjecture of Cusick Concerning the Sum of Digits of n and n + t[END_REF]:

δ(k, 1) = 2 k-2 , k ≤ 1; 0 otherwise; δ(k, 2t) = δ(k, t); δ(k, 2t + 1) = 1 2 δ(k -1, t) + 1 2 δ(k + 1, t + 1).
From this, it is very easy to show that δ(k, t) > 0 for all k ≤ s 2 (t). For k given, choose t in such a way that s 2 (t) ≥ k; the positivity of the density δ(k, t) implies that there exists an n such that

s 2 (n + t) -s 2 (n) = k. For m = 2,
it is also possible to obtain the statement by elementary considerations: consider integers a, c ≥ 1, b, d ≥ 0 and choose the integers n and t in such a way that the binary expansions look as follows:

a b n : 1 • • • 11 0 • • • 0 1 • • • 10 • • • 0 t : 1 1 • • • 1 0 • • • 01 • • • 1. c d
The sums of digits of n, n + t and n + 2t respectively are a + b, b + c + d and c + d respectively. By varying the variables, we can obtain the statement for all integers k 1 and k 2 such that k 2 ≤ k 1 . For the case k 1 < k 2 , we use the following configuration of the integers n and t, where a, d ≥ 1 and c ≥ 0:

a n : 1 • • • 11 0 • • • 0 t : 1 • • • 10 • • • 01 1 • • • 1. c d
The sums of digits of n, n + t and n + 2t are a, d and c + d respectively, and we see that we obtain all pairs (k

1 , k 2 ) ∈ Z 2 such that k 1 ≤ k 2 .
However, the method quickly experiences difficulties, as multiplication by 3 is not a shift of the binary digits anymore. While we believe that the case m = 3 can be made work by some effort, a general principle is not apparent. Therefore we choose a different approach.

We prove Theorem 1.1 by induction on m, the cases m = 1, 2 having been discussed above. Assume that m ≥ 3 and let k 1 , . . . , k m ∈ Z be given. By induction hypothesis, there exist t 0 and n 0 such that k = s 2 (n 0 + t 0 ) -s 2 (n 0 + ( -1)t 0 ) for 1 ≤ < m. Set k m = s 2 (n 0 + mt 0 ) -s 2 (n 0 + (m -1)t 0 ). We are going to show that we may vary k m by steps of ±1, thus yielding the full statement.

By concatenation of binary expansions, it is sufficient to show the following statement.

(1.2)

There exist t 1 , n 1 such that s 2 (n 1 + t 1 ) -s 2 (n 1 + ( -1)t 1 ) = 0 for 1 ≤ < m and s 2 (n 1 + mt 1 ) -s 2 (n 1 + (m -1)t 1 ) = ±1.
This concatenation is straightforward and summarized in the following lemma, which we will also use again in a moment.

Lemma 1.2. Let ≥ 1, m ≥ 1, n 0 , . . . , n k-1 and t 0 , . . . , t k-1 be nonnegative integers.

There exist nonnegative integers n and t such that

s 2 (n + t) -s 2 (n + ( -1)t) = 0≤j<k s 2 (n j + t j ) -s 2 (n j + ( -1)t j ) for 1 ≤ ≤ m.
Proof. The base case k = 1 is trivial; it is sufficient to prove the statement for k = 2, the general case following easily from repeated application of this case.

Let N be so large that n 0 + mt 0 < 2 N , and set n = 2 N n 1 + n 0 and t = 2 N t 1 + t 0 . Since no carry propagation between the digits below and above N occurs, we can add up the contribution of the two blocks in order to yield the statement.

We reduce the problem further, using this block representation again: choose t j = 1 for all 0 ≤ j < k; it is sufficient to find a k ≥ 1 and nonnegative integers n j for 0

≤ j < k such that 0≤j<k (s 2 (n j + ) -s 2 (n j + -1)) = 0, if 1 ≤ < m; ±1, if = m. (1.3)
In order to show (1.3), we use the telescoping sum

a≤j<a+2 L g(j) = s 2 (a + 2 L ) -s 2 (a) = g a/2 L ,
where g(j) = s 2 (j + 1) -s 2 (j). This representation yields for 1 ≤ ≤ m, where L is chosen such that 2

L ≤ m < 2 L+1 , 2•2 L -m+ ≤j<3•2 L -m+ g(j) = g 2 + (-m + )/2 L = g(1) = 0, if 1 ≤ < m; g(2) = 1, if = m; 2 L -m+ ≤j<2•2 L -m+ g(j) = g 1 + (-m + )/2 L = g(0) = 1, if 1 ≤ < m; g(1) = 0, if = m; 3•2 L+1 + ≤j<4•2 L+1 + g(j) = g(3) = -1 for 1 ≤ ≤ m.
The first of these three identities yields the "+"-part of (1.3) by choosing k = 2 L and n j = 2 • 2 L -m + j for 0 ≤ j < k.

The "-"-part is obtained from the second and third identities: by considering the disjoint union

J = [2 L -m, 2 • 2 L -m) ∪ [3 • 2 L+1 , 4 • 2 L+1 ), we have j∈J (s 2 (j + ) -s 2 (j + -1)) = 0, if 1 ≤ < m; -1, if = m.
The statement follows by merging the two intervals and choosing n j accordingly. This finishes the proof of our theorem.

Possible extensions

From our proof, it is possible to effectively construct integers n and t such that s 2 (n + t) -s 2 (n) = k for 1 ≤ ≤ m. In particular, this yields integers n and t such that t n+ t = ω for 1 ≤ ≤ m, where (ω 1 , . . . , ω m ) ∈ {0, 1} m and t is the Thue-Morse sequence on {0, 1}. (Note that we also used t(2 λ + n) = 1 -t(n) for n < 2 λ .) This gives a constructive result concerning the problem of full arithmetic complexity of the Thue-Morse sequence considered in [START_REF] Avgustinovich | Arithmetical complexity of infinite words[END_REF][START_REF] Konieczny | Gowers norms for the Thue-Morse and Rudin-Shapiro sequences[END_REF][START_REF] Müllner | Normality of the Thue-Morse sequence along Piatetski-Shapiro sequences, II[END_REF].

As an extension of the presented line of research, we are interested in the proportion of cases in which s 2 (n + t) -s 2 (n) = k occurs (for 1 ≤ ≤ m). For this, we define more generally

δ(k, ε, t) = dens {n ∈ N : s 2 (n + t + ε ) -s 2 (n) = k for 1 ≤ ≤ m} ,
where k = (k 1 , . . . , k m ) ∈ Z m and ε = (ε 1 , . . . , ε m ) ∈ N m . This generalizes the array δ defined before. As in the one-dimensional case, the densities in this definition actually exist, and they satisfy the following recurrence relation:

δ(k, ε, 2t) = 1 2 δ(k , ε , t) + 1 2 δ(k , ε , t),
where

k = k -(ε mod 2), k = k + 1 -((ε + 1) mod 2), ε = ε /2 and ε = (ε + 1)/2 ; moreover, δ(k, ε, 2t + 1) = 1 2 δ(k , ε , t) + 1 2 δ(k , ε , t),
where k = k -((ε + ) mod 2), k = k + 1 -((ε + + 1) mod 2), ε = (ε + )/2 and ε = (ε + + 1)/2 . This recurrence is the reason for the introduction of ε in the definition of δ(k, ε, t). To our knowledge, these identities are new; we give the idea of proof. We have

δ(k, ε, 2t) = 1 2 dens{n ∈ N : s(2n + 2 t + ε ) -s(2n) = k for 1 ≤ ≤ m} + 1 2 dens{n ∈ N : s(2n + 2 t + ε + 1) -s(2n + 1) = k for 1 ≤ ≤ m},
and using the identities s(2n) = s(n) and s(2n + 1) = s(n) + 1, we obtain

s(2n + 2 t + ε ) = s (2(n + t + ε /2 ) + (ε mod 2)) = s n + t + ε + (ε mod 2), therefore s(2n + 2 t + ε ) -s(2n) = k is equivalent to s (n + t + ε ) -s(n) = k .
Analogous computations are valid for ε replaced by ε + 1, ε + and ε + + 1 respectively, which yields the claim. This recurrence can be used to prove statements on the densities δ(k, ε, t). The general intuitive idea is that the differences s(n+jt)-s(n), for 1 ≤ j ≤ m, should be almost independent for most t; in the light of this consideration, we consider generalizations of Cusick's conjecture and of Emme and Hubert's result [START_REF] Emme | Central Limit Theorem for Probability Measures Defined by Sum-ofdigits Function in Base 2[END_REF]. On the one hand, we may ask for multidimensional generalizations of (1.1), relating the relative sizes of the values s 2 (n), s 2 (n + t), . . . , s 2 (n + mt) to one another. We propose the following conjecture, extending (1.1).

Conjecture 1. Assume that m ≥ 1 is an integer. For an integer t ≥ 0, define

c (m) t = dens{n ∈ N : s(n) ≤ s(n + jt) for 1 ≤ j ≤ m}.
Then for all t ≥ 0, c (m) t > 1 2 m . The statement is wrong for any larger constant in place of 1/2 m . Also, define

C (m) t = dens{n ∈ N : s(n) ≤ s(n + t) ≤ s(n + 2t) ≤ • • • ≤ s(n + mt)}.
Then for all t ≥ 0,

C (m) t > 1 2 m m! .
The constant 1/(2 m m!) is maximal.

On the other hand, we could ask for the overall shape of the m-dimensional probability distribution defined by δ(•, ε, t).

Problem 1. Prove a multidimensional generalization of the theorem by Emme and Hubert [START_REF] Emme | Central Limit Theorem for Probability Measures Defined by Sum-ofdigits Function in Base 2[END_REF]: for most t, the densities dens{n ∈ N : s 2 (n+ t)-s 2 (n) = k for 1 ≤ ≤ m} should define a probability distribution that is close to a multivariate Gaussian law.

We can now understand the intuition behind the constants in Conjecture 1: a bivariate normal distribution with mean (0, 0) has one quarter of its total weight in the quadrant {(x, y) ∈ R 2 : 0 ≤ x, 0 ≤ y}, and analogous considerations hold for higher dimensions. Concerning the values C

(2) t , a bivariate normal distribution with mean (0, 0) has one eighth of its total weight in the octant {(x, y) ∈ R 2 : 0 ≤ x ≤ y}, which corresponds to the complex closed region {re 2πix : r ≥ 0, 1/8 ≤ x ≤ 1/4}. Noting the fact that s(n + 2t) ≥ s(n + t) if and only if s(n + 2t) -s(n) ≥ s(n + t) -s(n), we see

  is the 2-adic valuation of m. This formula follows by considering the number of 1s with which the binary expansion of n ends. Since s 2 (2 ) = 1 and s 2 (2 +1 -1) = + 1, we obtain the fact that s 2 (n) attains all values in {1, . . . , + 1} as n varies in {2 , . . . , 2 +1 -1}. Let k ∈ Z be given and set = 2|k|. Choose n ∈ {2 , . . . , 2 +1 -1} such that s 2
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the link between the densities δ(k, ε, t) with k lying in this octant and the values C

(2) t . Concerning higher dimensions, we note that the m! sets

where σ is a permutation of {1, . . . , m}, are unions of line segments [0, z], where z = 1; they are pairwisely congruent (using a linear transformation that is a permutation matrix in the canonical base); an intersection of two distinct sets of this form has measure zero, and their union comprises a fraction 1/2 m of the unit ball in m dimensions.

We implemented the computation of the densities δ(k, ε, t) for two dimensions in the Sage computer algebra system [START_REF]The Sage Developers[END_REF], and the resulting Sage worksheet is available from the website of the first named author [10]. We obtain c

. The implementation involves nine two-dimensional arrays of rational numbers (corresponding to the nine possibilities (ε 1 , ε 2 ) ∈ {0, 1, 2} 2 ) and each of these calculations took about 5 minutes on a standard machine. We note that we did not optimize the Sage code, and certainly this computation can be sped up significantly.

Other conjectures similar to Conjecture 1 are conceivable: what about the other octants and quadrants A in the plane (including the borders)? Is it always true that 1/8 resp. 1/4 is a lower bound for the density dens{n ∈ N : s(n+t)-s(n), s(n+2t)-s(n) ∈ A}? We leave this question open for future discussion, but we note that the analogous problem in one dimension is true for almost all t: we also have

for t in a set having asymptotic density 1 [START_REF] Drmota | On a Conjecture of Cusick Concerning the Sum of Digits of n and n + t[END_REF]. In other words, usually the median of the probability distribution defined by δ(•, t) is very close to the mean value (which is 0). We believe that ct ≥ 1/2 is true for all t, which complements Cusick's conjecture (1.1) (note that c1 = 1/2, thus there is no strict inequality).

We expect that nontrivial statements on both Conjecture 1 and Problem 1, at least for small m, can be obtained by extending the study of moments set forward by Emme and Hubert [START_REF] Emme | Central Limit Theorem for Probability Measures Defined by Sum-ofdigits Function in Base 2[END_REF]. This is certainly not easy and will introduce technical difficulties that have to be surmounted.