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HENSEL’S LEMMA FOR GENERAL CONTINUOUS FUNCTIONS

HAJIME KANEKO AND THOMAS STOLL

Abstract. In the present paper, we generalize the well-known Hensel’s lifting
lemma to any continuous function f : Zp → Zp. This answers a question

posed by Axelsson and Khrennikov (2016) who showed the validity of Hensel’s
lemma for 1- and for pα-Lipschitz functions. For the statement and the proof,

we introduce a suitable generalization of the original van der Put series. We

use the concept of approximability of continuous functions to give numerical
examples.

1. Introduction

Denote by N (resp. Z+) the set of nonnegative integers (resp. positive integers).
Let p be a prime number and Zp the ring of p-adic integers. We denote vp(u)
(resp. |u|p) the p-adic order (resp. the p-adic absolute value) of u ∈ Zp normalized
with vp(p) = 1 (resp. |p|p = p−1). We first recall Hensel’s lifting lemma. Let
Q(X) ∈ Zp[X]\Zp and u ∈ Zp. Assume that

vp(Q(u)) > 2vp(Q
′(u)).

Then there exists a unique ξ ∈ Zp satisfying

vp(ξ − u) > vp(Q
′(u))

and
Q(u) = 0.

Axelsson and Khrennikov [3] generalized Hensel’s lemma to 1-Lipschitz functions,
namely to functions f : Zp → Zp which satisfy

|f(x)− f(y)|p ≤ |x− y|p
for any x, y ∈ Zp (from this, they derived also a generalization for pα-Lipschitz
functions, α ≥ 1). For the statement and the proof of their generalization, they
used van der Put series applied to this class of functions. Van der Put series date
back to the work of M. van der Put [5, 6] and have shown to be very fruitful in
p-adic analysis, dynamical systems and ergodic theory (see [4]) as well as in various
applications in cryptography, computer science and numerical analysis (see [1] for
a detailed account on the various applications). For the application to dynamical
systems it is natural to investigate the minimal conditions on the functions that
allow such series expansions.

Axelsson and Khrennikov [3, p.224, Remark 2.5] asked for a generalization of
Hensel’s lemma to any continuous function f : Zp → Zp which would lead to an
extension to their result. In this article, we provide such a generalization of Hensel’s
lemma to any continuous function, introducing the notion of generalized van der
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Put series and approximability of continuous functions. We consider the existence
of the zeros of continuous functions and discuss uniqueness under certain conditions.

We first recall Theorem 2.4 of [3] (notation and statements are slightly modified
for convenience to generalization; cf. [2]). For a positive integer m, we denote its
base-p expansion by

m = m0 +m1p+ · · ·+mkp
k,(1.1)

where k = k(m) = blogpmc and logpm = logm/ log p. In other words, k is a
unique positive integer with

pk ≤ m < p1+k,(1.2)

and m0,m1, . . . ,mk ∈ {0, 1, . . . , p− 1}, mk 6= 0. For convenience, if m = 0, put

k = k(0) = blogp 0c := 0.(1.3)

Set

χ(m,x) =

{
1 if |x−m|p ≤ p−1−k,

0 otherwise

for any x ∈ Zp. Let f : Zp → Zp be any continuous function. Then there exists a
unique sequence B(f ;m) (m = 0, 1, . . .) such that

f(x) =

∞∑
m=0

B(f ;m)χ(m;x)(1.4)

for any x ∈ Zp, where (1.4) is called the van der Put series of f . Moreover, B(f ;m)
satisfies

B(f ;m) =

{
f(m) if m < p,

f(m)− f(m−mkp
k) otherwise.

Anashin, Khrennikov and Yurova [2, Theorem 5] showed that f is 1-Lipschitz if
and only if

vp(B(f ;m)) ≥ blogpmc(1.5)

for any nonnegative integers m. Thus, we see if f is 1-Lipschitz, then

b(f ;m) := p−blogpmcB(f ;m) ∈ Zp.

We are now ready to state the main result of [3]. (The condition m ≥ R,
appearing in the second assumption in [3, Theorem 2.4], is a typo and has to be
omitted.)

THEOREM 1.1 (Theorem 2.4 in [3]). Let f : Zp → Zp be a 1-Lipschitz function.
Let R0 be a positive integer and u an integer with 0 ≤ u < pR0 and

f(u) ≡ 0 (mod pR0).

For any nonnegative integers m,R with

m < pR, m ≡ u (mod pR0), R ≥ R0,

assume that

{b(f ;m+ i · pR) mod p | i = 1, 2, . . . , p− 1}
= {j mod p | j = 1, 2, . . . , p− 1}.

Then there exists a unique ξ ∈ Zp satisfying f(ξ) = 0 and ξ ≡ u (mod pR0).
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The fact that b(f ;m) ∈ Zp, which does not generally hold for continuous func-
tions, is essential for the proof of Theorem 1.1. Thus, it is necessary to generalize
van der Put series.

The structure of the paper is as follows. In Section 2 we define generalized van
der Put series by introducing a strictly increasing integer-valued function Φ. This
function corresponds to the concept of the modulus of continuity in the case of real-
valued continuous functions. We then use this generalization in Section 3 to classify
general continuous functions and to state and prove our main result (Theorem 3.2).
In Section 4 we generalize the notion of derivative and approximability to this
context. Along our way, we illustrate our results by some concrete examples.

2. Generalized van der Put series

This section is devoted to our generalization of van der Put series. Let Φ : N→ N
be a strictly increasing function. In the case of Φ = Id, the identity function on
N, we recover the original van der Put series. To begin with, for any given p-adic
integer

x =

∞∑
i=0

xip
i(2.1)

with xi ∈ {0, 1, . . . , p− 1} we split its terms according to Φ, namely,

x =

∞∑
j=0

Φ(j)∑
i=Φ(−1+j)+1

xip
i,(2.2)

where we denote Φ(−1) := −1 for convenience. For any nonnegative integer m put

τ(m) = τ(Φ;m) := min
{
h ∈ N

∣∣∣ m < p1+Φ(h)
}

and, for any x ∈ Zp,

χ(Φ,m;x) :=

{
1 if |x−m|p ≤ p−1−Φ(τ(m)),

0 otherwise.

Then we see τ(Id;m) = k by (1.2), (1.3), and so χ(Id,m;x) = χ(m;x) for any
x ∈ Zp by Φ(τ(m)) = k. Let m be a nonnegative integer with τ(m) ≥ 1, namely,

m ≥ p1+Φ(0). Denote the base-p expansion of m by (1.1). Set

M(m) = M(Φ;m) :=

Φ(τ(m))∑
i=Φ(−1+τ(m))+1

mip
i.

Note that M(Id;m) = mkp
k by Φ(τ(m)) = Φ(−1 + τ(m)) + 1 = k.

PROPOSITION 2.1. For any continuous function f : Zp → Zp there exists a
unique sequence B(m) = B(Φ, f ;m) (m = 0, 1, . . .) such that

f(x) =

∞∑
m=0

B(Φ, f ;m)χ(Φ,m;x)(2.3)

for any x ∈ Zp. Moreover, B(Φ, f ;m) satisfies

B(Φ, f ;m) =

{
f(m) if m < p1+Φ(0),

f(m)− f(m−M(m)) otherwise.
(2.4)
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We note that B(Id, f ;m) = B(f ;m) for any nonnegative integer m.

Proof of Proposition 2.1. We first show that the sequence B(Φ, f ;m) (m = 0, 1, . . .)
defined inductively by (2.4) satisfies (2.3) (existence). For x ∈ Zp set

F (x) :=

∞∑
m=0

B(Φ, f ;m)χ(Φ,m;x).(2.5)

The convergence of the right-hand side of (2.5) follows from the uniform continuity
of f and

lim
m→∞

|M(m)|p = 0

by the assumption that Φ is strictly increasing. For any x ∈ Zp with (2.1) and any
nonnegative integer j, set

x(j) :=

Φ(j)∑
i=0

xip
i.(2.6)

Observe that

F (x) =

∞∑
j=0

∑
m∈N,τ(m)=j

B(Φ, f ;m)χ(Φ,m;x).

Let again j be a nonnegative integer. Then, for any m ∈ N with τ(m) = j, we have
that

χ(Φ,m;x) = 1 if and only if τ(x(j)) = j and m = x(j).(2.7)

It is easily seen that τ(x(j)) = j if and only if j = 0 or x(j) > x(j − 1) because

x(j) = x(j − 1) +

Φ(j)∑
i=Φ(j−1)+1

xip
i

for j > 0. Letting

J(x) := {0} ∪ {j ∈ Z+ | x(j) > x(j − 1)},

we get by (2.4) that, for any j ∈ J(x)\{0},

B(Φ, f ;x(j)) = f(x(j))− f(x(j − 1))

and that

F (x) =
∑
j∈J(x)

B(Φ, f ;x(j))

= f(x(0)) +
∑

j∈J(x)\{0}

(
f(x(j))− f(x(j − 1))

)
.

Moreover, if j ∈ N\J(x), then we have f(x(j))− f(x(j − 1)) = 0. Thus, we see

F (x) = f(x(0)) +

∞∑
j=1

(
f(x(j))− f(x(j − 1))

)
= f(x)

by

lim
j→∞

x(j) = x.
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Next, we prove that if B(m) (m = 0, 1, . . .) is a sequence satisfying (2.3) for any
x ∈ Zp, then (2.4) holds by induction on τ(m) (uniqueness). We use the notation
x(j)(j = 0, 1, . . .) and J(x) in the case where x = m.

First, we consider the case of τ(m) = 0, namely, m < p1+Φ(0). Using (2.3) and
(2.7), we get

f(m) = B(m(0)) = B(m)

by τ(m(j)) = 0 for any j ∈ N, which implies (2.4).
We now assume that (2.4) holds for any nonnegative integer m with τ(m) ≤ j

for a fixed integer j ≥ 0. Let m be a nonnegative integer with τ(m) = j + 1. Then
we see J(m) ⊂ [0, j + 1]. Using again (2.3) and (2.7), we get

f(m) =
∑

l∈J(m)

B(m(l)).(2.8)

Put

J(m) := {0 = j0 < · · · < jκ−1 < jκ},
where κ ≥ 1 and m(jκ) = m and m(jκ−1) = m−M(m). Hence, we obtain by (2.8)
and the inductive hypothesis that

f(m) = B(m(0)) +

 ∑
l∈J(m),1≤l≤jκ−1

B(m(l))

+B(m(jκ))

= f(m(0)) +

 ∑
l∈J(m),1≤l≤jκ−1

(
f(m(l))− f(m(l − 1))

)+B(m)

= f(m(0)) +

 ∑
1≤l≤jκ−1

(
f(m(l))− f(m(l − 1))

)+B(m)

= f(m(jκ−1)) +B(m) = f(m−M(m)) +B(m),

which implies (2.4). Therefore, we proved the proposition. �

3. Hensel’s lemma for continuous functions

In what follows, we use notation (2.1) and (2.2) for a p-adic integer x. Let
Φ : N → N be a strictly increasing function as used in the previous section. In
order to state Hensel’s lemma for continuous functions, we define a certain class of
continuous functions based on the use of Φ.

Let f : Zp → Zp be a continuous function and n a positive integer. Since f is
uniformly continuous on Zp, there exists a nonnegative integer l such that, for any
x, y ∈ Zp, if |x−y|p ≤ p−l then |f(x)−f(y)|p ≤ p−n. We denote the minimal value
of such an l by ψ(f ;n). Note that ψ(f ;n) (n = 1, 2, . . .) is non-decreasing.

Let F(Φ) be the class of continuous functions f : Zp → Zp satisfying

ψ(f ;n) ≤ 1 + Φ(n− 1)

for any positive integer n, namely, for any x, y ∈ Zp,

if |x− y|p ≤ p−1−Φ(n−1), then |f(x)− f(y)|p ≤ p−n.(3.1)
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Note that |x− y|p ≤ p−1−Φ(n−1) is equivalent to

Φ(n−1)∑
i=0

xip
i =

Φ(n−1)∑
i=0

yip
i.

We see for any continuous f that f ∈ F(Id) if and only if f is 1-Lipschitz.
For any continuous function f , we see that there exists a strictly increasing

function Φ such that f ∈ F(Φ), defining Φ as follows:

Φ(0) := max{0,−1 + ψ(f ; 1)},
Φ(n) := max{1 + Φ(n− 1),−1 + ψ(f ;n+ 1)}

for any positive integer n.
We now generalize (1.5) as follows:

PROPOSITION 3.1. Let Φ : N → N be a strictly increasing function and f :
Zp → Zp a continuous function.
Then f ∈ F(Φ) if and only if, for any nonnegative integer m,

vp(B(Φ, f ;m)) ≥ τ(Φ;m).(3.2)

REMARK 1. In what follows, we consider the case where Φ and f are fixed.
For simplification, we also use the notation B(m), τ(m), χ(m;x), M(m) instead of
B(Φ, f ;m), τ(Φ;m), χ(Φ,m;x), M(Φ;m).

Proof of Proposition 3.1. First, assume that f ∈ F(Φ). Let m be a nonnegative
integer. For the proof of (3.2), we may assume that τ(m) ≥ 1. Observe by the
definition of M(m) that

vp
(
m− (m−M(m))

)
= vp(M(m)) ≥ 1 + Φ(−1 + τ(m)).

Applying (3.1) with x = m, y = m−M(m) and n = τ(m), we see

vp(B(m)) ≥ τ(m)

by (2.4), which implies (3.2).
Conversely, we assume (3.2). Let n be a positive integer and let x, y ∈ Zp with

vp(x− y) ≥ 1 + Φ(n− 1), namely,

Φ(n−1)∑
i=0

xip
i =

Φ(n−1)∑
i=0

yip
i.

Observe for any integer m with 0 ≤ m < p1+Φ(n−1) that

χ(m;x) = χ(m; y)

because χ(m;x) (resp. χ(m; y)) depends only on the first Φ(n − 1)-th digits of x
(resp. y) by τ(m) ≤ n− 1. Thus, Proposition 2.1 implies that

f(x)− f(y) =
∑

m≥p1+Φ(n−1)

B(m)
(
χ(m;x)− χ(m; y)

)
.

For any integer m with m ≥ p1+Φ(n−1), we get by (3.2) that

vp(B(m)) ≥ τ(m) ≥ n,
and that

vp(f(x)− f(y)) ≥ n,
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which implies that f ∈ F(Φ) because n is an arbitrary positive integer. �

In what follows, for any f ∈ F(Φ) and m ∈ N, put

b(m) = b(Φ, f ;m) := p−τ(Φ;m)B(Φ, f ;m) ∈ Zp(3.3)

by Proposition 3.1. Moreover, for any p-adic integer x and nonnegative integer j,
put

ρ(x; j) := p−1−Φ(j−1)

Φ(j)∑
i=1+Φ(j−1)

xip
i.

We now introduce a generalization of Theorem 1.1 for continuous functions.

THEOREM 3.2. Let Φ : N → N be a strictly increasing function and let f ∈
F(Φ). Let h, n0 and u be nonnegative integers with u < p1+Φ(n0) and

f(u) ≡ 0 (mod p1+h+n0).(3.4)

Suppose that there exists a sequence (S(n))n≥n0 of sets of nonnegative integers with

S(n) ⊂
(

0, pΦ(n+1)−Φ(n)
)
, Card S(n) = p− 1,

where Card denotes the cardinality, satisfying the following: For any nonnegative
integers n,m with

n ≥ n0, m < p1+Φ(n), m ≡ u (mod p1+Φ(n0)),

we have {
b
(

Φ, f ;m+ ip1+Φ(n)
)

mod ph+1
∣∣∣ i ∈ S(n)

}
=
{
iph mod ph+1

∣∣ i = 1, 2, . . . , p− 1
}
.(3.5)

Then there exists ξ ∈ Zp such that

f(ξ) = 0,(3.6)

ξ ≡ u (mod p1+Φ(n0)),(3.7)

and such that, for any n ≥ n0,

ρ(ξ;n+ 1) ∈ {0} ∪ S(n).(3.8)

Assume further that, for any integer m with m ≥ p1+Φ(n0) and m ≡ u (mod p1+Φ(n0)),
we have

b(Φ, f ;m) ≡ 0 (mod ph).(3.9)

Then ξ ∈ Zp satisfying (3.6), (3.7) and (3.8) is unique.

REMARK 2. As we will see in Section 4, if f is differentiable modulo ps at u,
then h corresponds to the p-adic order of the derivative of f . If Φ = Id and h = 0
then 1 + n0 = 1 + Φ(n0) which is the value of R0 in Theorem 1.1. Thus, Theorem
3.2 with Φ = Id and h = 0 implies Theorem 1.1.

REMARK 3. Note that (3.9) always holds if h = 0.

REMARK 4. A sequence (S(n))n≥n0
satisfying the assumptions of Theorem 3.2

is not generally unique. In Example 3.1, we consider the case where (3.9) holds. We
give two solutions ξ satisfying (3.6) and (3.7), by changing (S(n))n≥n0

. It would be
an interesting question to try to prove the uniqueness of ξ without assuming (3.9).
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Proof of Theorem 3.2. First, we prove the existence of such ξ by using Newton’s
method. We show by induction on j that there exists a unique sequence (uj)j≥n0

of integers with

un0 = u ∈ [0, p1+Φ(n0)) ∩ Z(3.10)

satisfying the following:

(1) For all j ≥ n0,

f(uj) ≡ 0 (mod p1+h+j).(3.11)

(2) If j ≥ 1 + n0, then there exists i ∈ {0} ∪ S(j − 1) such that

uj = uj−1 + ip1+Φ(j−1), 0 ≤ uj < p1+Φ(j).(3.12)

The case of j = n0 follows from (3.4). We assume that there exist unique integers
un0 , u1+n0 , . . . , ul for l ≥ n0 satisfying (3.10), (3.11) and (3.12) for j = n0, 1 +
n0, . . . , l. Let i ∈ S(l). We see by p1+Φ(l) ≤ ip1+Φ(l) ≤ −p1+Φ(l) + p1+Φ(l+1) that

τ
(
ul + ip1+Φ(l)

)
= l + 1

and that

M
(
ul + ip1+Φ(l)

)
= ip1+Φ(l).

Thus, using (3.3) and (2.4) with m = ul + ip1+Φ(l), we get

f
(
ul + ip1+Φ(l)

)
= f(ul) + pl+1b

(
ul + ip1+Φ(l)

)
.(3.13)

Since ul ≡ un0 = u (mod p1+Φ(n0)) by (3.12) with j = n0, 1 + n0, . . . , l, we can
apply (3.5) with n = l,m = ul. Since f(ul) ≡ 0 mod pl+1+h, selecting suitable
i ∈ {0} ∪ S(l), we obtain that

ul+1 := ul + ip1+Φ(l)(< p1+Φ(l+1))

is a unique integer satisfying (3.11) and (3.12) with j = l + 1. Putting ξ :=
limj→∞ uj we showed the existence of ξ. In fact, if n ≥ n0, then

Φ(1+n)∑
j=1+Φ(n)

ξjp
j = un+1 − un = ip1+Φ(n).

Thus, (3.8) holds with ρ(ξ;n+ 1) = i.
We now prove the uniqueness of ξ. We see that the sequence (ξ(j))j≥n0

, defined
by (2.6) for x = ξ, satisfies (3.12) by (3.8) :

ξ(j) = ξ(j − 1) + ρ(ξ; j)p1+Φ(j−1), j ≥ 1 + n0,

where ρ(ξ; j) ∈ {0}∪S(j− 1). Moreover, (3.10) holds by 0 ≤ ξ(n0) < p1+Φ(n0) and
(3.7). In the same way as the proof of Proposition 3.1, we can show for any j ≥ n0

that

f(ξ)− f(ξ(j))

=
∑

m≥p1+Φ(j)

B(m)
(
χ(m; ξ)− χ(m; ξ(j))

)
=

∑
m≥p1+Φ(j)

b(m)pτ(m)
(
χ(m; ξ)− χ(m; ξ(j))

)
.
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We fix an integer m with m ≥ p1+Φ(j)(≥ p1+Φ(n0)). Then we have χ(m; ξ(j)) = 0
by τ(m) ≥ j + 1 > j ≥ τ(ξ(j)). Moreover, χ(m; ξ) = 1 if and only if m = ξ(j′) for
some j′ ≥ j + 1. In particular, if χ(m; ξ) = 1, then we have m ≡ u mod p1+Φ(n0).

For any integer m with m ≥ p1+Φ(j) and m ≡ u mod p1+Φ(n0), we see by (3.9)
that

vp(b(m)pτ(m)) ≥ h+ τ(m) ≥ 1 + h+ j.

Thus, we get by (3.6) that

f(ξ(j)) ≡ f(ξ) = 0 (mod p1+h+j),

which implies (3.11). By the uniqueness of (uj)j≥n0
, we see ξ(j) = uj for all j ≥ n0.

This concludes the proof of the theorem. �

Example 3.1. Let a =
∑∞
i=0 aip

i ∈ Zp be fixed and f : Zp → Zp be defined by

f(x) = a+

∞∑
j=0

x2jp
j ,

where x =
∑∞
i=0 xip

i. Let Φ(n) := 2n+ 1 for any nonnegative integer n. Then we

have f ∈ F(Φ). In fact, if x, y ∈ Zp satisfy |x− y|p ≤ p−1−Φ(n−1) = p−2n for some
positive integer n, then |f(x)− f(y)|p ≤ p−n.

In what follows, we check that Theorem 3.2 is applicable to f . Putting h =
0, n0 = 0, and u = −a0, we see

u < p1+Φ(n0) = p2, f(u) ≡ 0 (mod p1+h+n0).

Moreover, let m,n, i be nonnegative integers with 0 ≤ m < p1+Φ(n) = p2n+2 and
1 ≤ i ≤ p− 1. Then we have

f
(
m+ i · p1+Φ(n)

)
− f(m) = i · pn+1.

Observe that τ(m+ i · p1+Φ(n)) = n+ 1 by p1+Φ(n) ≤ m+ i · p1+Φ(n) < p1+Φ(n+1).
Thus the number

b
(
m+ i · p1+Φ(n)

)
(≡ i (mod p))

satisfies (3.5) with S(n) = {1, 2, . . . , p− 1} for any n ≥ n0 = 0.
Similarly, (3.5) with S(n) = {p+ 1, p+ 2, . . . , 2p− 1} holds for any n ≥ n0 = 0.

In fact, we get for any 1 ≤ i ≤ p− 1 that

f
(
m+ (i+ p) · p1+Φ(n)

)
− f(m) = i · pn+1

and that τ(m+ (i+ p) · p1+Φ(n)) = n+ 1.

Example 3.2. Let p = 5 and a ∈ Z5 be fixed, and let f : Z5 → Z5 be defined by

f(x) = a+

∞∑
j=0

x3
2j5

j .

In the same way as in Example 3.1, we have f ∈ F(Φ), where Φ(n) := 2n + 1 for
any nonnegative integer n.

Observe that if m,n, i are nonnegative integers with 0 ≤ m < 52n+2 and 1 ≤ i ≤
4, then we have

f
(
m+ i · 51+Φ(n)

)
− f(m) = i3 · 5n+1.
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Moreover, the map φ : Z/5Z→ Z/5Z with

φ(x mod 5Z) = x3 mod 5Z

is bijective. Thus, in the same way as in Example 3.1, we can verify that Theorem
3.2 is applicable to f , where h = 0, n0 = 0, u is a unique integer with 0 ≤ u ≤ 4
and a+ u3 ≡ 0 (mod 5), and S(n) = {1, 2, 3, 4} for any n ≥ n0 = 0.

We give an example of Theorem 3.2 satisfying h 6= 0 in Section 4.

4. Approximability of continuous functions

In this section we use notation defined in Sections 2 and 3. Let f : Zp → Zp
be a function and u ∈ Zp. Recall for a positive integer s that f is differentiable
modulo ps at u if there exists a p-adic number ∂sf(u) satisfying the following: If n
is a sufficiently large integer, then for any u′ ∈ Zp, we have

f(u+ pnu′) ≡ f(u) + pnu′∂sf(u) (mod pn+s).(4.1)

Axelsson and Khrennikov showed for 1-Lipschitz functions f that if |∂sf(u)|p = 1,
then the Hensel’s lifting process can be used (Theorem 2.4 and Corollary 2.6 in [3]).

For the application of Theorem 3.2, we now modify the notion of differentiability
modulo ps to consider the case where f is a general continuous function, using a
strictly increasing function Φ : N → N. Let u ∈ Zp. We call f approximable at
u with respect to Φ if there exist nonnegative integers h = h(u), l = l(u), and
a sequence (δnf)(u) (n ≥ l) of p-adic numbers satisfying the following: For any
integer n ≥ l and u′ ∈ Zp, we have

f
(
u+ p1+Φ(n−1)u′

)
≡ f(u) + ph+nu′ · (δnf)(u) (mod ph+n+1).(4.2)

The approximability of continuous functions generalizes the differentiability modulo
ps. Thus, Corollary 1 is also applicable to differentiable function modulo ps. In
fact, let Φ = Id and let f be a continuous function which is differentiable modulo
ps at u. Let h = s− 1. Then (4.1) implies that

f(u+ pnu′) = f
(
u+ p1+Φ(n−1)u′

)
≡ f(u) + ph+nu′ · (δnf)(u) (mod ph+n+1),

where (δnf)(u) = ∂h+1f(u)/ph.
In order to apply Theorem 3.2 we will make use of the fact that (δnf)(u) is a

unit in Zp. Let Λ be a subset of Zp. We call f uniformly approximable on Λ with
respect to Φ if f is approximable at any u ∈ Λ with respect to Φ and if h(u), l(u)
are constants on Λ which we call h(Λ) and l(Λ) in that case.

COROLLARY 1. Let Φ : N→ N be a strictly increasing function and f ∈ F(Φ).
Let n0, u ∈ N with u < p1+Φ(n0). Assume that f is uniformly approximable on the
set

Λ :=
{
u′ ∈ Zp

∣∣∣u′ ≡ u (mod p1+Φ(n0))
}

with respect to Φ. Moreover, assume that

n0 + 1 ≥ l(Λ),

f(u′) ≡ 0 (mod ph(Λ)+n0+1)

and that

|(δnf)(u′)|p = 1
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for any n ≥ n0 and u′ ∈ Λ. Then there exists a unique ξ ∈ Zp such that

f(ξ) = 0,

ξ ≡ u (mod p1+Φ(n0)),

and such that, for any n ≥ n0,

ρ(ξ;n+ 1) ∈ {0, 1, . . . , p− 1}.

Proof. We apply Theorem 3.2 with h = h(Λ) and S(n) := {1, . . . , p− 1} for all n ≥
n0. Since f(u) ≡ 0 (mod ph(Λ)+n0+1) by the assumption of Corollary 1, it suffices
to check (3.5) and (3.9). Assume that n,m, i ∈ N satisfy n ≥ n0, m < p1+Φ(n),
m ≡ u (mod p1+Φ(n0)), and 1 ≤ i ≤ p− 1. Since τ(m + ip1+Φ(n)) = n + 1, we see
by (4.2) and by n+ 1 ≥ n0 + 1 ≥ l(Λ) that

b(m+ ip1+Φ(n)) = p−n−1(f(m+ ip1+Φ(n))− f(m))

≡ ph(Λ)i · (δn+1f)(m) (mod ph(Λ)+1),

which implies (3.5) by |(δnf)(m)|p = 1.

Now, let m be an integer with m ≥ p1+Φ(n0), m ≡ u (mod p1+Φ(n0)). Put

u′ := m −M(m) and n := τ(m) − 1 ≥ n0. Recall that M(m) =
∑Φ(n+1)
i=Φ(n)+1mip

i

and therefore u′′ := p−1−Φ(n)M(m) is an integer. Thus, we see by u′ ∈ Λ, (4.2)
and n+ 1 ≥ n0 + 1 ≥ l(Λ) that

f(u′ + p1+Φ(n)u′′) ≡ f(u′) + ph(Λ)+n+1u′′ · (δn+1f)(u′) (mod ph(Λ)+n+2).

Finally, since m = u′ + p1+Φ(n)u′′ we obtain

b(m) = p−n−1(f(u′ + p1+Φ(n)u′′)− f(u′))

≡ ph(Λ)u′′ · (δn+1f)(u′) ≡ 0 (mod ph(Λ)),

which implies (3.9). �

Example 4.1. Let a ∈ Zp be fixed. If p 6= 2, then assume that a ≡ 1 (mod p). If
p = 2, then suppose that a ≡ 1 (mod 8). For any x ∈ Zp, put

f(x) := −a+

 ∞∑
j=0

x2jp
j

2

.

Then we have f ∈ F(Φ), where Φ(n) = 2n+ 1 for any nonnegative integer n. Put

n0 = h =

{
0 if p 6= 2,

1 if p = 2.

and

l =

{
1 if p 6= 2,

2 if p = 2.

Note that in the case of p = 2 the value of h is different from 0.
First, there exists u ∈ Zp with

f(u) ≡ 0 (mod ph+n0+1).
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Let Λ := {u′ ∈ Zp | u′ ≡ u (mod p1+Φ(n0))}. We show that f is uniformly approx-
imable on Λ with respect to Φ with h(Λ) = h, l(Λ) = l and

(δnf)(x) =

{
2 if p 6= 2,

1 if p = 2
(4.3)

for any x ∈ Λ. Thus, Corollary 1 is applicable to f .
Let x ∈ Λ. Let n be an integer with n ≥ l and y ∈ Zp. Since

x+ p1+Φ(n)y =

2n+1∑
j=0

xjp
j +

∞∑
j=2n+2

(xj + yj−2n−2)pj ,

we get after a direct calculation

f
(
x+ p1+Φ(n)y

)
− f(x)

=

 n∑
j=0

x2jp
j +

∞∑
j=n+1

(x2j + y2j−2n−2)pj

2

−

 ∞∑
j=0

x2jp
j

2

≡ 2

n∑
j=0

x2jp
j ·

∞∑
j=n+1

y2j−2n−2p
j (mod p2n+2).(4.4)

Note that x0 ≡ 1 (mod p) by x ∈ Λ. If p is odd, then (4.4) implies that

f
(
x+ p1+Φ(n)y

)
− f(x) ≡ 2x0y0p

n+1 ≡ 2ypn+1 (mod pn+2).(4.5)

In the case of p = 2, we get by n ≥ 1 that

f
(
x+ 21+Φ(n)y

)
− f(x) ≡ 2x0y0 · 2n+1 ≡ y2n+2 (mod 2n+3).(4.6)

Thus, (4.5) and (4.6) imply the approximability and (4.3).
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