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Abstract
Let w be any word over the alphabet {0, 1, . . . , q− 1}, and denote by f either a
polynomial of degree d ≥ 1 or f : n 7→ mn for a fixed m. Furthermore, denote by
eq(w; f(n)) the number of occurrences of w as a subword in the base-q expansion
of f(n). We show that

lim sup
n→∞

eq(w; f(n))

log n
≥ γ(w)

`(w) log q
,

where `(w) is the length of w and γ(w) ≥ 1 is a constant depending on a
property of circular shifts of w. This generalizes work by the second author as
well as is related to a generalization of Lagarias of a problem of Erdős.

1 Introduction

Let q ≥ 2 be an integer and w a non-empty finite word over the alphabet
Aq := {0, 1, . . . , q− 1}. We denote by `(w) the length of w which is the number
of symbols (or letters) in w. For any integer n ≥ 1, consider the finite base-q
expansion of n,

n =

M∑
i=0

niq
i,

where M = M(n) = blogq nc denotes the position of the most significant digit.
We write

(n)q = nMnM−1 · · ·n0
1The first author is supported by JSPS KAKENHI Grant Number 15K17505.
2The second author acknowledges the support of the bilateral project ANR-FWF (France-
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as a shorthand notation and regard this as a word over Aq. For convenience,
put (0)q := 0. In this paper, we are concerned with the quantity eq(w;n) which
denotes the number of (possibly overlapping) occurrences of the word w in the
finite base-q expansion of n. For example, for q = 10, w = 202 and n = 20202
we have e10(202; 20202) = 2. Note that

eq(w;n) ≤ log n

log q
+ 1. (1)

The aim in this paper is to study the quantity eq(w;n) for thin subsequences of
the integers. In what follows, we denote by wk the k-th concatenation power of
a word w; if k = 0, then wk will denote the empty word. For instance, for the
word w = 20 and k = 3 we have wk = 202020.

The investigation on the number of occurrences of subwords in digital expan-
sions along special subsequences of integers has undergone some fundamental
progress in recent times. A classical point of view, dating back to the work
of Gelfond [4], is to study the distribution in residue classes. The related se-
quences are automatic sequences such as, for example, the Thue–Morse sequence
or the Rudin–Shapiro sequence. We refer the reader to [2, 5, 10, 11, 12] for an
up-to-date list of the related work.

A second and different problem is to investigate the number of occurrences
of digital blocks in these rarefied sequences. We will consider this problem
along polynomial and exponential subsequences in the present paper. We will
show that for any fixed w there are terms in these rarefied sequences whose
base-q expansion contains not too few occurrences of w as subwords. For that
purpose we will establish lower bounds on the maximal order of magnitude of
the associated counting function.

We denote the set of nonnegative integers (resp. positive integers) by N
(resp. Z+) and use the standard Landau resp. Vinogradov notation f = O(g)
resp. f � g to indicate that |f | ≤ C|g| for some absolute constant C > 0. As
common, we denote a possible dependence on the parameters in the index of
the symbols.

For a better understanding of the flavour of our results, let us first give two
examples in the case of a polynomial rarification.

First, consider w′ = 0l (l fixed) which is the l-th concatenation power of the
single letter 0 and let f(X) ∈ Z[X] be any arbitrary but fixed polynomial of
degree d ≥ 1 with f(N) ⊂ N. Since by (1),

eq(w; f(n)) ≤ log f(n)

log q
+ 1

for all non-empty words w and sufficiently large n, we have

lim sup
n→∞

eq(w′; f(n))

log n
≤ d

log q
. (2)

On the other hand, by choosing a positive integer a such that the coefficients of
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f(X + a) are all positive, we have

lim sup
n→∞

eq(w′; f(n))

log n
≥ lim sup

L→∞

eq(w′; f(qL + a))

log(qL + a)
≥ d

log q
. (3)

This is due to fact that in the base-q expansion of f(qL + a) the d blocks of 0’s
between consecutive powers of q are each of length L+Oq,f (1) as L→∞. The
two inequalities (2) and (3) lead to

lim sup
n→∞

eq(w′; f(n))

log n
=

d

log q
. (4)

As a second example, on the other end of the spectrum, let w′′ = (q− 1)l be
the l-th concatenation power of the single letter q− 1. Theorem 1 in [12] states
that there exists N0(q, f, l) > 1 such that for all N ≥ N0(q, f, l) there is an n
with eq(w′′; f(n)) = N. From the method of the proof, it follows that

lim sup
n→∞

eq(w′′; f(n))

log n
≥ 1

log q
. (5)

In fact, in the proof the author generates one block of consecutive q−1’s, hence
also losing the factor d with respect to the previous result.

Our first result gives a result for general w in the spirit of (5) and deals with
a question posed in [12].

Theorem 1. Let q ≥ 2 be a positive integer and let w be a finite word in the
alphabet Aq = {0, 1, . . . , q − 1} with length `(w) ≥ 1. Let f(X) ∈ Z[X] be a
polynomial of degree d ≥ 1 with f(N) ⊂ N. Then

lim sup
n→∞

eq(w; f(n))

log n
≥ γ(w)

`(w) log q
,

where γ(w) = γ′(w)−1 and γ′(w) ≥ 2 is the number of circular shift occurrences
of w in w2.

Note that 1 ≤ γ(w) ≤ `(w) for all non-empty words w. For example,
γ(2020) = 2, γ(0l) = γ((q − 1)l) = l. Unfortunately, our method of proof
does not allow to get the degree d as a multiplicative factor in the lower bound
(compare with (3)).

We conjecture that (4) holds true for any w, however, this seems to be a
very difficult question.

Conjecture 1. Let f(X) ∈ Z[X] be a polynomial of degree d ≥ 1 with f(N) ⊂ N.
Let w be a word in the alphabet Aq = {0, 1, . . . , q− 1} with length `(w) ≥ 1 and
denote by eq(w; f(n)) the number of (possibly overlapping) occurrences of the
word w in the finite base-q expansion of f(n). Then

lim sup
n→∞

eq(w; f(n))

log n
=

d

log q
.
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Our second result concerns exponential functions. A famous (still open)
problem by Erdős says that for all sufficiently large n the ternary expansion of
2n always contains the digit 2. We refer to the article of Lagarias [8] and to [3]
for recent and related results. Lagarias [8, Conjecture 1.12] generalized Erdős’
conjecture: For all multiplicatively independent positive integers m and q the
base-q expansion of the integers mn, n = 1, 2 . . . contain any given word w in its
base-q expansion for all sufficiently large n ≥ n0(w). While Theorem 2 does not
provide an answer to this conjecture it gives a quantitative lower bound along
a subsequence of integers and therefore (up to a constant factor) the correct
maximal order of magnitude.

Theorem 2. Let p ≥ 2 be a prime number and let w be a finite word in the
alphabet Ap = {0, 1, . . . , p − 1} with length `(w) ≥ 1. Let f(x) = mx for an
integer m ≥ 2, m not a power of p. Then

lim sup
n→∞

ep(w;mn)

log n
≥ γ(w)

`(w) log p
,

where γ(w) = γ′(w)−1 and γ′(w) ≥ 2 is the number of circular shift occurrences
of w in w2.

In Section 2 we provide a proof of Theorem 1 and Section 3 is devoted to
a proof of Theorem 2. Both proofs are based on Hensel’s lifting lemma. For a
prime number p we use Zp for the ring of p-adic integers and Qp for the field of
p-adic numbers; we denote by vp(u) the p-adic order of u ∈ Zp.

2 Proof of Theorem 1

In what follows, we suppose that w 6= 0l since we have a better result by (4) in
the case of a block consisting of 0’s only. We start with an important auxiliary
result.

Lemma 1. Let f(X) ∈ Z[X] be a polynomial of degree d ≥ 1 with f(N) ⊂ N.
Denote by a0 a nonnegative integer satisfying f ′(a0) 6= 0. Let w be a word in
the alphabet Aq = {0, 1, . . . , q − 1} that we write

w = 0kwk+1 · · ·wl, k + 1 ≤ l

with wk+1 6= 0, where all of the wi, i = k + 1, . . . , l, are of length 1 (letters).
For any positive integers c and L let L′ be the length of the word wL0c(f(a0))q.
Then there exists c = c(q, f) > 0 only depending on q and f , such that for any
positive integer L there is a nonnegative integer N < qL

′
with

(f(N))q = vwk+1 · · ·wlw
L−10c(f(a0))q,

where v is some finite (or the empty) word over Aq = {0, 1, . . . , q − 1}.
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Proof. Let q := pe11 · · · p
et
t , where p1, . . . , pt are distinct prime factors of q and

e1, . . . , et are positive integers. Let bq,L be a nonnegative integer whose base-q
expansion is denoted as

(bq,L)q = wk+1 · · ·wlw
L−10c(f(a0))q,

for some c that we will determine later.
Let L′ be the length of the word wL0c(f(a0))q. For any i = 1, . . . , t, consider

the pi-adic order of an integer m by vpi
(m). If c is sufficiently large depending

only on q and f(X), then we see for any i = 1, . . . , t that

vpi(f(a0)− bq,L) > 2vpi(f
′(a0))

by f ′(a0) 6= 0. Putting
g(X) := f(X)− bq,L,

we get
vpi(g(a0)) > 2vpi(f

′(a0)) = 2vpi(g
′(a0)).

By Hensel’s lifting lemma [9] there exists a pi-adic integer ξi ∈ Zpi
such that

f(ξi) = bq,L. Thus, for any i = 1, . . . , t, there exists an integer Ni ≤ pL
′ei

i such
that

f(Ni) ≡ bq,L (mod pL
′ei

i ).

By the Chinese remainder theorem, there is an integer N with

0 ≤ N < pL
′e1

1 · · · pL
′et

t = qL
′

(6)

and
N ≡ Ni (mod pL

′ei
i )

for any i = 1, . . . , t. Consequently, we obtain

f(N) ≡ bq,L (mod qL
′
),

which implies the lemma.

Note that the statement of the lemma also implies an upper bound on the
length of the prefix v.

We are now ready to prove Theorem 1.

Proof of Theorem 1. In what follows, we use the integer N constructed in the
proof of Lemma 1 (note that N < qL

′
, see (6)). For any positive integer L, we

see by Lemma 1 that

eq(w; f(N)) ≥ γ(w)(L− 2). (7)

By (6) and the definition of L′, we get

N < qL
′
≤ qlL+c′ , (8)
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where c′ = c′(q, f) is a constant depending only on q and f(X). Thus, we obtain
from (7) and (8) that

1

l log q
− c′

l logN
≤ L

logN
≤ 2

logN
+
eq(w; f(N))

γ(w) logN
.

Noting that N tends to infinity as L tends to infinity (by w 6= 0l), we deduce the
theorem by the inequality above. This concludes the proof of Theorem 1.

3 Proof of Theorem 2

For the proof of Theorem 2, we first introduce a generalization of Hensel’s lemma
and define the notation which we use throughout this section. Let p be a prime
number. For any positive integer m1 with m1 ≡ 1 (mod p), we set m1 = 1+ape,
where a, e are positive integers with p - a. Put g(u) := (1+ape)u for any u ∈ Zp.
Let again vp(u) be the p-adic order of u ∈ Zp. It is known that for any u, u′ ∈ Zp

with vp(u− u′) ≥ N and N ∈ N, we have

vp
(
g(u)− g(u′)

)
≥ N + 1 (9)

(see [7, Chapter 2, p.26]).
Let F be a function from Zp to Zp and let u be a fixed element of Zp. We

call F differentiable modulo ps at u with order N , where s ∈ Z+ and N ∈ N, if
there exists ∂sF (u) ∈ Qp satisfying, for any integer k > N and h ∈ Zp,

F (u+ pkh) ≡ F (u) + pkh∂sF (u) (mod pk+s). (10)

Note that if we add a constant term to F , then both the differentiability of F
and the value ∂sF (u) are not changed.

In the following proposition we generalize the second statement of Corollary
2.6 in [1]. This is needed in order to consider the case where the derivative is
not a p-adic unit. We investigated this concept for general continuous functions
that are not necessarily differentiable in [6].

Proposition 1. Let F be a function from Zp to Zp. Let j, n, s,N be nonnegative
integers with j +N < n and j < s and let u ∈ Zp. Assume that

vp
(
F (u)

)
≥ n. (11)

Moreover, suppose for any x ∈ Zp with x ≡ u (mod pn−j) that F is differentiable
modulo ps at x with order N and that

vp
(
∂sF (x)

)
= j. (12)

Then there exists a ξ ∈ Zp satisfying

F (ξ) = 0

and

ξ ≡ u (mod pn−j).
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Proof. We construct ξ ∈ Zp satisfying the conditions of Proposition 1, using the
Newton method. It suffices to show that there exists a u1 ∈ Zp satisfying

vp
(
F (u1)

)
≥ n+ 1 (13)

and

u1 ≡ u (mod pn−j). (14)

In fact, u1 will then satisfy (11), the assumption on the differentiability, and (12)
with new nonnegative integers j1 = j, n1 = n+ 1, s1 = s, and N1 = N because
if x ∈ Zp satisfies x ≡ u1 (mod pn1−j1), then x ≡ u (mod pn−j).

Let i be an integer with 0 ≤ i ≤ p − 1. Noting that n − j > N and
n− j + s ≥ n+ 1, we see by (10) that

F
(
u+ pn−j · i

)
≡ F (u) + pn−j · i∂sF (u) (mod pn+1).

Using
vp
(
pn−j∂sF (u)

)
= n ≤ vp

(
F (u)

)
,

we find i satisfying

F (u+ pn−j · i) ≡ 0 (mod pn+1).

Putting u1 := u+ pn−j · i, we obtain (13) and (14).

We now prove the differentiability of the function g(u) = (1 + ape)u, where
a and e are positive integers with p - a.

Proposition 2. Let g(u) = (1 + ape)u, where a, e are positive integers with
p - a.

1. Suppose that e ≥ 2 or p ≥ 3. Then, for any u ∈ Zp, we have that g is
differentiable modulo pe+1 at u with order 0. Moreover,

∂e+1g(u) = ape.

2. Assume that e = 1 and p = 2. Let 1 + a′ · 2t := (1 + 2a)2, where a′ and t
are integers with 2 - a′ and t ≥ 3. Then g is differentiable modulo 2t at u
with order 0. Moreover,

∂tg(u) = a′2t−1.

For the proof of Proposition 2, we need the following auxiliary result.

Lemma 2. Assume that e ≥ 2 or p ≥ 3. Let k be a nonnegative integer and
h ∈ Zp. Then we have

(1 + ape)hp
k

≡ 1 + ahpk+e (mod pk+e+1). (15)
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Proof. We may assume that h is a nonnegative integer because N is dense in
Zp. Moreover, it suffices to show (15) in the case where h is not divisible by p.
In fact, assume that (15) holds for any h ∈ N not divisible by p. Then, for any
nonnegative integer h = h′ps, where s = vp(h) ≥ 1, we see

(1 + ape)hp
k

= (1 + ape)h
′pk+s

≡ 1 ≡ 1 + ahpk+e (mod pk+e+1),

which implies (15).
First, we show (15) in in the case of h = 1, namely,

(1 + ape)p
k

≡ 1 + apk+e (mod pk+e+1). (16)

If k = 0, then (16) is trivial. If k ≥ 1, then the inductive hypothesis implies
that

(1 + ape)p
k−1

= 1 + ape+k−1 + cpe+k

for some integer c, and so

(1 + ape)p
k

= (1 + ape+k−1 + cpe+k)p ≡ (1 + ape+k−1)p (mod pk+e+1).

Since

(1 + ape+k−1)p = 1 + ape+k +

p∑
j=2

(
p

j

)
(ape+k−1)j ,

we deduce (16), using
e+ k < p(e+ k − 1)

by k ≥ 1, and e ≥ 2 or p ≥ 3.
Finally, if h ≥ 0 is a general integer not divisible by p, then (15) follows

from (16) by considering the binomial expansion of (1 + apk+e)h.

Proof of Proposition 2. Let k be any positive integer and u, h ∈ Zp. First, we
assume that e ≥ 2 or p ≥ 3. Using Lemma 2, we get

g(u+ hpk) = g(u)(1 + ape)hp
k

≡ g(u)(1 + ahpe+k) (mod pk+e+1)

≡ g(u) + hpk · ape (mod pk+e+1)

by g(u) ≡ 1 (mod p), which implies the first statement.
Next, suppose that e = 1 and p = 2. In the same way as above, using

Lemma 2 again, we see by k − 1 ≥ 0 that

g(u+ 2k · h) = g(u)(1 + a′ · 2t)h·2
k−1

≡ g(u) + (h · 2k) · (a′ · 2t−1) (mod 2k+t),

which implies the second statement.

We are now ready to give a proof of Theorem 2.
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Proof of Theorem 2. We may assume that m and p are coprime. In fact, if m
is not coprime to p, then putting m =: m′ps, where s = vp(m) and m′ ≥ 2, we
have

ep(w;mn) ≥ ep(w;m′n).

Put mp−1 =: 1 +ape and g(u) := (1 +ape)u, where a and e are positive integers
with p - a and u ∈ Zp. If p = 2 and e = 1, then we define a′ and t as in
Proposition 2.

For any finite word v = vd−1vd−2 · · · v0 on the alphabet Ap, we put

ϕp(v) :=

d−1∑
i=0

vip
i.

Moreover, for any positive integer L, let

ϕp(wL0c1) =: bp,L,

for some c that we will determine later.
Put F (u) := g(u)−bp,L for u ∈ Zp. We apply Proposition 1 with u = 0, N =

0,

j =

{
e if e ≥ 2 or p ≥ 3,

t− 1 if e = 1 and p = 2,

s = j + 1, n = j + 1 and put c := n− 1. Then we see

vp
(
F (0)

)
= vp(1− bp,L) ≥ n,

which implies (11). Moreover, the assumption on the differentiability and (12)
in Proposition 1 are satisfied by Proposition 2.

Thus, Proposition 1 implies that there exists ξ ∈ Zp satisfying g(ξ) = bp,L.
Let L′ be the length of the word wL0c1. Then we have

L′ = lL+ c+ 1.

Let N be an integer with
pL
′
≤ N < 2pL

′

and
N ≡ ξ (mod pL

′
).

Using (9), we get

m(p−1)N = g(N) ≡ g(ξ) = bp,L (mod pL
′
) (17)

Putting N ′ = (p− 1)N , we obtain by (17) and mN ′ > pL
′

that

ep(w;mN ′) ≥ γ(w)(L− 1) (18)

and that

logN ′ ≤ log
(
2(p− 1)

)
+ L′ log p

= log
(
2(p− 1)

)
+ (c+ 1) log p+ lL log p. (19)

Combining (18) and (19), we deduce Theorem 2 by letting L tend to infinity.
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