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We study an interspecific, density-dependent model of two species competing for a single nutrient in a chemostat, allowing for a predator-prey relationship between them. We have previously examined the system in the absence of species mortality, showing that multiple positive steady states can appear and disappear through a saddle-node or transcritical bifurcation. In this paper we include mortality. We give a complete analysis for the existence and local stability of all steady states of the three-dimensional system that cannot be reduced to two dimensional ones. Specializing the forms of the rate functions, we show how mortality destabilizes the positive steady state and that stable limit cycles emerge through supercritical Hopf bifurcations. To describe how the process behaves with respect to the choice of dilution rate and input concentration as control parameters, we determine the operating diagram theoretically and also numerically by using the software package MATCONT. The bifurcation diagram based on the input concentration shows various types of bifurcations of steady states, and coexistence either at a positive steady state or via sustained oscillations.

1. Introduction. The chemostat is an important laboratory apparatus used for continuous cultures of microorganisms in microbiology and ecology. The mathematical analysis of the classical chemostat model of two or more microbial species competing for a single limiting nutrient shows that only the species with the lowest 'break-even' concentration survives while all other species become extinct (see, for instance, [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures, Chemostat and bioprocesses set[END_REF][START_REF] Smith | The Theory of the Chemostat, Dynamics of Microbial Competition[END_REF]). This result, known as the Competitive Exclusion Principle (CEP), has a long history in the literature of bio-mathematics and in [START_REF] Rapaport | A new proof of the competitive exclusion principle in the chemostat[END_REF] a new proof of this principle is given using elementary analysis and comparisons of solutions of ordinary differential equations.

Although the CEP has been confirmed by the experiments of Hansen and Hubbell [START_REF] Hansen | Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes[END_REF], this principle is not compatible with the great biodiversity found in nature. Several suggestions to address the disparity in predictions of models involving multiple microbial species with observations from the laboratory can be found in the literature. Note these various mechanisms to promote coexistence: the intraspecific and interspecific competition [START_REF] Abdellatif | Competition for a single resource and coexistence of several species in the chemostat[END_REF][START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF], the flocculation [START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF][START_REF] Fekih-Salem | Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses[END_REF][START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct removal rates[END_REF][START_REF] Fekih-Salem | Operating diagram of a flocculation model in the chemostat[END_REF][START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF], the densitydependence of the growth functions [START_REF] Borsali | Contribution to the study of the effect of the interspecificity on a two nutrients competition model[END_REF][START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF][START_REF] Harmand | Microbial ecology and bioprocess control: Opportunities and challenges[END_REF][START_REF] Lobry | A new hypothesis to explain the coexistence of n species in the presence of a single resource[END_REF][START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF][START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF][START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF][START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF], the predator-prey interactions [START_REF] Boer | Food chain dynamics in the chemostat[END_REF][START_REF] Li | Simple food chain in a chemostat with distinct removal rates[END_REF], the complex food webs [START_REF] Ballyk | A nutrient-prey-predator model: Stability and bifurcations[END_REF][START_REF] Hsu | Analysis of a model of two parallel food chains[END_REF][START_REF] Wolkowicz | Successful invasion of a food web in a chemostat[END_REF], the presence of inhibitors that affects the strongest competitor [START_REF] Bar | The operating diagram for a model of competition in a chemostat with an external lethal inhibitor[END_REF][START_REF] Dellal | Global analysis of a model of competition in the chemostat with internal inhibitor[END_REF][START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF], the commensalistic relationship [START_REF] Benyahia | Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes[END_REF][START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF][START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF], and the syntrophic relationship [START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF][START_REF] El-Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF][START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF][START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF].

An extension of the classical chemostat model was considered in a series of papers by Lobry et al. [START_REF] Harmand | Microbial ecology and bioprocess control: Opportunities and challenges[END_REF][START_REF] Lobry | A new hypothesis to explain the coexistence of n species in the presence of a single resource[END_REF][START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF][START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF][START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF], taking into account general intraspecific and interspecific density-dependent growth rates with distinct removal rates for each species. Considering particular density-dependent growth functions with intraspecific interference, the numerical simulations in [START_REF] Lobry | A new hypothesis to explain the coexistence of n species in the presence of a single resource[END_REF] show the coexistence of several species for small enough interspecific interference and the exclusion of one species, at least, for large enough interspecific interference. In [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF], a mathematical analysis confirms these numerical results where this system presents the global stability of the coexistence steady state for small enough interspecific interference terms while this system exhibits bi-stability for large enough interspecific interference. With the same removal rates and only interspecific interferences, the coexistence of two species is impossible which consistent with the CEP [START_REF] El-Hajji | How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?[END_REF].

The present paper considers a model of two competitors for a single resource in a chemostat, with interspecific density-dependent growth functions. The species have a predator-prey relationship, that is, the first species (the prey) promotes the growth of the second species (the predator) which in turn inhibits the growth of the first species. In our study, the mortality (or decay) of two species is taken into account and not neglected as in previous studies [START_REF] El-Hajji | How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?[END_REF][START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF].

At time t, let S(t) denote the substrate concentration, and x 1 (t) and x 2 (t) the concentrations of prey and predator species, respectively. The model can be written as follows:

   Ṡ = D(S in -S) -f 1 (S, x 2 )x 1 -f 2 (S, x 1 )x 2 , ẋ1 = (f 1 (S, x 2 ) -D 1 )x 1 , ẋ2 = (f 2 (S, x 1 ) -D 2 )x 2 , (1) 
where D and S in represent, respectively, the dilution rate and the input substrate concentration in the chemostat. f 1 is the density-dependent growth rate of the prey species x 1 and it assumed to be increasing in the variable S and decreasing in the predator species x 2 . f 2 is the density-dependent growth rate of the predator species x 2 and it assumed to be increasing in the variable S and increasing in the prey species x 1 . The removal rate D i of species x i can be modeled as in [START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct removal rates[END_REF][START_REF] Shen | Bifurcation and stability analysis of an anaerobic digestion model[END_REF] by

D i = α i D + a i , i = 1, 2.
where the coefficient α i belongs to [0, 1] and represents the fraction of the prey and predator species leaving the reactor. In [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF], this coefficient can model a biomass reactor attached to the support or to decouple the residence time of solids and the hydraulic residence time (1/D). Moreover, a i is the nonnegative mortality (or decay) rate of the species x i . In [START_REF] El-Hajji | How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?[END_REF][START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF], the mathematical analysis of model [START_REF] Abdellatif | Competition for a single resource and coexistence of several species in the chemostat[END_REF] shows that the system may exhibit the coexistence or the bi-stability with a multiplicity of positive steady states, in the particular case α i = 1 and a i = 0. Moreover, in [START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF], the operating diagram shows that all steady states can appear or disappear only through saddlenode or transcritical bifurcations according to the control parameters represented by the dilution rate, D, and the input concentration, S in , of the substrate. Indeed, the operating diagram is a very useful tool to determine how a process behaves when all biological parameters are fixed and the control parameters are varied, as they are the most easily manipulated parameters in a chemostat. This diagram is very important to understand the model from the mathematical and biological point of view. It is often built in the mathematical literature (see [START_REF] Abdellatif | Competition for a single resource and coexistence of several species in the chemostat[END_REF][START_REF] Bar | The operating diagram for a model of competition in a chemostat with an external lethal inhibitor[END_REF][START_REF] Dali-Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF][START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF][START_REF] Dellal | Global analysis of a model of competition in the chemostat with internal inhibitor[END_REF][START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF][START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF][START_REF] Fekih-Salem | Operating diagram of a flocculation model in the chemostat[END_REF][START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures, Chemostat and bioprocesses set[END_REF][START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF][START_REF] Sari | The operating diagram for a two-step anaerobic digestion model[END_REF][START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF][START_REF] Weedermann | Optimal biogas production in a model for anaerobic digestion[END_REF]) and the biological literature (see [START_REF] Khedim | Effect of control parameters on biogas production during the anaerobic digestion of protein-rich substrates[END_REF][START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF][START_REF] Wade | Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web[END_REF][START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF]). In [START_REF] Mtar | Effect of the mortality on a density-dependent model with a predator-prey relationship, CARI[END_REF], we have studied the existence and the local stability of model [START_REF] Abdellatif | Competition for a single resource and coexistence of several species in the chemostat[END_REF] in the particular case where α i = 1.

The aim of this paper is to understand the joint effect of mortality and predatorprey relationship on the behavior of the density-dependent model considered in [START_REF] El-Hajji | How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?[END_REF][START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF]. Our study provides an extension of the results in [START_REF] El-Hajji | How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?[END_REF][START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF] by considering distinct removal rates where the system cannot be reduced to a two-dimensional one. Using the Routh-Hurwitz criterion, we determine conditions of the existence and local stability of all steady states according to operating parameters D and S in . In contrast to the case without mortality, where the coexistence may occur only around a positive steady state [START_REF] El-Hajji | How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?[END_REF][START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF], our results show that the mortality can destabilize the positive steady state through Hopf bifurcation where the coexistence can be around a stable limit cycle. It is known that introducing decay for the species in the classical predator-prey models in the chemostat results in instability and chaos [START_REF] Kooi | Chaotic behaviour of a predator-prey system in the chemostat[END_REF]. For more details on food-chains in the chemostat, the reader may consult [START_REF] Boer | Food chain dynamics in the chemostat[END_REF][START_REF] Van Voorn | Ecological consequences of global bifurcations in some food chain models[END_REF][START_REF] Vayenas | Chaotic dynamics of a food web in a chemostat[END_REF]. In our model, the same intrinsic effect of mortality on the stability of the positive steady state is observed. Indeed, when mortality is included in the density-dependent model with predator-prey relationship, the positive steady state is not necessarily stable, when it exists. On the other hand, our study provides an important tool which is the operating diagram to determine the region of the emergence of stable limit cycles theoretically from Routh-Hurwitz conditions and numerically by using the software MATCONT [START_REF] Dhooge | New features of the software MatCont for bifurcation analysis of dynamical systems[END_REF]35]. Finally, according to the control parameter S in a one-parameter bifurcation diagram determines all types of bifurcations.

The paper is structured as follows. We first introduce in Section 2 assumptions on the growth functions and preliminary results. Then we determine the necessary and sufficient conditions of existence and stability of the steady states using the nullcline method. In Section 3, we determine theoretically the operating diagrams and then numerically by using MATCONT. Section 4 deals, with respect to the input concentration S in , the one-parameter bifurcation diagram and the Hopf bifurcation. The numerical simulations validate the theoretical analysis of the operating diagram. Some conclusions are drawn in Section 5. Finally, all the parameter values used in simulations are provided in Appendix A and the definitions of the various auxiliary functions used in our paper are summarized in Appendix B.

2.

Assumptions and mathematical analysis. In this paper, we assume that the growth functions f 1 (S, x 2 ) and f 2 (S, x 1 ) are continuously differentiable (C 1 ) and satisfy the following hypotheses.

(H1) For all x j 0 and S > 0, f i (0, x j ) = 0 and f 2 (S, 0) = 0. (H2) For all S > 0, x 1 > 0 and x 2 0, ∂fi ∂S (S, x j ) > 0, ∂f1 ∂x2 (S, x 2 ) < 0 and ∂f2 ∂x1 (S, x 1 ) > 0. Assumption (H1) means that the substrate is necessary for the growth of each species and the prey species x 1 is necessary for the growth of the predator species x 2 . Assumption (H2) means that the growth rate of the prey species x 1 increases with the concentration of the substrate S and is inhibited by the predator species x 2 , whereas the growth of the predator species x 2 increases with both the concentrations of S and the prey species x 1 . We now prove the following result.

Proposition 1. Assume that assumptions (H1)-(H2) hold. For any nonnegative initial condition, the solution of system (1) exists for all t 0, remains nonnegative and is bounded. In addition, the set Proof. Since the vector field defined by ( 1) is C 1 , the uniqueness of the solution to an initial value problem holds. The boundary faces defined by x 1 = 0 and x 2 = 0 are invariant under the vector field defined by system [START_REF] Abdellatif | Competition for a single resource and coexistence of several species in the chemostat[END_REF]. Therefore, for any nonnegative initial condition, x 1 (t) and x 2 (t) are always nonnegative. Assume that S(0) 0 and that there exists t 0 > 0 such that S(t 0 ) = 0 and that S(t) > 0 for t ∈ (0, t 0 ). Then Ṡ(t 0 ) 0. On the other hand, S(t 0 ) = 0 implies Ṡ(t 0 ) = DS in > 0, which is a contradiction. Therefore, S(t) is always nonnegative. Let z = S +x 1 +x 2 . From system (1), we have

Ω = (S, x 1 , x 2 ) ∈ R 3 + : S + x 1 + x 2 DS in /
ż = D(S in -S) -D 1 x 1 -D 2 x 2 .
Consequently, ż D min (DS in /D min -z). Using Gronwall's lemma, we obtain z(t) DS in /D min + (z(0) -DS in /D min )e -Dmint for all t 0.

(

) 2 
We deduce that z(t) max {z(0), DS in /D min } for all t 0.

Therefore, the solutions of (1) are positively bounded and are defined for all t 0. From (2), we deduce that the set Ω is positively invariant and is a global attractor for (1). Now we discuss the existence of steady states of system [START_REF] Abdellatif | Competition for a single resource and coexistence of several species in the chemostat[END_REF]. A steady state of (1) exists or is said to be 'meaningful' if and only if all its components are nonnegative. The steady states are given by the solutions of the following system:

   0 = D(S in -S) -f 1 (S, x 2 )x 1 -f 2 (S, x 1 )x 2 , 0 = (f 1 (S, x 2 ) -D 1 )x 1 , 0 = (f 2 (S, x 1 ) -D 2 )x 2 . (3) 
If x 1 = 0 and x 2 > 0, we obtain D 2 = 0 from assumption (H1), which is impossible. Thus, system (1) can have at most three types of steady states labeled as follows:

• E 0 (x 1 = x 2 = 0): the washout of two species which always exists.

• E 1 (x 1 > 0, x 2 = 0): only prey species is present.

• E * (x 1 > 0, x 2 > 0): the coexistence of two species.

Since the function S → f 1 (S, 0) is increasing (see (H2)), the equation f 1 (S, 0) = D 1 has a unique solution, for all D < (f 1 (+∞, 0) -a 1 )/α 1 . This solution is noted λ 1 (D) and called the break-even concentration. If D ≥ (f 1 (+∞, 0) -a 1 )/α 1 , we let λ 1 (D) = +∞. Therefore

f 1 (S, 0) = D 1 ⇐⇒ S = λ 1 (D). (4) 
The following result determines the existence condition of the steady state E 1 according to operating parameters.

Proposition 2. Assume that (H1) and (H2) hold. The boundary steady state E 1 = ( S, x1 , 0) of system (1) is defined by

S = λ 1 (D) and x1 = D D1 (S in -λ 1 (D)). ( 5 
)
It exists if and only if

S in > λ 1 (D). ( 6 
)
When it exists, E 1 is unique.

Proof. For E 1 , x 1 > 0 and x 2 = 0. From the second equation of (3) and the definition (4) of the break-even concentration, it follows that S = λ 1 (D). From the first equation of (3), we obtain the x 1 component. Thus, E 1 exists if and only if

x 1 > 0, that is, condition (6) holds. 
Next we determine existence conditions for positive steady states E * = (S * , x * 1 , x * 2 ) where S * > 0, x * 1 > 0, and x * 2 > 0. Thus, positive steady states are solutions to this set of equations equivalent to (3)

D(S in -S) = D 1 x 1 + D 2 x 2 (7) 
f 1 (S, x 2 ) = D 1 (8) f 2 (S, x 1 ) = D 2 . (9) 
From ( 7), the solution S * is given by

S * = S in -D 1 x * 1 /D -D 2 x * 2 /D. (10) 
Replacing S * by this expression in [START_REF] Dali-Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF][START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF], we see that (

x 1 = x * 1 , x 2 = x * 2 ) must be a solution of f 1 (x 1 , x 2 ) := f 1 (S in -D 1 x 1 /D -D 2 x 2 /D, x 2 ) -D 1 = 0 f 2 (x 1 , x 2 ) := f 2 (S in -D 1 x 1 /D -D 2 x 2 /D, x 1 ) -D 2 = 0. ( 11 
)
Note that the functions f 1 and f 2 are defined on the set 

M := (x 1 , x 2 ) ∈ R 2 + : D 1 x 1 /D + D 2 x 2 /D S in . In addition, S * is positive if and only if D 1 x * 1 /D + D 2 x * 2 /D < S in , that is, ( 11 
E = ∂f1 ∂S , F = ∂f2 ∂S , G = -∂f1 ∂x2 , H = ∂f2 ∂x1 . (12) 
We have used the opposite sign of the partial derivative G = -∂f 1 /∂x 2 , such that all quantities involved in the following computations are positive. To solve [START_REF] Dellal | Global analysis of a model of competition in the chemostat with internal inhibitor[END_REF] in M , we need the following Lemmas 1, 2 and 3 where the proofs of Lemmas 1 and 3 are similar to those in [START_REF] Mtar | Effect of the mortality on a density-dependent model with a predator-prey relationship, CARI[END_REF].

Lemma 1. Make assumptions (H1) and (H2), assume that S in > λ 1 (D), so that a unique boundary steady state E 1 = ( S, x1 , 0) exists according to Proposition 2. The equation f 1 (x 1 , x 2 ) = 0 defines a smooth decreasing function

F 1 : [0, x1 ] -→ [0, x2 ] x 1 -→ F 1 (x 1 ) = x 2 , such that F 1 (x 1 ) = 0, F 1 (0) = x2 and -D1 D2 < F 1 (x 1 ) = -D1E D2E+DG < 0, for all x 1 ∈ [0, x1 ], ( 13 
)
where x2 is the unique solution of the equation f 1 (0, x 2 ) = 0. In addition, the graph

γ 1 of F 1 lies in M , that is, (x 1 , F 1 (x 1 )) ∈ M for all x 1 ∈ (0, x1 ) (see Fig. 2).
To define the function

x 2 = F 2 (x 1 ) of equation f 2 (x 1 ,
x 2 ) = 0, we will need the following Lemma to determine the necessary and sufficient condition for the existence of solutions of the equation

f 2 (x 1 , 0) = 0. Lemma 2. Under assumptions (H1)-(H2), the equation f 2 (x 1 , 0) = 0 has a solution in [0, DS in /D 1 ] if and only if, max x1∈[0,DSin/D1] f 2 (S in -D 1 x 1 /D, x 1 ) D 2 . (14) 
Generically, we have an even number of solutions in [0, DS in /D 1 ].

Proof. Under assumptions (H1)-(H2), the function

x 1 -→ f 2 (x 1 , 0) is continuous on [0, DS in /D 1 ] with f 2 (0, 0) = f 2 (DS in /D 1 , 0) = -D 2 . Consequently, the equation f 2 (x 1 , 0) = 0 has a solution in [0, DS in /D 1 ] if and only if max x1∈[0,DSin/D1] f 2 (x 1 , 0) 0
that is, condition ( 14) holds (see Fig. 1). For simplicity, we add the following assumption which is satisfied by the specific growth rates [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF].

x 1 1 x 2 1 D2 f2(Sin -D1x1/D, x1)
(H3) Equation f 2 (x 1 , 0) = 0 has at most two solutions x 1 1 and x 2 1 in [0, DS in /D 1 ]. The proof of the maximum number of solutions of the equation f 2 (x 1 , 0) = 0 for the specific growth rates ( 31) is similar to that in Appendix B of [START_REF] Mtar | Effect of the mortality on a density-dependent model with a predator-prey relationship, CARI[END_REF]. When the function x 1 -→ f 2 (x 1 , 0) is multimodal, the study of this general case can be treated similarly, without added difficulty. In this particular case, we obtain the next result. Lemma 3. Assume that assumptions (H1) to (H3) and condition ( 14) hold. Then, the equation f 2 (x 1 , x 2 ) = 0 defines a smooth function

F 2 : [x 1 1 , x 2 1 ] -→ [0, DS in /D 2 ) x 1 -→ F 2 (x 1 ) = x 2 , such that F 2 (x 1 1 ) = F 2 (x 2 1 ) = 0 and -D1 D2 < F 2 (x 1 ) = -D1 D2 + D D2 H F , for all x 1 ∈ [x 1 1 , x 2 1 ], (15) 
where x 1 1 and x 2 1 are the solutions of the equation

f 2 (x 1 , 0) = 0. In addition, the graph γ 2 of F 2 lies in M where (x 1 , F 2 (x 1 )) ∈ M for all x 1 ∈ (x 1 1 , x 2 
1 ) (see Fig. 2).

(a) Using Lemmas 1, 2, and 3, we can give necessary and sufficient conditions for the existence of coexistence steady states E * . Proposition 3. Coexistence steady states E * of (1) exist if and only if the curves γ 1 and γ 2 intersect in M . In this case x * 1 and x * 2 are positive solutions to the equations

x1 x2 γ1 ¡ ¡ γ2 δ x1 x 1 1 x 2 1 E1 • E0 • (b) γ2 γ1 x1 x2 δ x1 x 1 1 x 2 1 E1 • E0 • E * 1 • (c) γ2 γ1 x 1 1 x 2 1 x1 E * 1 • E * 2 • E1 • E0 • x1 x2 δ
x 2 = F 1 (x 1 ) and x 2 = F 2 (x 1 ). ( 16 
)
and S * is given by [START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF].

Proof. From ( 11) and Lemmas 1 and 3, a coexistence steady state exists if and only if the curves γ 1 and γ 2 have a positive intersection, that is, (x * 1 , x * 2 ) is a solution of [START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF]. If the intersection exists, then we have

D 1 x * 1 /D + D 2 x * 2 /D < S in .
Consequently, the component S * which defined by [START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF], is positive.

According to the position of x1 relative to x 1 1 and x 2 1 , we distinguish three cases:

Case 1 : x1 < x 1 1 < x 2 1 , Case 2 : x 1 1 < x1 < x 2 1 , Case 3 : x 1 1 < x 2 1 < x1 . (17)
In the first case, the graphs of F 1 and F 2 have disjoint domains (see Fig. 2). By the definitions of these functions, f 1 (x 1 , x 2 ) = 0 and f 2 (x 1 , x 2 ) = 0 have no point in common. In the second case, the domains overlap. The conditions F 1 (x 1 ) = 0 and

F 2 (x 1
1 ) = 0 imply that the loci must cross at least once. In the third case, the domain of F 2 is completely contained within the domain F 1 . If the graph of F 2 is completely below the graph of F 1 , there is again no point common to both loci. On the other hand, if the graph of F 2 rises above the graph of F 1 , then F 2 (x 1 1 ) = 0 = F 2 (x 2 1 ) implies at least two crossings of the loci. The following proposition determines the existence and multiplicity of positive steady states of (1). Proposition 4. Assume that hypotheses (H1) to (H3) and conditions ( 6) and ( 14) hold.

1. In Case 1, there is no positive steady state.

2. In Case 2, there exists at least one positive steady state. Generically, the system has an odd number of positive steady states. 3. In Case 3, generically system (1) has no positive steady state or an even number of positive steady states.

According to the three cases given above, one can state the following lemma.

Lemma 4. Under hypotheses (H1)-(H3) and condition ( 14), one has

f 2 λ 1 (D), D D1 (S in -λ 1 (D)) < D 2 ⇔ Case 1 or Case 3 (18) 
f 2 λ 1 (D), D D1 (S in -λ 1 (D)) > D 2 ⇔ Case 2. (19) 
Proof. Using expression (5) of x1 , if Case 1 of ( 17) holds, that is, if x1 < x 1 1 we have (see Fig. 1)

f 2 (x 1 , 0) < f 2 (x 1 1 , 0) then f 2 λ 1 (D), D D1 (S in -λ 1 (D)) < D 2 .
In the same way, if Case 3 of (17) holds, that is, if x 2 1 < x1 one has (see Fig. 1)

f 2 (x 1 , 0) < f 2 (x 2
1 , 0) and we reach the same conclusion. On the other hand, if Case 2 of (17) holds, that is, if x 1 1 < x1 < x 2 1 we obtain (see Fig. 1)

f 2 (x 1 1 , 0) < f 2 (x 1 , 0) which reduces to D 2 < f 2 λ 1 (D), D D1 (S in -λ 1 (D))
It is clear to show the other sense of the two equivalences. Now, we determine the local stability of all steady states of (1), using the abbreviation LES for locally exponentially stable steady states.

Proposition 5. Assume that assumptions (H1)-(H3) hold.

1. E 0 is LES if and only if S in < λ 1 (D).

2. E 1 is LES if and only if (18) holds.

3.

E * = (S * , x * 1 , x * 2 ) is LES if and only if F 1 (x * 1 ) < F 2 (x * 1 ) and c 4 (S in , D) := D 1 E 2 x 2 1 + D 2 F 2 x 2 2 + DD 1 Ex 1 + DD 2 F x 2 +(D 1 EF + (D 1 -D)F G + D 2 EF + (D -D 2 )EH)x 1 x 2 +(EH -F G + GH)(Ex 2 1 x 2 + F x 1 x 2 2 ) > 0 ( 20 
)
where the functions E, F , G are H are defined by [START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF], and are evaluated at E * .

Proof. Using the notation [START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF], the Jacobian matrix of (1) at (S, x 1 , x 2 ) corresponds to the 3 × 3 matrix:

J =   -D -Ex 1 -x 2 F -f 1 (S, x 2 ) -Hx 2 Gx 1 -f 2 (S, x 1 ) Ex 1 f 1 (S, x 2 ) -D 1 -Gx 1 F x 2 Hx 2 f 2 (S, x 1 ) -D 2   .
For E 0 = (S in , 0, 0), the eigenvalues are the roots of the following characteristic polynomial

P (λ) = (λ + D)(λ + D 2 )(f 1 (S in , 0) -D 1 -λ).
Thus, E 0 is LES if and only if

f 1 (S in , 0) < D 1 , that is, S in < λ 1 (D).
For E 1 = (λ 1 (D), x1 , 0), the characteristic polynomial is

P (λ) = f 2 (x 1 , 0) -λ (λ 2 + c 1 λ + c 2 ),
where

c 1 = D + x1 E and c 2 = D 1 x1 E.
Since c 1 > 0 and c 2 > 0, the real parts of the roots of the quadratic factor are negative. Therefore, E 1 is LES if and only if

f 2 (x 1 , 0) < 0, that is, condition (18) holds. For E * = (S * , x * 1 , x * 2 ), the characteristic polynomial is P (λ) = λ 3 + c 1 λ 2 + c 2 λ + c 3 , (21) 
where

c 1 = D + Ex * 1 + F x * 2 , c 2 = D 1 Ex * 1 + D 2 F x * 2 + (GH + EH -F G)x * 1 x * 2 c 3 = (DGH + D 2 EH -D 1 F G)x * 1 x * 2 . (22) 
Since c 1 > 0, according to the Routh-Hurwitz criterion, E * is LES if and only if

c 3 > 0 and c 4 (S in , D) = c 1 c 2 -c 3 > 0 ( 23 
)
where the function c 4 can be written as its expression [START_REF] Fekih-Salem | Operating diagram of a flocculation model in the chemostat[END_REF]. Using the expressions of F 1 in (13) and of F 2 in (15), we obtain

F 1 (x 1 ) -F 2 (x 1 ) = D1F G-D2EH-DGH D2F (D2E/D+G) . Consequently, at E * , we have c 3 = (F 2 (x * 1 ) -F 1 (x * 1 )) D 2 F [D 2 E/D + G]x * 1 x * 2 . (24) 
Thus, E * is LES if and only if

F 2 (x * 1 ) > F 1 (x * 1 
) and condition (20) holds.

Remark 1. In the particular case without mortality of species (D i = D), the Routh-Hurwitz coefficient given by (20) becomes

c 4 (S in , D) = D(E 2 x 2 1 + F 2 x 2 2 + D(Ex 1 + F x 2 )) + 2DEF x 1 x 2 + c 3 D (Ex 1 + F x 2 ),
where the expression of c 3 is given by [START_REF] Hanaki | Mathematical study of a two-stage anaerobic model when the hydrolysis is the limiting step[END_REF]. Using the second expression of c 3 given by [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures, Chemostat and bioprocesses set[END_REF], we find the result of [START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF] in this particular case D i = D such that the stability of the coexistence steady state E * depends on the sign of F 2 (x * 1 ) -F 1 (x * 1 ), or, equivalently, the relative directions of the curves γ 1 and γ 2 where they intersect.

3. Operating diagrams. In this section, we will study theoretically and numerically the operating diagram of system (1).

3.1. Numerical and theoretical methods to determine the operating diagram. The operating diagrams allows to understand and classify the qualitative changes of the asymptotic behavior of (1) under variation of the operating (or control) parameters which are the concentration of the substrate in the feed bottle S in and the dilution rate D. They have been studied in the existing literature with three different methods.

The first method consists in a numerical exploration of the set of operating parameters D and S in . More precisely, considering a point (D, S in ) in this set, the algebraic equations giving the steady states are numerically solved, through the use of Matlab or any other scientific computing platform, and for each meaningful steady state (i.e. with nonnegative components), the characteristic polynomial can be solved, in turn, to determine if the steady state is stable [START_REF] Wade | MI-Sim: A MATLAB package for the numerical analysis of microbial ecological interactions[END_REF]. This method was used in several papers [START_REF] Hanaki | Mathematical study of a two-stage anaerobic model when the hydrolysis is the limiting step[END_REF][START_REF] Khedim | Effect of control parameters on biogas production during the anaerobic digestion of protein-rich substrates[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF][START_REF] Wade | Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web[END_REF][START_REF] Wade | MI-Sim: A MATLAB package for the numerical analysis of microbial ecological interactions[END_REF][START_REF] Weedermann | Optimal biogas production in a model for anaerobic digestion[END_REF]. The advantage of this method is that the determination of the operating diagram does not require a complete mathematical study of the model so that this method can be applied for very complex process including a large number of variables and parameters. However, the accuracy of the results depends on the step used for the discretization of the set of operating parameters. For example, important phenomena were not detected in [START_REF] Wade | Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web[END_REF], as the emergence of limit cycles through Hopf bifurcations, which were discovered in the studies using analytical methods [START_REF] Nouaoura | Mathematical analysis of a threetiered food-web in the chemostat[END_REF][START_REF] Nouaoura | Mathematical analysis of a threetiered model of anaerobic digestion[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF].

The second method is also numerical and consists in determining the values of critical parameters and different types of bifurcations in systems of autonomous ODEs depending on parameters. Some software is set up, such as MATCONT, CONTENT, AUTO and XPPAUT [START_REF] Dhooge | New features of the software MatCont for bifurcation analysis of dynamical systems[END_REF]. This method has the advantage of detecting more complex and subtle bifurcations. It was used in [START_REF] Sobieszek | Rich dynamics of a three-tiered anaerobic food-web in a chemostat with multiple substrate inflow[END_REF] and permitted to detect Bogdanov-Takens and Bautin bifurcations in the model studied in [START_REF] Wade | Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web[END_REF].

The third method is theoretical and consists in determining the boundaries of the regions of the diagram, i.e. to compute the parameter values at which a qualitative change in the dynamic behavior of the system occurs. More precisely, the conditions of existence and stability of all steady states must be determined according to the operating parameters. To illustrate the operating diagram, the specific growth rates must be chosen by fixing all the biological parameters. Although the method is called theoretical, the determination of the various curves may require numerical experiments using a scientific numerical platform. The advantages of this method is that in some cases, it can be applied for growth rates which are not specified and must simply verify the general assumptions on the model. Therefore, it is a useful tool to predict the behavior of the system [START_REF] Abdellatif | Competition for a single resource and coexistence of several species in the chemostat[END_REF][START_REF] Bar | The operating diagram for a model of competition in a chemostat with an external lethal inhibitor[END_REF][START_REF] Dali-Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF][START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF][START_REF] Dellal | Global analysis of a model of competition in the chemostat with internal inhibitor[END_REF][START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF][START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF][START_REF] Fekih-Salem | Operating diagram of a flocculation model in the chemostat[END_REF][START_REF] Hanaki | Mathematical study of a two-stage anaerobic model when the hydrolysis is the limiting step[END_REF][START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF][START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF].

3.2.

The method of steady-state characteristics. We use the method of steadystate characteristics, introduced by Lobry et al. [START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF][START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF]. This method provides a geometric description of the existence and the asymptotic stability of all steady states, see for instance [START_REF] Abdellatif | Competition for a single resource and coexistence of several species in the chemostat[END_REF][START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF][START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct removal rates[END_REF]. It makes it possible to determine the curves where saddle-node bifurcations or Hopf bifurcations occur.

Firstly, let S 0. From (H2), the function x 2 → f 1 (S, x 2 ) is decreasing. Thus, the equation f 1 (S, x 2 ) = D 1 has a unique solution x 2 = X 2 (S, D) if and only if

(f 1 (S, +∞) -a 1 )/α 1 < D (f 1 (S, 0) -a 1 )/α 1 , that is , S ∈ I 1 = [λ 1 (D), λ1 (D)),
where λ 1 (D) is defined by (4) and λ1 (D) is the unique solution, if it exists, of equation f 1 (S, +∞) = α 1 D + a 1 . If D > (f 1 (S, +∞) -a 1 )/α 1 for all S 0, then we put λ1 (D) = +∞. Therefore

f 1 (S, x 2 ) = D 1 ⇐⇒ x 2 = X 2 (S, D). (25) 
Note that the function S → X 2 (S, D) is increasing and satisfies X 2 (λ 1 (D), D) = 0 and X 2 ( λ1 (D), D) = +∞. On the other hand, the function x 1 → f 2 (S, x 1 ) is increasing. Thus, the equation f 2 (S, x 1 ) = D 2 has a unique solution x 1 = X 1 (S, D) if and only if

D < (f 2 (S, +∞) -a 2 )/α 2 , that is , S > λ2 (D),
where λ2 (D) is the unique solution, if it exists, of equation f 2 (S, +∞) = α 2 D + a 2 . If D > (f 2 (S, +∞) -a 2 )/α 2 for all S 0, then we put λ2 (D) = +∞. Therefore,

f 2 (S, x 1 ) = D 2 ⇐⇒ x 1 = X 1 (S, D). ( 26 
)
Note that the function S → X 1 (S, D) is decreasing and satisfies X 1 ( λ2 (D), D) = +∞. Moreover, the function D → X 1 (S, D) is increasing. We begin by giving equivalent conditions to ( 18) and ( 19). We have the following result. Proposition 6. Assume that hypotheses (H1)-(H3) and condition ( 14) hold. Condition ( 18) is equivalent to

S in < λ 1 (D) + D1 D X 1 (λ 1 (D), D) = ϕ(D). (27) 
Inversely, condition ( 19) is equivalent to S in > ϕ(D).

Proof. Let S 0. Since the function D → X 1 (S, D) is increasing, the condition (18) is equivalent to

D D1 (S in -λ 1 (D)) < X 1 (λ 1 (D), D).
This completes the proof.

The necessary and sufficient conditions of existence and local stability of all steady states of (1) according to the operating parameters S in and D are summarized in Table 1.

Table 1. Necessary and sufficient conditions of existence and stability of steady states of system (1) where c 4 is defined by [START_REF] Fekih-Salem | Operating diagram of a flocculation model in the chemostat[END_REF].

Existence

Local stability E 0 always exists

S in < λ 1 (D) E 1 S in > λ 1 (D) S in < ϕ(D) E * (16) has a solution F 2 (x * 1 ) > F 1 (x * 1 ) and c 4 (S in , D) > 0
From Table 1, E 0 always exists and it is stable in the region bounded by the subset Υ 1 defined in Table 2 and located at the left of this subset (see Fig. 6). E 1 exists in the region located at the right of the subset Υ 1 and it is stable in the region located at the left of the subset Υ 2 . The coexistence steady state E * exists if and only if [START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF] has a solution, that is, the curves γ 1 and γ 2 have a positive intersection. In fact, a coexistence steady state emerges or disappears by crossing the subset Υ 2 in the operating plan. But, there can be emergence of two positive steady states via a saddle-node bifurcation when the curve γ 1 of the function x 1 → F 1 (x 1 ) is tangent to the curve γ 2 of the function x 1 → F 2 (x 1 ) (see Fig. 2). In this case, similarly to the analysis of the operating diagram in our paper Mtar et al. [START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF], the subset in the plan (S in , D) corresponding to a saddle-node bifurcation is defined by

Υ 3 := {(S in , D) : F 1 (x 1 ) = F 2 (x 1 ) and F 1 (x 1 ) = F 2 (x 1 )} , ( 28 
)
where the solution x 1 depends on S in and D. To determine the subset Υ 4 defined by c 4 (S in , D) = 0 corresponding to the destabilization of the positive steady state via a Hopf bifurcation, we use the concept of steady-state characteristics.

A positive steady state

E * = (S * , x * 1 , x * 2 ) is a solution of the set of equations    D(S in -S) = D 1 x 1 + D 2 x 2 , f 1 (S, x 2 ) = D 1 , f 2 (S, x 1 ) = D 2 . ( 29 
)
The second equation of ( 29) has a unique solution, x 2 = X 2 (S, D), and the third equation of ( 29) has a unique solution, x 1 = X 1 (S, D). From the first equations of ( 29), S * (S in , D) is the solution of equation

D(S in -S) = K(S, D) = D 1 X 1 (S, D) + D 2 X 2 (S, D). ( 30 
)
Moreover, the function K(•, D) is defined on [max(λ 1 (D), λ2 (D)), λ1 (D)) so that the functions X 1 (•, D) and X 2 (•, D) are positive. It tends to infinity as S tends to λ1 (D) and is non-monotonic (see Fig. 4). Let

S SN in (D) := K(S SN (D),D) D + S SN (D),
where S = S SN (D) is the unique solution of equation ∂K/∂S = -D. Thus, we can define differently the subset Υ 3 [START_REF] Kooi | Chaotic behaviour of a predator-prey system in the chemostat[END_REF] by that in Table 2. Let C j (S), j = 3, 4 be the functions defined by formulas ( 22) and ( 23), respectively, where the functions E, F , G and H are defined in [START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF]. Originally, we observed these quantities depend on S, x 1 , and x 2 , but now we take x 1 = X 1 (S, D) and x 2 = X 2 (S, D) and view these quantities as functions of S alone. More precisely, we have

c j (S in , D) = C j (S * (S in , D)), j = 3, 4,
where S * (S in , D) is a solution of equation [START_REF] Lobry | A new hypothesis to explain the coexistence of n species in the presence of a single resource[END_REF]. Table 2 summarizes the set Υ = {Υ 1 , Υ 2 , Υ 3 , Υ 4 } which are the boundaries of different regions of the (S in , D)-plane. Table 2. The set Υ and the corresponding colors in Figs. 6 and7 where ϕ(D) and c 4 are defined by ( 27) and ( 20), resp.

Υ Color Υ 1 = {(S in , D) : S in = λ 1 (D)} Black Υ 2 = {(S in , D) : S in = ϕ(D)} Blue Υ 3 := {(S in , D) : S in = S SN in (D)} Υ 4 = {(S in , D) : c 4 (S in , D) = 0} Green
In what follows, due to the impossibility of having an explicit expression for Υ 4 , we consider specified growth functions and fixed biological parameter values and we use MAPLE [START_REF] Maple | Version 13.0[END_REF] to determine and draw this subset and to verify the condition of stability F 2 (x * 1 ) > F 1 (x * 1 ) of the steady state E * . We will also use MATCONT [35] to plot numerically the operating diagram and compare it with the diagram obtained theoretically.

Application to specific growth functions.

To construct the operating diagram, the method described in the previous section can be applied to all growth rates satisfying assumptions (H1)-(H3). Let us illustrate this on the following specific growth rates that satisfy the conditions (H1)-(H3):

f 1 (S, x 2 ) = m1S K1+S 1 1+x2/L1 , f 2 (S, x 1 ) = m2S K2+S x1 L2+x1 , (31) 
where m 1 , m 2 are the maximum growth rates; K 1 , K 2 and L 2 are the Michaelis-Menten constants; L 1 is the inhibition factor due to x 2 for the growth of the species x 1 . The values of these biological parameters are given in Table 7.

For the numerical simulations, we have used MAPLE [START_REF] Maple | Version 13.0[END_REF] to plot the Figs. 1, 2, 3, 4, 5, 6, 8, and 10, MATCONT [35] for Fig. 7 and Scilab [START_REF]version 6.0.1[END_REF] for Figs. 9, 11, 12 and 13. The limit cycles in Figs. 9, 12 and 13 were plotted by solving the ordinary differential equations using the default solver "lsoda" from the ODEPACK package in Scilab.

Fig. 3 illustrates that the function C 3 (S) is positive for various values of D from the starting points in red of coordinates (max(λ 1 (D), λ2 (D)), 0). Note that for the specific growth rates [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF], λ1 (D) = +∞ since D 1 > f 1 (S, +∞) = 0 for all S 0. According to [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures, Chemostat and bioprocesses set[END_REF], the positivity of C 3 (S) shows that F 2 (x * 1 ) > F 1 (x * 1 ) for this set of parameters in Table 7. Thus, Υ 3 is empty and system (1) cannot exhibit a multiplicity of positive steady states appearing through saddle-node bifurcations. In Mtar et al. [START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF], we have already show how we can determine the subset Υ 3 corresponding to a saddle-node bifurcation. In Fig. 4, the curve of the function 

K(S, D

) is colored in blue when C 4 (S) < 0, that is, when the positive steady state is unstable. It is colored in red when C 4 (S) > 0, that is, when the positive steady state is stable. From (30), the critical value of S in corresponding to Hopf bifurcation when C 4 (S) = 0 (or also when the curve of K(S, D) changes color) is given by

S in = K(S, D)/D + S.
In particular, if the equation C 4 (S) = 0 has n solutions S i , i = 1, . . . , n, we put

σ i+2 = K(S i , D)/D + S i . (32) 
Note that we started with σ 3 because σ 1 and σ 2 are reserved for the transcritical bifurcations since they are less than σ 3 (see Table 5). Finally, using a procedure in D, we can determine the subset Υ 4 corresponding to Hopf bifurcation in the operating diagram of Fig. 6.

For the set of parameters in Table 7 corresponding to the operating diagram in Fig. 6, the numerical simulations show that the equation C 4 (S) = 0 has three solutions S i , i = 1, 2, 3 for 0 < D < D * 0.2648 (see Fig. 5). Using [START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF], we can deduce the corresponding three critical values σ i , i = 3, 4, 5, which are provided in Table 5 and shown in Fig. 9. Moreover, these critical values correspond to the subset Υ 4 in Fig. 6. However, when D * < D < D max 1.595, the equation c 4 (S) = 0 has a unique solution S 1 that corresponds to the unique critical value σ 3 . The following result determines the operating diagram for specific growth rates [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF] and a set of parameters in Table 7.

Proposition 7. For the biological parameter values provided in Table 7, the existence and the stability of the steady states of (1) in the four regions J k , k = 1, . . . , 4 of the operating diagram are determined in Table 3.

In the following, we used MATCONT [35] to determine the operating diagram presented in Fig. 7. In fact, MATCONT is a MATLAB software package for the numerical study of the continuation of steady states according to one parameter and the various bifurcations according to one or two parameters. It has many features and supports many functions, e.g. the continuation of branch points of steady states, limit cycles, homoclinic orbits, the detection of branch points, and Hopf bifurcation, etc. See [START_REF] Dhooge | New features of the software MatCont for bifurcation analysis of dynamical systems[END_REF] and the references therein for more details. Although the numerical operating diagram is identical to the theoretical one in Fig. 6, it must Table 3. Existence and stability of steady states according to regions in the operating diagrams of Figs. 6 and7. The letter S (resp. U) means stable (resp. unstable) steady state. Absence of letter means that the corresponding steady state does not exist.

Condition

Region Color be stressed that they were obtained completely different methods. The diagram in Fig. 6 is obtained by using our theoretical results and drawing the Υ i subsets, defined in Table 2, that separate the different regions of the operating diagram, whereas the diagram in Fig. 7 is obtained numerically using MATCONT.

E 0 E 1 E * S in < λ 1 (D) J 1 Cyan S λ 1 (D) < S in < ϕ(D) J 2 Pink U S ϕ(D) < S
Proposition 8 records the nature of all bifurcations occurring as (S in , D) crosses curves in the set Υ and steady states coalesce or change stability. Proposition 8. The bifurcation analysis of the steady states of (1) by crossing the curves of Υ according to the operating parameters S in and D is summarized in Table 4.

Figs. 8(a)-(c) illustrate how the coexistence region J 4 around a stable limit cycle is reduced and eventually disappears as the mortality rates a 1 and a 2 defined in the introduction of system (1) tend to zero. They support our result in [START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF] that the process cannot admit a limit cycle if there is no mortality. of steady states of (1) according to S in are given in Table 6 where the bifurcation values σ i , i = 1, . . . , 5 and the corresponding nature of the bifurcations are defined in Table 5. Interval of

S in E 0 E 1 E * (0, σ 1 ) S (σ 1 , σ 2 ) U S (σ 2 , σ 3 ) U U S (σ 3 , σ 4 ) U U U (σ 4 , σ 5 )
U U S (σ 5 , +∞) U U U Fig. 9 represents the one-parameter bifurcation diagram of system (1) where the ω-limit set is projected to the coordinate S depending on the control parameter S in . Indeed, in Fig. 9(a), we observe more clearly the transcritical bifurcations occurring at σ 1 and σ 2 , and the appearance of a stable limit cycle via a supercritical Hopf bifurcation at σ 3 and its disappearance via a second supercritical Hopf bifurcation at σ 4 . Increasing S in further, another stable limit cycle emerges through a supercritical Hopf bifurcation at σ 5 as illustrated in Fig. 9 To understand and analyze the change of local stability occurring through the positive steady state E * as S in varies, we determine numerically the eigenvalues of the Jacobian matrix J at E * by computing the roots of the characteristic polynomial [START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF]. All biological parameters are fixed together with the dilution rate D. Indeed, this characteristic polynomial has one negative eigenvalue and one pair of complexconjugate eigenvalues

λ ± = µ(S in ) ± iν(S in ). (33) 
As shown in Fig. 10, as the operating parameter S in increases beyond σ 2 , the value at which the positive steady state appears, the real part of the conjugate pair of eigenvalues is negative. The real parts transition to positive when S in reaches σ 4 0.53 and back to negative when S in reaches σ 4 0.72. In this particular example, the last transition from negative real part to positive real part occurs when S in reaches σ 5 12.48. In addition, numerically, we check the following inequality dµ dS in

(σ i ) = 0, i = 3, 4, 5. (34) 
This is consistent with Fig. 9, showing that, as S in increases and crosses σ i , i = 3, 4, 5, the positive steady state E * changes its stability through three supercritical Hopf bifurcations with the occurrence or disappearance of a stable limit cycle that we illustrate in Figs. 12 and 13. To validate the previous results, we illustrate in the following the three-dimensional phase plot and the trajectories time in some interesting cases.

• For S in ∈ (σ 2 , σ 3 ), the numerical simulations done in the three-dimensional phase space (S, x 1 , x 2 ) for various positive initial conditions permit to conjecture the global convergence towards E * (see Fig. 11). • For S in ∈ (σ 3 , σ 4 ), the numerical simulations done for various positive initial conditions permit to conjecture the global asymptotic stability of a stable limit cycle (see Fig. 12). • For S in > σ 5 , Fig. 13 shows from a neighborhood of E * of size order = 10 -3 that the system exhibits sustained oscillations of all quantities, suggesting the system evolves toward a stable limit cycle. 

Conclusion.

In this paper, we have analysed an interspecific density dependent model of a predator-prey relationship between two microbial species in a chemostat, taking into consideration mortality with distinct removal rates. Under general growth functions, we give a complete analysis of system (1) by determining theoretically the operating diagram. The illustration of this diagram as well as the one-parameter bifurcation diagram and the Hopf bifurcations are obtained by specializing these functions.

Using the nullcline method [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF][START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF], the necessary and sufficient conditions of existence of all steady states of (1) are determined according to the parameter control. Indeed, this method provides a geometric description of the existence of the boundary steady states which are unique, and the multiplicity of the positive steady states. For the local stability of the positive steady state, we have used the Routh-Hurwitz criterion (23) since we cannot determine explicitly the eigenvalues of the Jacobian matrix at this point, in contrast to the boundary steady states, the stability conditions are determined explicitly. We show that the positive steady state can destabilize with the emergence of a stable limit cycle via a supercritical Hopf bifurcation.

Using the necessary and sufficient conditions of existence and stability of all steady states, the operating diagrams are analyzed analytically to determine the behavior of the system according to the concentration of substrate in the feed bottle S in and the dilution rate D. These conditions are plotted in MAPLE using specific growth functions given by [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF]. Then, these theoretical results on the operating diagram are validated numerically using MATCONT.

In fact, the process exhibits an even richer set of possible behaviors illustrated in the operating diagram: either the washout (J 1 ) or the exclusion of the predator (J 2 ) or the coexistence of the predator-prey species around a positive steady state (J 3 ) or a stable limit cycles (J 4 ). The one-parameter bifurcation diagram is determined according to the input substrate concentration S in as the bifurcating parameter. It shows the transcritical bifurcation as well as the three supercritical Hopf bifurcations with the appearance and the disappearance of the stable periodic orbits. The numerical simulations illustrate the three-dimensional phase space showing the coexistence around a coexistence steady state or a stable limit cycle, while the time course shows the sustained oscillations.

The comparison of our results with those in the existing literature [START_REF] El-Hajji | How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?[END_REF][START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF] proves that the addition of mortality terms of the species in the interspecific densitydependent model (1) with a predator-prey relationship can destabilize the positive steady states. However, the addition of mortality does not change the global behavior of the process where there can be either washout of the two species or exclusion of the predator, or coexistence of the two species around a steady state or a stable limit cycle. Table 7. Parameter values used for model (1) when the growth rates f 1 and f 2 are given by [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF]. Table 8. Break-even concentration, notations and auxiliary functions. 

f 1 (x 1 , x 2 ) f 1 (x 1 , x 2 ) = f 1 (S in -D1 D x 1 -D2 D x 2 , x 2 ) -D 1 , see (11) f 2 (x 1 , x 2 ) f 2 (x 1 , x 2 ) = f 2 (S in -D1 D x 1 -D2 D x 2 , x 1 ) -D 2 , see (11) 
F 1 (x 1 )

x 2 = F 1 (x 1 ) is the unique solution of equation f 1 (x 1 , x 2 ) = 0 It is defined for 0 ≤ x 1 ≤ x1 , see Lemma 1

F 2 (x 1 )
x 2 = F 2 (x 1 ) is the unique solution of equation f 2 (x 1 , x 2 ) = 0 It is defined for x 1 1 ≤ x 1 ≤ x 2 1 , where x 1 1 and x 2 1 are the solutions of equation f 2 (x 1 , 0) = 0, see Lemma 3

(x * 1 , x * 2 ) (x * 1 , x * 2
) is a solution of x 2 = F 1 (x 1 ) = F 2 (x 1 ), see Prop. 

  D min is positively invariant and is a global attractor for the dynamics (1), where D min = min(D, D 1 , D 2 ).

  ) has a positive solution in the interior M of M . In what follows, we define the line δ by D 1 x 1 /D + D 2 x 2 /D = S in and we need the next notations:

Figure 1 .

 1 Figure 1. Existence of solutions of equation f 2 (x 1 , 0) = 0. The color in this figure and all other Figures is available online only.

Figure 2 .

 2 Figure 2. Number of positive steady states: (a) Case 1: no positive steady state when (S in , D) = (0.26, 0.1), (b) Case 2: an odd number when (S in , D) = (0.35, 0.1), (c) Case 3: an even number when (S in , D) = (4.5, 0.8).

Figure 3 .

 3 Figure 3. Curves of the function C 3 (S) for different values of D when S > max(λ 1 (D), λ2 (D)).

Figure 4 .

 4 Figure 4. (a) Steady-state characteristics describing the local asymptotic behavior of the positive steady state E * when D = 0.25. Magnification for (b) S 2 and (c) 0.32 S 0.36.

Figure 5 .

 5 Figure 5. Case D = 0.25 D * 0.2648: (a) Change of sign of C 4 when S 1 0.3299 (or equivalently σ 3 0.5255), S 2 0.3423 (or equivalently σ 4 0.7159) and S 3 1.4365 (or equivalently σ 5 12.4809). (b) Magnification for S ∈ [0.316, 1.7] and (c) magnification for S ∈ [0.316, 0.361].

4 YellowFigure 6 .

 46 Figure 6. Operating diagram of (1) in MAPLE. (b)-(e) Magnification when (S in , D) ∈ [0, 2.6]×[0, 0.3]. (c)-(f) Magnification when (S in , D) ∈ [0, 0.6] × [0, 0.3].

Table 5 .

 5 Definitions of the critical values σ i , i = 1, . . . , 5 of S in and the corresponding nature of bifurcations when D = 0.25. Definition Value Bifurcation σ 1 = λ 1 (D) 0.31884 TB σ 2 = ϕ(D) 0.35394 TB σ 3 is the first solution of equation c 4 (S in ) = 0 0.52555 SHB σ 4 is the second solution of equation c 4 (S in ) = 0 0.71593 SHB σ 5 is the third solution of equation c 4 (S in ) = 0 12.4809 SHB

Figure 9 .

 9 Figure 9. Scilab simulation showing projections of the ω-limit set in variable S when D = 0.25: (a) emergence and the disappearance of limit cycle at σ 3 and σ 4 for S in ∈ [0.3, 0.8]; (b) emergence of limit cycle at σ 5 for S in ∈ [0.8, 30].

Figure 10 .

 10 Figure 10. (a) Variation of the pair of complex-conjugate eigenvalues (33) as S in increases from 0 to 40 when D = 0.25. (b) Magnification on λ ± for S in ∈ [0.4, 0.8].

Figure 11 .Figure 12 .

 1112 Figure 11. Case S in = 0.5 ∈ (σ 2 , σ 3 ) and D = 0.25: convergence to E * .

Figure 13 .

 13 Figure 13. Case S in = 15 > σ 5 and D = 0.25: convergence to a stable limit cycle showing the sustained oscillations.

λ 1

 1 (D) S = λ 1 (D) is the solution of equation f 1 (S, 0) = α 1 D + a 1 It is defined for D < (f 1 (+∞, 0) -a 1 )/α 1 , see (4) x1 x1 = D D1 (S in -λ 1 (D)), see(5)

3

 3 

X 1 (S, D) x 1 =

 11 X 1 (S, D) is the solution of equation f 2 (S, x 1 ) = α 2 D + a 2 It is defined for S > λ2 (D), where λ2 (D) is the unique solution, if it exists, of equation f 2 (S, +∞) = α 2 D + a 2 , see (26) X 2 (S, D) x 2 = X 2 (S, D) is the solution of equation f 1 (S, x 2 ) = α 1 D + a 1 It is defined for λ 1 (D) ≤ S < λ1 (D), where λ1 (D) is the unique solution, if it exists, of equation f 1 (S, +∞) = α 1 D + a 1 , see (25) ϕ(D) ϕ(D) = λ 1 (D) + D1 D X 1 (λ 1 (D), D), see (27) K(S, D) K(S, D) = D 1 X 1 (S, D) + D 2 X 2 (S, D), see (30)

Table 6 .

 6 Existence and stability of steady states according to S in .

  (b). Then, the oscillations are sustained for all S in > σ 5 .
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Table 4. Nature of bifurcations of the steady states of (1) by crossing to the surfaces of Υ. The letter TB (resp. SHB) means a transcritical bifurcation (resp. Supercritical Hopf bifurcation). In this section, we employ the package Scilab to make a representation of the evolution of the bifurcations in the system using the input substrate concentration S in as the bifurcation parameter, while the dilution rate D is held fixed. Scilab is also used to prepare snapshots showing interesting trajectories for non-bifurcation values of the parameters before and after Hopf bifurcations. All other parameters of system (1) are fixed (see Table 7). In a similar way, we can study the one-parameter bifurcation diagram where the dilution rate D is the bifurcation parameter. The following result determines the one-parameter bifurcation diagram according to S in from the operating diagram of Fig. 6 (or equivalently of Fig. 7) when the dilution rate D = 0.25.

Subset Transition Bifurcation

Proposition 9. Assume that the biological parameters in (1) are given as in Table 7 using the specific growth rates [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF] with D = 0.25. The existence and stability Appendix A. Parameter values used for numerical simulations. All the values of the parameters used in the numerical simulations are provided in Table 7.

Appendix B. Auxiliary functions used in the paper. For the convenience of the reader, we summarize in Table 8 all the auxiliary functions that were used in this paper.