
HAL Id: hal-03283371
https://hal.science/hal-03283371v1

Preprint submitted on 10 Jul 2021 (v1), last revised 18 Mar 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mortality can produce limit cycles in density-dependent
models with a predator-prey relationship

Tahani Mtar, Radhouane Fekih-Salem, Tewfik Sari

To cite this version:
Tahani Mtar, Radhouane Fekih-Salem, Tewfik Sari. Mortality can produce limit cycles in density-
dependent models with a predator-prey relationship. 2021. �hal-03283371v1�

https://hal.science/hal-03283371v1
https://hal.archives-ouvertes.fr


MORTALITY CAN PRODUCE LIMIT CYCLES IN

DENSITY-DEPENDENT MODELS WITH A PREDATOR-PREY

RELATIONSHIP

Tahani Mtara and Radhouane Fekih-Salema,c,∗ and Tewfik Sarib

aUniversity of Tunis El Manar, National Engineering School of Tunis, LAMSIN, 1002, Tunis, Tunisia
b ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France

c University of Monastir, Higher Institute of Computer Science of Mahdia, 5111, Mahdia, Tunisia

Abstract. In this paper, we study an interspecific density-dependent model

of two species competing on a single nutrient in a chemostat, taking into ac-

count the predator-prey relationship. Without mortality of species, we have
proved previously that the system may have a multiplicity of positive steady

states that can only appear or disappear through saddle-node or transcritical

bifurcations. Including the mortality, we give a complete analysis for the ex-
istence and local stability of all steady states of the three-dimensional system

which cannot be reduced to a two-dimensional one. We highlight the effect of

mortality to destabilize the positive steady state with the emergence of stable
limit cycles through supercritical Hopf bifurcations. To describe how the pro-

cess behaves according to control parameters represented by the dilution rate

and the input concentration of the substrate, we determine theoretically the
operating diagram by plotting the various conditions of existence and stabil-

ity and numerically by using MATCONT. The bifurcation diagram according
to the input concentration shows the various types of bifurcations of steady

states and the coexistence either around a positive steady state or sustained

oscillations.

1. Introduction. The chemostat is an important laboratory apparatus used for1

continuous cultures of microorganisms in microbiology and ecology. The mathe-2

matical analysis of the classical chemostat model of two or more microbial species3

competing for a single limiting nutrient shows that only the species with the lowest4

‘break-even’ concentration survives while all other species are extinct (see, for in-5

stance, [21, 40]). This result, known as the Competitive Exclusion Principle (CEP),6

has a long history in the literature of bio-mathematics and recently in [35] a new7

proof of this principle is given using elementary analysis and comparisons of solu-8

tions of ordinary differential equations.9

Despite the CEP has been confirmed by the experiences of Hansen and Hubbell10

[20], this principle contradicts the great biodiversity found in nature as well as11
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bioprocesses. To better reconcile theory and observations, several recent extensions12

of this classic chemostat model have been triggered promoting the coexistence of13

microbial species. The reader can found in the existing literature the following14

various coexistence mechanisms: the intra and inter specific competition [1, 9], the15

flocculation [14, 16, 17, 18, 19], the density-dependence of the growth functions16

[7, 15, 22, 27, 28, 29, 30, 33], the predator-prey interactions [6, 26], the complex17

food webs [2, 23, 45], the presence of inhibitors that affects the strongest competitor18

[3, 10, 11], the commensalistic relationship [4, 5, 37], and the syntrophic relationship19

[8, 13, 36, 46].20

An extension of the classical chemostat model was considered in a series of papers21

by Lobry et al. [22, 27, 28, 29, 30], taking into account general intra and interspe-22

cific density-dependent growth rates with distinct removal rates for each species.23

Considering particular density-dependent growth functions with intraspecific in-24

terference, the numerical simulations in [27] show the coexistence between several25

species for small enough inter specific interference and the exclusion of one species,26

at least, for large enough inter specific interference. In [15], a mathematical analysis27

confirms these numerical results where this system presents the global stability of28

the coexistence steady state for small enough interspecific interference terms while29

this system exhibits bi-stability for large enough interspecific interference. With30

the same removal rates and only interspecific interferences, the coexistence of two31

species is impossible which confirms the CEP [12].32

The present paper considers a model of two competitors for a single resource33

in a chemostat, with interspecific density-dependent growth functions. The species34

have a predator-prey relationship, that is, the first species (the prey) promotes the35

growth of the second species (the predator) which in turn inhibits the growth of36

the first species. In our study, the mortality (or decay) of two species is taken into37

account and not neglected as in previous studies [12, 33]. The model can be written38

as follows:39  Ṡ = D(Sin − S)− f1(S, x2)x1 − f2(S, x1)x2,
ẋ1 = (f1(S, x2)−D1)x1,
ẋ2 = (f2(S, x1)−D2)x2,

(1)40

where S is the substrate concentration; x1(t) and x2(t) are, respectively, the concen-41

trations of prey and predator species; D and Sin are, respectively, the dilution rate42

and the input substrate concentration in the chemostat; f1 is the density-dependent43

growth rate of the prey species x1 that is assumed to be increasing in the variable S44

and decreasing in the predator species x2; f2 is the density-dependent growth rate45

of the predator species x2 that is assumed to be increasing in the variable S and46

increasing in the prey species x1; Di, i = 1, 2 is the removal rate of species xi and47

can be modeled as in [17, 39] by48

Di = αiD + ai, i = 1, . . . , n (2)49

where the coefficient αi belongs to [0, 1] and represents the fraction of the prey and50

predator species leaving the reactor as proposed by [5] to model a biomass reactor51

attached to the support or to decouple the residence time of solids and the hydraulic52

residence time (1/D); ai is the nonnegative mortality (or decay) rate of the species53

xi.54

In [12, 33], the mathematical analysis of model (1) shows that the system may55

exhibit the coexistence or the bi-stability with a multiplicity of positive steady56

states, in the particular case αi = 1 and ai = 0. Moreover, in [33], the operating57
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diagram shows that all steady states can appear or disappear only through saddle-58

node or transcritical bifurcations according to the control parameters represented by59

the dilution rate and the input concentration of the substrate. Indeed, the operating60

diagram is a very useful tool to determine how a process behaves when all biological61

parameters are fixed and the control parameters are varied, as they are the most62

easily parameters to manipulate in a chemostat. It is studied either numerically as63

in [24, 37, 43, 44, 46] or theoretically as in [1, 3, 8, 11, 10, 15, 18, 21, 33, 36]. In [34],64

we have studied the existence and the local stability of model (1) in the particular65

cas where αi = 1.66

The aim of this paper is to understand the joined effect of mortality and predator-67

prey relationship on the behavior of the density-dependent model considered in68

[12, 33]. In this work, our study provides an extension of the results in [12, 33] by69

considering distinct removal rates where the system cannot be reduced to a two-70

dimensional one. Using the Routh–Hurwitz criterion, we determine the existence71

conditions of all steady states and their local stability according to operating pa-72

rameters. In contrast to the case without mortality where the coexistence may73

occur only around a positive steady state [12, 33], our results show that the mor-74

tality can destabilize the positive steady state through Hopf bifurcation where the75

coexistence can be around a stable limit cycle. It is known that introducing decay76

for the species in the classical predator-prey models in the chemostat results in77

instability and chaos [25]. For more details on food-chains in the chemostat, the78

reader may consult [6, 41, 42]. In our model, the same intrinsic effect of mortality79

on the stability of the positive steady state is observed. Indeed, when mortality is80

included in the density-dependent model with predator-prey relationship, the pos-81

itive steady state is not necessarily stable, when it exists. On the other hand, our82

study provides an important tool for the experimentation which is the operating83

diagram where we succeed to determine the region of the emergence of stable limit84

cycles theoretically from Routh–Hurwitz conditions and numerically by using the85

software MATCONT [32]. Finally, a one-parameter bifurcation diagram determines86

all types of bifurcations.87

The paper is structured as follows. We first introduce in Section 2 assumptions88

on the growth functions and preliminary results. Then, we determine the necessary89

and sufficient conditions of existence and stability of the steady states using the null-90

cline method. In Section 3, we determine theoretically the operating diagrams and91

then numerically by using MATCONT. In Section 4, we study the one-parameter92

bifurcation diagram with respect to the input concentration Sin. The numerical93

simulations validate the theoretical analysis of the operating diagram. Some con-94

clusions are drawn in Section 5. All the proofs are reported in A. In Appendix B,95

we construct the operating diagram. In Appendix C, a numerical study of the Hopf96

bifurcation is provided with respect to Sin. Finally, all the parameter values used97

in simulations are provided in Appendix D.98

2. Assumptions and mathematical analysis. In this paper, we assume that99

the growth function fi(S, xj), i = 1, 2, j = 1, 2, i 6= j is continuously differentiable100

(C1) and satisfies the following hypotheses.101

(H1) For all xj > 0 and S > 0, fi(0, xj) = 0 and f2(S, 0) = 0.102

(H2) For all S > 0, x1 > 0 and x2 > 0, ∂fi
∂S (S, xj) > 0, ∂f1

∂x2
(S, x2) < 0 and103

∂f2
∂x1

(S, x1) > 0.104
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Assumption (H1) means that the substrate is necessary for the growth of each105

species and the prey species x1 is necessary for the growth of the predator species106

x2. Assumption (H2) means that the growth rate of the prey species x1 is increases107

with the concentration of the substrate S and is inhibited by the second species x2.108

While the growth of the predator species x2 is increasing with the concentration of109

the substrate S and the prey species x1. We now prove the following result.110

Proposition 1. Assume that assumptions (H1)-(H2) hold. For any nonnegative
initial condition, the solution of system (1) exists for all t > 0, remains nonnegative
and is bounded. In addition, the set

Ω =
{

(S, x1, x2) ∈ R3
+ : S + x1 + x2 6 DSin/Dmin

}
is positively invariant and is a global attractor for the dynamics (1), where Dmin =111

min(D,D1, D2).112

Now, we shall discuss the existence of steady states of system (1) and then their113

asymptotic stability. A steady state of (1) exists or is said to be ‘meaningful’ if114

and only if all its components are nonnegative. The steady states are given by the115

solutions of the following system:116  0 = D(Sin − S)− f1(S, x2)x1 − f2(S, x1)x2,
0 = (f1(S, x2)−D1)x1,
0 = (f2(S, x1)−D2)x2.

(3)117

If x1 = 0 and x2 > 0, we obtain D2 = 0 from assumption (H1), which is impossible.118

Thus, system (1) can have at most three types of steady states labeled as follows:119

• E0 (x1 = x2 = 0): the washout of two species which always exists.120

• E1 (x1 > 0, x2 = 0): only prey species is present.121

• E∗ (x1 > 0, x2 > 0): the coexistence of two species.122

From (H2), the function S 7→ f1(S, 0) is increasing. Hence, if D < (f1(+∞, 0) −123

a1)/α1, then there exists a unique solution S = λ1(D) (called the break-even con-124

centration) of equation125

f1(S, 0) = α1D + a1. (4)126

If D > (f1(+∞, 0)− a1)/α1, we let λ1(D) = +∞. The following result determines127

the existence condition of the steady state E1 according to operating parameters.128

Proposition 2. Assume that (H1) and (H2) hold. The boundary steady state129

E1 = (S̃, x̃1, 0) of system (1) is defined by130

S̃ = λ1(D) and x̃1 =
D

D1
(Sin − λ1(D)). (5)131

It exists if and only if132

Sin > λ1(D). (6)133

When it exists, E1 is unique.134

In what follows, we determine the existence condition of the positive steady state135

E∗ = (S∗, x∗1, x
∗
2) where the components S = S∗, x1 = x∗1 and x2 = x∗2 must be the136

solutions of (3) with x1 > 0 and x2 > 0. That is, S∗, x∗1 and x∗2 are the solutions of137

the set of equations138

D(Sin − S) = D1x1 +D2x2 (7)139

f1(S, x2) = D1 (8)140

f2(S, x1) = D2. (9)141



DENSITY-DEPENDENT MODEL 5

From (7), the solution S∗ is given by142

S∗ = Sin −D1x
∗
1/D −D2x

∗
2/D. (10)143

Replacing S∗ by this expression in (8,9), we see that (x1 = x∗1, x2 = x∗2) must be a144

solution of145 {
f̃1(x1, x2) := f1(Sin −D1x1/D −D2x2/D, x2)−D1 = 0

f̃2(x1, x2) := f2(Sin −D1x1/D −D2x2/D, x1)−D2 = 0.
(11)146

Note that the functions f̃i, i = 1, 2, j = 1, 2, i 6= j are defined on the set

M :=
{

(x1, x2) ∈ R2
+ : D1x1/D +D2x2/D 6 Sin

}
.

In addition, S∗ is positive if and only if D1x
∗
1/D+D2x

∗
2/D < Sin, that is, (11) has147

a positive solution in the interior M̊ of M . In what follows, we define the line δ by148

D1x1/D +D2x2/D = Sin and we need the next notations:149

E = ∂f1
∂S , F = ∂f2

∂S , G = − ∂f1
∂x2

, H = ∂f2
∂x1

. (12)150

We have used the opposite sign of the partial derivative G = −∂f1/∂x2, such that151

all constants involved in the computation become positive. To solve (11) in M̊ , we152

need the following Lemmas 1, 2 and 3 where the proofs are similar to those in [34].153

Lemma 1. Assume that assumptions (H1)-(H2) and condition (6) hold. The equa-

tion f̃1(x1, x2) = 0 defines a smooth decreasing function

F1 : [0, x̃1] −→ [0, x̃2]
x1 7−→ F1(x1) = x2,

such that F1(x̃1) = 0, F1(0) = x̃2 and154

− D1

D2
< F ′1(x1) = − D1E

D2E +G
< 0, for all x1 ∈ [0, x̃1], (13)155

where x̃2 is the unique solution of the equation f̃1(0, x2) = 0. In addition, the graph156

γ1 of F1 lies in M̊ , that is, (x1, F1(x1)) ∈ M̊ for all x1 ∈ (0, x̃1) (see Fig. 1).157

(a)

x1

x2

γ1

���

γ2

δ

x̃1 x
1
1 x2

1

E1
•

E0

•

(b)

γ2

γ1

x1

x2

δ

x̃1x1
1 x2

1

E1
•

E0

•

E∗1•

(c)

γ2

γ1

x1
1 x2

1 x̃1

E∗1
•

E∗2• E1•

E0

• x1

x2

δ

Figure 1. Number of positive steady states: (a) Case 1: no pos-
itive steady state when (Sin, D) = (0.26, 0.1), (b) Case 2: an odd
number when (Sin, D) = (0.35, 0.1), (c) Case 3: an even number
when (Sin, D) = (4.5, 0.8).

To define the function x2 = F2(x1) of equation f̃2(x1, x2) = 0, we will need of158

the following Lemma to determine the necessary and sufficient condition for the159

existence of solutions of the equation f̃2(x1, 0) = 0.160
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Lemma 2. Under assumptions (H1)-(H2), the equation f̃2(x1, 0) = 0 has a solution161

in [0, DSin/D1] if and only if,162

max
x1∈[0,DSin/D1]

f2(Sin −D1x1/D, x1) > D2. (14)163

Generically, we have an even number of solutions in [0, DSin/D1].164

For simplicity, we add the following assumption which is satisfied by the specific165

growth rates (22).166

(H3) Equation f̃2(x1, 0) = 0 has at most two solutions x1
1 and x2

1 in [0, DSin/D1].167

The proof of the maximum number of solutions of the equation f̃2(x1, 0) = 0 for168

the specific growth rates (22) is similar to that in Appendix B of [34]. When the169

function x1 7−→ f̃2(x1, 0) is multimodal, the study of this general case can be treated170

similarly, without added difficulty. In this particular case, we obtain the next result.171

Lemma 3. Assume that assumptions (H1) to (H3) and condition (14) hold, the

equation f̃2(x1, x2) = 0 defines a smooth function

F2 : [x1
1, x

2
1] −→ [0, DSin/D2[

x1 7−→ F2(x1) = x2,

such that F2(x1
1) = F2(x2

1) = 0 and172

− D1

D2
< F ′2(x1) = −D1

D2
+

D

D2

H

F
, for all x1 ∈ [x1

1, x
2
1], (15)173

where x1
1 and x2

1 are the solutions of the equation f̃2(x1, 0) = 0. In addition, the174

graph γ2 of F2 lies in M̊ where (x1, F2(x1)) ∈ M̊ for all x1 ∈ (x1
1, x

2
1) (see Fig. 1).175

Applying the previous lemmas, we establish in the following proposition the176

necessary and sufficient condition of the existence of the coexistence steady state177

E∗.178

Proposition 3. Assume that assumptions (H1) to (H3) and conditions (6) and179

(14) hold. A positive steady state E∗ = (S∗, x∗1, x
∗
2) of (1) exists if and only if the180

curves γ1 and γ2 have a positive intersection, where S∗ is given by (10) and (x∗1, x
∗
2)181

is a positive solution of equations182

x2 = F1(x1) and x2 = F2(x1). (16)183

According to the position of x̃1 between x1
1 and x2

1, there exist three cases that184

must be distinguished:185

Case 1 : x̃1 < x1
1 < x2

1, Case 2 : x1
1 < x̃1 < x2

1, Case 3 : x1
1 < x2

1 < x̃1. (17)186

When hypotheses (H1)-(H3) and condition (14) hold, one has

f2

(
λ1(D),

D

D1
(Sin − λ1(D))

)
< D2 ⇔ Case 1 or Case 3 (18)

f2

(
λ1(D),

D

D1
(Sin − λ1(D))

)
> D2 ⇔ Case 2. (19)

Remark 1. 1. Let S > 0. x1 = λ2(S, y) is the unique solution of equation y =187

f2(S, x1). Since the function x1 7→ f2(S, x1) is increasing, then the function188

y 7→ λ2(S, y) is well defined and strictly increasing for y ∈ [0, supx1>0 f2(S, x1)).189
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2. Condition (18) is equivalent to190

Sin < λ1(D) +
D1

D
λ2(λ1(D), D2) := ϕ(D). (20)191

Inversely, condition (19) is equivalent to Sin > ϕ(D).192

As a consequence of the previous results, we obtain the following proposition193

which determines the multiplicity of positive steady states of (1) according to the194

three cases of (17) or (equivalently) the two conditions in (18, 19) which depend on195

the operating parameters (see Fig. 1).196

Proposition 4. Assume that hypotheses (H1) to (H3) and conditions (6) and (14)197

hold.198

1. In Case 1, there is no positive steady state.199

2. In Case 2, there exists at least one positive steady state. Generically, the200

system has an odd number of positive steady states.201

3. In Case 3, generically system (1) has no positive steady state or an even202

number of positive steady states.203

Now, we determine the local stability of all steady states of (1) by using the204

abbreviation LES for Locally Exponentially Stable steady states.205

Proposition 5. Assume that assumptions (H1)-(H3) hold.206

1. E0 is LES if and only if Sin < λ1(D).207

2. E1 is LES if and only if Sin < ϕ(D).208

3. E∗ = (S∗, x∗1, x
∗
2) is LES if and only if F ′1 (x∗1) < F ′2 (x∗1) and209

c4(D,Sin) := D1E
2x2

1 +D2F
2x2

2 +DD1Ex1 +DD2Fx2

+(D1EF + (D1 −D)FG+D2EF + (D −D2)EH)x1x2

+(EH − FG+GH)(Ex2
1x2 + Fx1x

2
2) > 0.

(21)210

where the functions E, F , G are H are defined by (12), and are evaluated at E∗.211

Remark 2. In the particular case without mortality of species (Di = D), the
Routh–Hurwitz coefficient given by (21) becomes

c4(D,Sin) = D(E2x2
1 + F 2x2

2 +D(Ex1 + Fx2)) + 2DEFx1x2 +
c3
D

(Ex1 + Fx2),

where the expression of c3 is given by (25). Using the second expression of c3 given212

by (27), we find the result of [33] in this particular case Di = D such that the213

stability of the coexistence steady state E∗ depends on the sign of F ′2 (x∗1)−F ′1 (x∗1)214

or equivalently the relative positions of the two curves γ1 and γ2.215

The necessary and sufficient conditions of existence and local stability of all216

steady states of (1) are summarized in Table 1.

Table 1. Necessary and sufficient conditions of existence and sta-
bility of steady states of system (1) where c4 is defined by (21).

Existence Local stability
E0 always exists Sin < λ1(D)
E1 Sin > λ1(D) Sin < ϕ(D)

E∗ Sin > ϕ(D) or
F ′2 (x∗1) > F ′1 (x∗1) and c4(D,Sin) > 0

Sin < ϕ(D) and (16) has a solution

217
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3. Operating diagram. The aim of this section is to describe theoretically the218

operating diagram of system (1). We use MAPLE [31] to draw the curves that219

separate the different regions of existence and stability of the steady states of (1).220

Then, we use MATCONT [32] to analyse numerically this operating diagram. This221

diagram allows to understand and classify the qualitative changes of the asymptotic222

behavior of (1) under variation of the concentration of the substrate in the feed223

bottle Sin and the dilution rate D. Since all other parameters in (1) cannot be224

easily manipulated by the biologist, we fix it as provided in Table 7. To construct225

the operating diagram, we first define in Table 2 the set of curves Υ = {Υ1,Υ2,Υ3}226

which are the boundaries of different regions of the (Sin, D)-plane. As stated in the227

following result, the curves in the set Υ separate the operating plane (Sin, D) into228

four regions, denoted Jk, k = 1, . . . , 4, and defined in Table 3.

Table 2. The set of curves Υ and the corresponding colors in Figs.
2 and 3 where ϕ(D) and c4 are defined by (20) and (21), resp.

Υ Color
Υ1 = {(Sin, D) : Sin = λ1(D)} Black
Υ2 = {(Sin, D) : Sin = ϕ(D)} Blue
Υ3 = {(Sin, D) : c4(Sin, D) = 0} Green

229

Proposition 6. Assume that assumptions (H1)-(H2) hold and the biological pa-230

rameter values are provided as of Figs. 2 and 3 in Table 7. The existence and231

the stability of the steady states of (1) in the four regions Jk, k = 1, . . . , 4 of the232

operating diagram are determined in Table 3.233

Table 3. Existence and stability of steady states according to re-
gions in the operating diagrams of Figs. 2 and 3. The letter S
(resp. U) means stable (resp. unstable) steady state. Absence of
letter means that the corresponding steady state does not exist.

Condition Region Color E0 E1 E∗
Sin < λ1(D) J1 Cyan S
λ1(D) < Sin < ϕ(D) J2 Pink U S
ϕ(D) < Sin and c4(Sin, D) > 0 J3 Grey U U S
ϕ(D) < Sin and c4(Sin, D) < 0 J4 Yellow U U U

To illustrate the operating diagram, we consider the following specific growth234

rates that satisfying the conditions (H1)-(H2):235

f1(S, x2) =
m1S

K1 + S

1

1 + x2/L1
, f2(S, x1) =

m2S

K2 + S

x1

L2 + x1
, (22)236

where m1, m2 are the maximum growth rates; K1, K2 and L2 are the Michaelis-237

Menten constants; L1 is the inhibition factor due to x2 for the growth of the species238

x1.239

Remark 3. To determine the curve Υ3 in the operating diagram of (1), we have240

used the steady state characteristic method introduced by Lobry et al. [29, 30]241

that we present in Appendix B. This method is often used to provide a geometric242

description of the existence and the asymptotic stability of all steady states, see for243

instance [1, 15, 17].244
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(a)
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D

Sin

Υ1 Υ2

Υ3

(c)

D

Sin

Υ1 Υ2

Υ3

(d)

D
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J1

J2
AAK

J3

J4J4

���

(e)

D

Sin

J1

J2

���

J3

J4

(f)

D

Sin

J1

J2

J3

J4

Figure 2. Operating diagram of (1) in MAPLE. (b)-(e) Magnifi-
cation when (Sin, D) ∈ [0, 2.6]× [0, 0.3]. (c)-(f) Magnification when
(Sin, D) ∈ [0, 0.6]× [0, 0.3].

We also used the software MATCONT [32] to determine numerically this oper-245

ating diagram that we present in Fig. 3. Although it is identical to the theoretical246

operating diagram in Fig. 2, it must be stressed that they were obtained by com-247

pletely different methods. The diagram in Fig. 2 is obtained by using our theoretical248

results and drawing the Υi curves, defined in Table 2, that separate the different249

regions of the operating diagram, whereas the diagram in Fig. 3 is obtained numer-250

ically using MATCONT.

(a)D

Sin

J1

J2
AAK

J3

J4J4

���

(b)

D

Sin

J1

J2

���

J3

J4

(c)

D

Sin

J1

J2

J3

J4

Figure 3. Operating diagram of (1) in MATCONT. (b) Magni-
fication when (Sin, D) ∈ [0, 2.6] × [0, 0.3]. (c) Magnification when
(Sin, D) ∈ [0, 0.6]× [0, 0.3].

251

The following result determines the nature of all types of bifurcations of system252

(1) that might happen by crossing the various regions of the operating diagrams253

(Sin, D) through the curves of Υ where the steady states coalesce and can change254

stability.255
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Proposition 7. The bifurcation analysis of the steady states of (1) by crossing256

the curves of Υ according to the operating parameters Sin and D is summarized in257

Table 4.258

Table 4. Nature of bifurcations of the steady states of (1) by
crossing to the surfaces of Υ. The letter TB (resp. SHB) means a
transcritical bifurcation (resp. Supercritical Hopf bifurcation).

Curve Transition Bifurcation
Υ1 J1 to J2 TB: E0 = E1
Υ2 J2 to J3 TB: E1 = E∗
Υ3 J3 to J4 SHB: E∗

Figs. 4(a)-(b) show how the coexistence region around a stable limit cycle J4259

is reduced by decreasing the values of a1 and a2 to 0. For a1 = a2 = 0, Fig. 4(c)260

shows the disappearance of this region J4 which confirms our result in [33] where261

the process cannot admit a limit cycle without mortality, that is, for same removal262

rates of species. Therefore, the destabilization of the positive steady state is due to263

the mortality and is similar to some results obtained in the existing literature on264

the classical predator-prey model in the chemostat [25].

(a)
D

J1

J2
AAK

J3

J4J4���

(b)

J1

J2
AAK

J3

J4
H
HHHj

�
���

���

(c)

Sin

J1

J2

AAK

J3

Figure 4. Operating diagram of (1) showing the disappearance of
the region J4 when a1 and a2 diminish.

265

4. One-parameter bifurcation diagram and numerical simulations. This266

section is devoted to study the one-parameter bifurcation diagram of system (1)267

and to validate our mathematical results in the previous sections by some numerical268

simulations. First, we determine the bifurcation diagram showing the behavior of269

the process by varying the input substrate concentration Sin as the bifurcating270

parameter where the dilution rate D is fixed. However, the results are the same271

regardless of which operating parameter is varied, that is, the end results are similar272

when we vary the dilution rate D. All other parameters of system (1) are fixed (see273

Table 7). The following result determines the one-parameter bifurcation diagram274

according to Sin from the operating diagram of Fig. 2 (or equivalently of Fig. 3)275

when the dilution rate D = 0.25.276

Proposition 8. Assume that the biological parameters in (1) are given as in Table277

7 using the specific growth rates (22) with D = 0.25. The existence and stability278
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of steady states of (1) according to Sin are given in Table 6 where the bifurcation279

values σi, i = 1, . . . , 5 and the corresponding nature of the bifurcations are defined280

in Table 5.281

Table 5. Definitions of the critical values σi, i = 1, . . . , 5 of Sin
and the corresponding nature of bifurcations when D = 0.25.

Definition Value Bifurcation
σ1 = λ1(D) 0.31884 TB
σ2 = ϕ(D) 0.35394 TB
σ3 is the first solution of equation c4(Sin) = 0 0.52555 SHB
σ4 is the second solution of equation c4(Sin) = 0 0.71593 SHB
σ5 is the third solution of equation c4(Sin) = 0 12.4809 SHB

Table 6. Existence and stability of steady states according to Sin.

Interval of Sin E0 E1 E∗
(0, σ1) S
(σ1, σ2) U S
(σ2, σ3) U U S
(σ3, σ4) U U U
(σ4, σ5) U U S
(σ5,+∞) U U U

Fig. 5 represents the one-parameter bifurcation diagram of system (1) where282

the ω-limit set is projected in coordinate S depending on the control parameter283

Sin. Indeed, in Fig. 5(a), we observe more clearly the transcritical bifurcations284

occurring at σ1 and σ2, and the occurrence of a stable limit cycle via a supercritical285

Hopf bifurcation at σ3 and then their disappearance via a second supercritical Hopf286

bifurcation at σ4. Once again, increasing further Sin, a stable limit cycle emerges287

through a supercritical Hopf bifurcation at σ5 as shown in Fig. 5(b). Then, the288

oscillations are sustained for all Sin > σ5.

0.4 0.6 0.80.3 0.5 0.70.35 0.45 0.55 0.65 0.75
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0.36
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0.27
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0.35

0.37

0.39

2010 302 4 6 8 12 14 16 18 22 24 26 28
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11

(a)S

E0

E0

E1
E1

E∗

E∗

σ1 σ2 σ3 σ4

Sin

(b)S

E0

E1

σ5

Sin

E∗

Figure 5. Scilab simulation showing projections of the ω-limit set
in variable S when D = 0.25: (a) emergence and the disappearance
of limit cycle at σ3 and σ4 for Sin ∈ [0.3, 0.8]; (b) emergence of limit
cycle at σ5 for Sin ∈ [0.8, 30].
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0

0.2

0.4

0 0.02 0.04 0.06 0.080.01 0.03 0.05 0.07 0.09

0
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0.4

0.1

0.3

0.05

0.15

0.25

0.35

x2

x1

S
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E0
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Figure 6. Case Sin = 0.5 ∈]σ2, σ3[ and D = 0.25: convergence to E∗.

289

For the numerical simulations, we have used Maple [31] to plot the Figs. 1, 2, 4,290

10, 11 and 12, MATCONT [32] for Fig. 3 and Scilab [38] for Figs. 5, 6, 7 and 8.291

The limit cycles in Figs. 5, 7 and 8 were plotted by solving the ordinary differential292

equations using the default solver “lsoda” from the ODEPACK package in Scilab.293

To validate the previous results, we illustrate in the following the three-dimensional294

phase plot and the trajectories over time in some interesting cases.295

• For Sin ∈]σ2, σ3[, the numerical simulations done in the three-dimensional296

phase space (S, x1, x2) for various positive initial conditions permit to conjec-297

ture the global convergence towards E∗ (see Fig. 6).298

• For Sin ∈]σ3, σ4[, the numerical simulations done for various positive initial299

conditions permit to conjecture the global asymptotic stability of a stable300

limit cycle (see Fig. 7).301

• For Sin > σ5, Fig. 8 shows the trajectory starting from a neighborhood of E∗302

of size order ε = 10−3 is approaching a stable limit cycle as time goes where303

the system exhibits sustained oscillations.304

0.2

0.4

0.6

0 0.02 0.040.01 0.030.005 0.015 0.025 0.035

0

0.2

0.1

0.3

0.05

0.15

0.25

0.35

x2

x1

S

E∗

E0

Figure 7. Case Sin = 0.6 ∈]σ3, σ4[ and D = 0.25: convergence
towards a stable limit cycle (in red).



DENSITY-DEPENDENT MODEL 13

0 200100 30050 150 250

0

2

4

6

8

1

3

5

7

0 200100 30050 150 250

0

0.02

0.01

0.002

0.004

0.006

0.008

0.012
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Figure 8. Case Sin = 15 > σ5 and D = 0.25: convergence to a
stable limit cycle showing the sustained oscillations.

5. Conclusion. In this paper, we have extended the mathematical analysis of the305

interspecific density-dependent model (1) describing a predator-prey relationship306

between two microbial species in a chemostat, by considering the effect of mortality307

with distinct disappearance rates. Using the nullcline method [15, 33], the necessary308

and sufficient conditions of existence of all steady states of (1) are determined309

according to the parameter control. Indeed, this method provides a geometric310

description of the existence of the boundary steady states which are unique and the311

multiplicity of the positive steady states For the local stability of the positive steady312

state, we have used the Routh–Hurwitz criterion (26) since we cannot determine313

explicitly the eigenvalues of the Jacobian matrix at this point, in contrast to the314

boundary steady states, the stability conditions are determined explicitly. We show315

that the positive steady state can destabilize with emergence of a stable limit cycle316

via a supercritical Hopf bifurcation.317

Using the necessary and sufficient conditions of existence and stability of all318

steady states, the operating diagrams are analyzed analytically to determine the319

behavior of the system according to the concentration of substrate in the feed bottle320

Sin and the dilution rate D. These conditions are plotted in MAPLE using specific321

growth functions given by (22). Then, these theoretically results on the operating322

diagram are validated numerically using MATCONT.323

In fact, the process exhibits an even richer set of possible behaviors illustrated324

in the operating diagram: either the washout (J1) or the exclusion of the preda-325

tor (J2) or the coexistence of the predator-prey species around a positive steady326

state (J3) or a stable limit cycles (J4) The one-parameter bifurcation diagram is327

determined according to the input substrate concentration Sin as the bifurcating328

parameter. It shows the transcritical bifurcation as well as the three supercritical329

Hopf bifurcations with the appearance and the disappearance of the stable peri-330

odic orbits. The numerical simulations illustrate the three-dimensional phase space331

showing the coexistence around a coexistence steady state or a stable limit cycle,332

while the time course shows the sustained oscillations.333

The comparison of our results with those in the existing literature [12, 33] proves334

that the addition of mortality terms of the species in the interspecific density-335

dependent model (1) with a predator-prey relationship can destabilize the positive336

steady states but not the global behavior of the process where the mortality of337
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species could lead to the occurrence of stable limit cycles with the coexistence of338

species.339

Appendix A. Proofs.340

Proof of Proposition 1. Since the vector field defined by (1) is C1, the unique-
ness of a solution to initial value problems holds. From (1), for i = 1, 2,

xi(t0) = 0, for any t0 > 0 =⇒ ẋi = 0.

If xi(0) = 0, then xi(t) = 0 for all t since the boundary face where xi ≡ 0 is invariant
in the vector field C1 by system (1). If xi(0) > 0, then xi(t) > 0 for all t since
xi ≡ 0 cannot be reached in finite time by trajectories such that xi(0) > 0 by the
uniqueness of solutions. On the other hand, one has

S(t0) = 0, for any t0 > 0 =⇒ Ṡ(t0) = DSin > 0.

Consequently, we have S(t) > 0 for all t. In fact, assume that S(0) > 0 and that

it exists t0 > 0, such that S(t0) = 0 and S(t) > 0 for t ∈ (0, t0). Then, Ṡ(t0) 6 0

0) which contradicts Ṡ(t0) > 0. Therefore, the solutions remain non-negative. Let
z = S + x1 + x2. From system (1), we have

ż = D(Sin − S)−D1x1 −D2x2.

Consequently,

ż 6 Dmin(DSin/Dmin − z).
Using Gronwall’s lemma, we obtain341

z(t) 6 DSin/Dmin + (z(0)−DSin/Dmin)e−Dmint for all t > 0. (23)342

We deduce that

z(t) 6 max(z(0), DSin/Dmin) for all t > 0.

Therefore, the solutions of (1) are positively bounded and are defined for all t > 0.343

From (23), we deduce that the set Ω is positively invariant and is a global attractor344

for (1).345

Proof of Proposition 2. For E1, x1 > 0 and x2 = 0. From the second equation of346

(3) and the definition (4) of the break-even concentration, it follows that S = λ1(D).347

From the first equation of (3), we obtain the x1 component. Thus, E1 exists if and348

only if x1 > 0, that is, condition (6) holds.349

Proof of Proposition 5. Using the notation (12), the Jacobian matrix of (1) at
(S, x1, x2) corresponds to the 3× 3 matrix:

J =

−D − Ex1 − x2F −f1(S, x2)−Hx2 Gx1 − f2(S, x1)
Ex1 f1(S, x2)−D1 −Gx1

Fx2 Hx2 f2(S, x1)−D2

 .
For E0 = (Sin, 0, 0), the eigenvalues are the roots of the following characteristic

polynomial

P (λ) = (λ+D)(λ+D2)(λ̃1 − λ)

where λ̃1 = f1(Sin, 0)−D1. Thus, E0 is LES if and only if f1(Sin, 0) < D1, that is,350

Sin < λ1(D).351

For E1 = (λ1(D), x̃1, 0), the characteristic polynomial is

P (λ) = (λ̃1 − λ)(λ2 + c1λ+ c2)
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where λ̃1 = f̃2(x̃1, 0), c1 = D+ x̃1E and c2 = D1x̃1E. Since c1 > 0 and c2 > 0, the352

real parts of the roots of the quadratic factor are negative. Therefore, E1 is LES if353

and only if f̃2(x̃1, 0) < 0, that is, condition (18) holds.354

For E∗ = (S∗, x∗1, x
∗
2), the characteristic polynomial is355

P (λ) = λ3 + c1λ
2 + c2λ+ c3, (24)356

where

c1 = D + Ex∗1 + Fx∗2, c2 = D1Ex
∗
1 +D2Fx

∗
2 + (GH + EH − FG)x∗1x

∗
2

c3 = (DGH +D2EH −D1FG)x∗1x
∗
2.

(25)

Since c1 > 0, according to the Routh–Hurwitz criterion, E∗ is LES if and only if357

c3 > 0 and c4(Sin, D) = c1c2 − c3 > 0 (26)358

where the function c4 can be written as its expression (21). Using the expressions
of F ′1 in (13) and of F ′2 in (15), we obtain

F ′1(x1)− F ′2(x1) =
D1FG−D2EH −DGH
D2F (D2E/D +G)

.

Consequently, at E∗, we have359

c3 = (F ′2(x∗1)− F ′1(x∗1))D2F [D2E/D +G]x∗1x
∗
2. (27)360

Thus, E∗ is LES if and only if F ′2 (x∗1) > F ′1 (x∗1) and condition (21) holds.361

Appendix B. Construction of the operating diagrams in Fig. 2. In this362

section, we present the method used to construct theoretically the operating di-363

agrams presented in Fig. 2. To this end, we plot the various curves from the364

existence and stability conditions which depend on the operating parameters. In365

addition, we will see in the following that the proof is based on the existence and366

stability conditions in Table 1 and is supported by numerical experimentation when367

the biological parameter values are fixed in Table 7. From Table 1, the steady state368

E0 always exists and is stable if and only if Sin < λ1(D), that is, it is stable in369

the region bounded by the curve Υ1 and located above this curve, see Fig. 2. The370

steady state E1 exists in the region bounded by the curve Υ1 and located below this371

curve and is stable in the region bounded by the curve Υ2 and located at the left372

of this curve. The steady state E∗ exists in the region bounded by the curve Υ2373

and located at the right of this curve. To determine the sign of c3(Sin, D) in the374

operating diagram and the curve Υ3 defined by c4(Sin, D) = 0, we use the concept375

of steady-state characteristic which we apply in the following as in [17]. A positive376

steady state E∗ = (S∗, x∗1, x
∗
2) is a solution of the set of equations377  D(Sin − S) = D1x1 +D2x2,
f1(S, x2) = D1,
f2(S, x1) = D2.

(28)378

From the second and the third equations of (28), we can define the solutions x2 and
x1, respectively, as functions of S, that is, there exist S 7−→ X2(S) and S 7−→ X1(S)
such that

f1(S,X2(S)) = D1 and f2(S,X1(S)) = D2.

More precisely, let S > 0. From (H2), the function x2 7→ f1(S, x2) is decreasing.
Thus, the equation f1(S, x2) = D1 has a unique solution x2 = X2(S) if and only if

f1(S,+∞) < D1 6 f1(S, 0), that is, S ∈ I1 = [λ1, λ
′
1),
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where λ1 is defined by (4) and λ′1 is the unique solution, if it exits, of the equation

f1(S,+∞) = D1.

If D1 > f1(S,+∞) for all S > 0, then we put λ′1 = +∞. Note that the func-
tion X2(·) is increasing and satisfies X2(λ1) = 0 and X2(λ′1) = +∞. From (H1)
and (H2), the function x1 7→ f2(S, x1) is increasing and f2(S, 0) = 0. Hence, the
equation f2(S, x1) = D2 has a unique solution x1 = X1(S) if and only if

D2 < f2(S,+∞), that is, S > λ′2,

where λ′2 is the unique solution, if it exits, of the equation

f2(S,+∞) = D2.

If D2 > f2(S,+∞) for all S > 0, then we put λ′2 = +∞. Note that the function379

X1(·) is decreasing and satisfies X1(λ′2) = +∞.380

Let Cj(S), j = 3, 4 be the functions defined by the same formulas as (25) and
(26), respectively, where the functions E, F , G are H in these functions depends
only on x1, x2 and S. But, as the xi = Xi(S), i = 1, 2, then these functions Cj
depend only on S. More precisely, we have

cj(Sin, D) = Cj(S
∗(Sin, D)), j = 3, 4.

where S∗(Sin, D) is the solution of equation381

D(Sin − S) = H(S) := D1X1(S) +D2X2(S). (29)382

Fig. 9 illustrates that the function C3(S) is positive for various values of D from383

the starting points in red of coordinates (max(λ1(D), λ′2(D)), 0). Note that for the384

specific growth rates (22), λ′1 = +∞ since D1 > f1(S,+∞) = 0 for all S > 0.385

According to expression (27), this positivity of C3(S) for any value of D in its386

definition domain shows that F ′2(x∗1) > F ′1(x∗1) for this set of parameters in Table 7.387

Thus, system (1) cannot exhibits a multiplicity of positive steady states appearing388

through saddle-node bifurcations and other regions in the operating diagram.

C3(S)

D = 2

D = 3

D = 1

D = 0.5
D = 0.1 S

Figure 9. Curves of the function C3(S) for different values of D
when S > max(λ1(D), λ′2(D)).

389

In Fig. 10, the curve of the function H(S) is colored in blue when C4(S) < 0, that
is, when the positive steady state is unstable. It is colored in red when C4(S) > 0,
that is, when the positive steady state is stable. From (29), the critical value of Sin
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corresponding to Hopf bifurcation when C4(S) = 0 (or also when the curve of H(S)
changes color) is given by

Sin = H(S)/D − S.

(a)

C4

��	 C3

E∗

E∗

S3

S

(b)

C3

C4

E∗

S3 S

(c)

C3

C4

E∗

E∗

E∗

S1 S2 S

Figure 10. (a) Steady-state characteristics describing the local
asymptotic behavior of the positive steady state E∗ when D = 0.25.
Magnification for (b) S 6 2 and (c) 0.32 6 S 6 0.36.

390

In particular, if the equation C4(S) = 0 has n solutions Si, for i = 1, . . . , n, with391

n is the number of solutions, we have392

σi+2 = H(Si)/D − Si. (30)393

Finally, using a procedure in D, we can determine the curve Υ3 corresponding to394

Hopf bifurcation in the operating diagram of Fig. 2.395

For the set of parameters in Table 7 corresponding to the operating diagram396

in Fig. 2, the numerical simulations show that the equation C4(S) = 0 has three397

solutions Si, i = 1, 2, 3 for 0 < D < D∗ ' 0.2648 (see Fig. 11). Using (30), we can398

deduce the corresponding three critical values σi, i = 3, 4, 5, which are provided in399

Table 5 and shown in Fig. 5. Moreover, these critical values correspond to the curve400

Υ3 in Fig. 2. However, when D∗ < D < Dmax ' 1.595, the equation c4(S) = 0 has401

a unique solution S1 that corresponds to the unique critical value σ3.

(a)

C4

S3

S

(b)

C4

S3

S

(c)

C4

S1 S2 S

Figure 11. Case D = 0.25 6 D∗ ' 0.2648: (a) Change of sign of
C4 when S1 ' 0.3299 (or equivalently σ3 ' 0.5255), S2 ' 0.3423
(or equivalently σ4 ' 0.7159) and S3 ' 1.4365 (or equivalently
σ5 ' 12.4809). (b)-(c) Magnifications for S ∈ [0.316, 1.7] and S ∈
[0.316, 0.361].

402

Appendix C. Numerical evidence of the Hopf bifurcation. To understand403

and analyze the change of local stability occurring through the positive steady404

state E∗ as Sin varies, we determine numerically the eigenvalues of the Jacobian405

matrix J at E∗ by solving the roots of the characteristic polynomial (24). Indeed,406
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this characteristic polynomial has one negative eigenvalue and one pair of complex-407

conjugate eigenvalues408

λ̄j = µ(Sin)± iν(Sin), j = 1, 2. (31)409

Increasing the operating parameter Sin, this pair (31) crosses the imaginary axis410

first at the critical values σ3 from negative to positive half plane and second it411

returns to the negative half plane at σ4 and finally it returns again to the positive412

half plane at σ5 (see Fig. 12), that is, it becomes purely imaginary for σi, i = 3, 4, 5413

such that µ(σi) = 0, with ν(σi) 6= 0. In addition, numerically, we check the following414

inequality415

dµ

dSin
(σi) 6= 0, i = 3, 4, 5. (32)416

This is consistent with Fig. 5, showing that, as Sin increases and crosses σi, i =417

3, 4, 5, the positive steady state E∗ changes its stability through three supercritical418

Hopf bifurcations with the occurrence or disappearance of a stable limit cycle that419

we illustrate in Figs. 7 and 8.

(a)
ν(Sin)

µ(Sin)

λ̄2

HHj

λ̄1

��*

(b)

ν(Sin)

µ(Sin)

λ̄1

-

Figure 12. (a) Variation of the pair of complex-conjugate eigen-
values (31) as Sin increases from 0 to 40 when D = 0.25. (b)
Magnification on λ̄1 for Sin ∈ [0.4, 0.8].

420

Appendix D. Parameter values used for numerical simulations. All the421

values of the parameters used in the numerical simulations are provided in Table 7.422

Table 7. Parameter values used for model (1) when the growth
rates f1 and f2 are given by (22).

Parameter m1 K1 L1 m2 K2 L2 α1 α2 a1 a2
Fig. 1(c) 2.75 2 1.2 2.95 1.8 1.5 10−3 0.1 0.95 0.7

Figs. 1(a,b),2,3,5–12
Fig. 4(a)
Fig. 4(b)
Fig. 4(c)

4 2 3 8 0.1 0.2 1 1

0.3
0.3
0.1
0

0.2
0.05
0.05
0

423
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