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A PARADIGM FOR THE CREATION OF SCALES AND PHASES

IN NONLINEAR EVOLUTION EQUATIONS

CHRISTOPHE CHEVERRY AND SHAHNAZ FARHAT

Abstract. The transition from regular to apparently chaotic motions is often observed in nonlinear flows.

The purpose of this article is to describe a deterministic mechanism by which several smaller scales (or higher

frequencies) and new phases can arise suddenly under the impact of a forcing term. This phenomenon is

derived from a multiscale and multiphase analysis of nonlinear differential equations involving stiff oscillating

source terms. Under integrability conditions, we show that the blow-up procedure (a type of normal form

method) and the Wentzel-Kramers-Brillouin approximation (of supercritical type) introduced in [7, 8] still

apply. This allows to get the existence of solutions during long times, as well as asymptotic descriptions and

reduced models. Then, by exploiting transparency conditions (coming from the integrability conditions), by

implementing the Hadamard’s global inverse function theorem and by involving some specific WKB analysis,

we can justify in the context of Hamilton-Jacobi equations the onset of smaller scales and new phases.

Keywords. Nonlinear differential equations; Normal forms; Integrability; Blow-up procedure; Geometrical

optics; WKB analysis; Multiple-scale analysis; Hamilton-Jacobi equations; Microstructures; Turbulent flows.
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1. Introduction.

The aim is to exhibit fundamental mechanisms explaining how the complexity of a nonlinear flow
can suddenly increase. The phenomenon is illustrated by Theorem 1 and Figure 1. It is derived
from an existence result (Theorem 2), asymptotic descriptions (Theorem 3) and reduced models
(Theorem 4) that apply to a class of differential equations. In Subsection 1.1, we start by putting
a consequence of the analysis into action. In Subsection 1.2, we present the underlying framework.
In Subsection 1.3, we state the assumptions and the main results. In Subsection 1.4, we make some
general comments about the content of our theorems. In Subsection 1.5, we outline the plan, we
highlight some innovative ideas, and we come back to the possible applications.

1.1. Transfer and creation of oscillations. In Paragraph 1.1.1, we present a class of Hamilton-
Jacobi equations and related assumptions. In Paragraph 1.1.2, we state our main result. Then, in
Paragraph 1.1.3, we explain the link between Subsections 1.1 and 1.2.

1.1.1. A class of Hamilton-Jacobi equations. Given some ε0 ∈]0, 1], the effects will be assessed
quantitatively by a small positive real parameter ε ∈]0, ε0] which is intended to go to 0. We consider
functions u depending on the time variable τ ∈ R+ and on the space variable x = (x1, · · · , xd) ∈ Rd
with d ∈ N∗. Denote by T the torus R/(2πZ). Select two smooth scalar functions

U0 : [0, ε0]× Rd −→ R,(1.1)

H : [0, ε0]× T× Rd × R× Rd × T −→ R.(1.2)

We can expand U0 and H in powers of ε near ε = 0 up to the order N ∈ N∗ according to

U0(ε, x) =

N∑
j=0

εj U0j(x) +O(εN+1),(1.3)

H(ε, θτ , x, u, p, θu) =
N∑
j=0

εj Hj(θτ , x, u, p, θu) +O(εN+1).(1.4)

Then, we consider the family of local solutions u ≡ uε (indexed by ε) to the Cauchy problems

(1.5) ∂τu+
1

ε
H
(
ε,
τ

ε
, x, εu,∇xu,

u

ε

)
= 0 , u(0, x) = u0(x) := U0(ε, x).

The above equation involves fast variations in τ (due to the substitution of θτ for τ/ε) and strong
nonlinear effects linked to the substitution of εu for u ∈ R, ∇xu for p ∈ Rd and of u/ε for θu ∈ T.
The Hamilton-Jacobi equation (1.5) is highly oscillating, and therefore the same should apply to
its solution uε. It follows that the asymptotic description of uε should require the use of several
scales and phases:

i. A scale is a power ε` with ` ∈ R+. The scale ε` appears in the solution (resp. in the Cauchy
problem) when it is needed (even in composite form) for the multiscale description of uε
(resp. of u0 or H). For instance, the three scales ε0, ε1 and ε2 are needed when dealing
with the function gε : (τ, x) 7→ sin

[(
cos(x+ τ/ε)

)
/ε2
]
.

ii. A phase ϕ is a smooth real valued scalar function occuring in the solution (or in the Cauchy
problem) when, after multiplication by some negative power of ε, it is substituted for
a periodic variable (like θτ or θu) in a profile. The phase ϕ ≡ ϕε may depend on ε and
contain oscillations (like in the case of chirped pulses [12]) but it must be (locally) uniformly
bounded with bounded first order derivatives. For example, the expression ε cos(x + τ/ε)
acts as a phase (associated with the frequency ε−3) in the above function gε. The weight ε
is here important to recover a time bounded derivative.
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To tackle (1.5), restrictions on the leading term H0 issued from (1.4) are needed. To this end, we
first consider the following simplification of the nonlinear interaction in H0.

Assumption 1. [Independence on the periodic variable θu] The leading term H0 does not depend
on the last periodic variable θu. In other words

(1.6) ∂θuH0 ≡ 0.

We also impose on H0 the following positivity condition.

Assumption 2. [Positivity condition] We have for all (θτ , x, u, p) ∈ T× Rd × R× Rd

(1.7)
[
(p · ∇p)H0 − H0

]
(θτ , x, u, p) > 0.

Note that Assumption 2 implies that H0 6≡ 0. In addition, we implement an integrability condition
which will serve a lot, for instance to prove the uniform (in ε) local existence of the solutions uε.

Assumption 3. [Complete integrability] For all position z = t(zx, zu , zp) ∈ Rd×R×Rd, the solution
t(Ξ0x,Ξ0p)(z; ·) to the Cauchy problem:

(1.8) ∂s

(
Ξ0x

Ξ0p

)
=

(
+∇pH0

−∇xH0

)
(s,Ξ0x, zu ,Ξ0p), t(Ξ0x,Ξ0p)(z; 0) = t(zx, zp),

is globally defined in s, and it is periodic in s of period 2π.

For reasons that will become apparent later in Subsection 5.4, we need to impose the following
smallness restriction on some second order derivatives of the scalar function H0.

Assumption 4. [Smallness condition on H0] For a well-adjusted small parameter δ ∈ R∗+, we have

(1.9) |||Dx,u,p∇pH0||| := sup
{
||Dx,u,p∇pH0(θτ , z)|| ; θτ ∈ T , z ∈ K

}
≤ δ,

where || · || is a matrix norm and K is a compact set which is identified in (5.19).

The initial data in the right hand side of (1.5) is of amplitude 1. It is smooth with uniformly
bounded derivatives. But the source term H is large, of size 1/ε due to (1.7), and it implies very
rapid oscillations (involving both τ and u). By this way, strong nonlinear processes are implemented
when solving (1.5), see Remark 5.1. Such aspects are often studied in an isolated or partial manner.
They appear for instance in the references [5, 6, 17, 18, 19, 23].

1.1.2. Onset of smaller scales and new phases. The next result proves that the above nonlinear
interactions can suddenly generate additional scales and phases. Denote by B(0, R] the closed ball
in Rd of center 0 and radius R ∈ R∗+.

Theorem 1. [WKB description of the flow] Under Assumptions 1, 2, 3 and 4, for all ε ∈]0, ε0]
with ε0 small enough, there exists a local smooth solution u ≡ uε to (1.5) on the product of a time
interval and a spatial domain having the form [0, T ] × B(0, R] with 0 < T and R > 0. Moreover,
on this uniform region, for all N ∈ N with N ≥ 3, the expression uε can be described in the sup
norm by the following multiscale and multiphase expansion

(1.10)

uε(τ, x) =
1

ε
U −1

(
x; τ,

τ

ε

)
+ U 0

(
x; τ,

τ

ε

)
+

N∑
j=1

εj Uj

(
x; τ,

τ

ε
,
ψε(x; τ)

ε3

)
+O(εN+1),

where ψε is a phase in the sense of ii, looking like

ψε(x; τ) := εU −1

(
x; τ,

τ

ε

)
+ ε2 U 0

(
x; τ,

τ

ε

)
.(1.11)
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The two profiles U−1(x, τ, θτ ) and U 0(x, τ, θτ ) which appear both in (1.10) and (1.11) are smooth

functions on the domain B(0, R] × [0, T ] × T. For j ≥ 1, the profiles Uj(x; τ, θτ , θ̂
◦
r ) are smooth

with respect to the variables (x, τ) ∈ B(0, R]× [0, T ] and smooth (periodic) with respect to the two

last variables θτ ∈ T and θ̂◦r ∈ T.

When solving (1.5), a number of new patterns are generated (creation of oscillations). When
looking at smaller details that is at smaller amplitudes, the flow is growing in complexity. This
cascade towards more and more scales and phases is put in concrete form at the level of (1.10)
both quantitatively in terms of frequencies (larger derivatives) and qualitatively in terms of phases
(extra directions of fast variations). Theorem 1 shows clearly that the description of the solution uε
with an incrementally precision (expressed in terms of powers of ε) is associated with an increasing
agitation. This principle may also be illustrated through the table below.

Aspect of the flow modulo
a precision of size εj with

Involved
profile

Number
of scales

Number
of phases

τ = 0 and j ∈ N U0j 1 0

τ > 0 and j = −1, 0 U −1 , U 0 2 1

τ > 0 and j ≥ 1 Uj 3 2

Figure 1. Growing complexity of the flow as time
passes and when looking at smaller details

While it is commonly believed that nonlinear evolution equations can instantaneously develop
microstructures (like in turbulent flows), concrete mechanisms for this and rigorous proofs are
rarely exhibited (or in very specific contexts due to subsequent instabilities). Theorem 1 is a step
forward in this direction. It is proved in Section 5, and appears as a difficult corollary of a WKB
analysis which is developed in Sections 2, 3 and 4.

1.1.3. From Hamilton-Jacobi equations to nonlinear differential equations. For smooth solutions,
Hamilton-Jacobi equations can be solved by the method of characteristics. In the context of (1.5),
this yields the following system of nonlinear differential equations

(1.12) ∂τ

(
z
ν

)
=

1

ε

(
A
V

)(
ε, z0; z;

τ

ε
,
ν

ε

)
,

(
z
ν

)
(0) =

(
z0

ν0

)
,

where, given n ∈ N∗, the dependent variables z ∈ Rn and ν ∈ R depend on the time τ ∈ R. Here,
ε ∈]0, ε0] is a small positive parameter which is intended to go to zero, whereas z0 ∈ Rn and ν0 ∈ R
stand for initial data (which may depend smoothly on ε ∈ [0, ε0]). The precise content of (1.12) is
described in next Subsection 1.2.
The strategy to study (1.12) is inspired from [7, 8]. But the works [7, 8] are devoted to the
characteristics of the Vlasov equation, and they rely crucially on the conservation of the kinetic
energy (of charged particles). They cannot be applied directly to the system (1.12) or in the
presence of an electric field (see [9] to this end). With this in mind, the framework of [7, 8] needs
to be extended; and the tools of [7, 8] must be revisited. In fact, in comparison to [7, 8], we replace
some invariant quantities by (more general) integrability conditions (which will operate at all levels
to move forward). As a consequence, we have to adapt (in Sections 2, 3 and 4) our preceding
arguments to the new difficulties thus generated.
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1.2. A class of nonlinear differential equations. The expressions A and V in the source term
of (1.12) depend on ε. They are defined up to ε = 0, and they are smooth near ε = 0. Thus, for
all N ∈ N, they can be expressed as Taylor series expansions of order N in terms of ε, near ε = 0:

C∞([0, ε0]× Rn × Rn × R× R;Rn) 3 A(ε, z0; z; θτ , θr) =
N∑
j=0

εj Aj(z0; z; θτ , θr) +O(εN+1),

C∞([0, ε0]× Rn × Rn × R× R;R∗+) 3 V(ε, z0; z; θτ , θr) =
N∑
j=0

εj Vj(z0; z; θτ , θr) +O(εN+1).

As indicated, the functions A and V may imply z0 ∈ Rn. By this way, they can take into account
the influence of the component z0 in the initial condition, as it may be required in the applications.
They may imply the unknown z. But they do not involve ν (the scalar variable ν appears in the
right hand side only after substitution of θr by ν/ε). Most importantly, they are periodic with
respect to the two last variables θτ and θr, of period respectively 2π and Tr(z0). More precisely

θτ ∈ T := R/
(
2πZ

)
,(1.13)

θr ∈ Tr,z0 := R/
(
Tr(z0)Z

)
, Tr ∈ C∞(Rn;R∗+).(1.14)

Remark 1.1. With no loss of generality, we work with (1.13). We can also start with source terms
A and V that are periodic in θτ of period Tτ (z0) with Tτ ∈ C∞(Rn;R∗+). This means to deal with
θτ ∈ Tτ,z0 := R/(Tτ (z0)Z). Suppose this is the case, then we can always replace θτ by 2πθτ/Tτ (z0).
This modification has the effect to substitute A and V for

Tτ (z0)

2π

(
A
V

)(
ε, z0; z;

Tτ (z0)

2π
θτ , θr

)
.

This gives rise to (1.13) without affecting the general form that has been introduced at the level
of (1.12). But, when the original functions A and V do not imply z0, this does produce a (smooth)
dependence on z0. This is why, care is taken to incorporate z0 when defining A and V. ◦

The source term inside (1.12) is:

• stiff since the large weight ε−1 is put in factor of the (locally bounded) functions A and V
which may satisfy A0 6≡ 0 and V0 6≡ 0. In fact, we will assume that V0 is positive.
• strongly oscillating due to the large amplitude oscillations which are generated by A and V

after substitution of θτ and θr for respectively τ/ε and ν/ε;
• nonlinear because A and V depend on z and θr (and therefore ν/ε) in a non-trivial way.

Let us examine more precisely what happens at the level of ν/ε. To this end, fix ε ∈ ]0, ε0] small
enough, and look at the scalar component ν(τ). Since the function V0 will be assumed to be positive
(see Assumption 6), by the mean value theorem, we can find some c = c(τ) ∈ ]0, τ [ such that

(1.15)
ν(τ)− ν0

ε
= vε,τ

τ

ε2
, 0 < vε,τ := ε ∂τν(c) = V

(
ε, z0; z(c);

c

ε
,
ν(c)

ε

)
= O(1).

This indicates that the description of the solutions t(z,ν)(ε, z0,ν0; τ) to the system (1.12) should
involve (at least) three time scales:

• τ for the current time variable and normal variations (in the case of electrons in tokamaks,
the value τ ∼ 1 represents a few seconds);
• s := ε−1τ for the quick time variable and for quick variations (in comparison to changes

in τ). The substitution of the periodic variable θτ by ε−1τ furnishes oscillations at high
frequencies of size ε−1;
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• t := ε−2τ for the rapid time variable and for rapid variations (in comparison to changes in τ
and s). In view of line (1.15), the substitution of the periodic variable θr by ε−1ν(τ) should
produce oscillations at very high frequencies of size ε−2. The subscript r in θr is introduced
to refer to these rapid variations.

To state our results, some basic operations on periodic functions Z(θτ , θr) ∈ L1(T × Tr,z0), like
above A(ε, z0; z; ·) or V(ε, z0; z; ·), must be introduced. As a preliminary point, to sort out the
different oscillating features, we need to define:

• The rapid mean value of Z is the periodic function Z given by

(1.16) Z(θτ ) :=
1

Tr(z0)

∫ Tr(z0)

0
Z(θτ , θr) dθr.

• The rapid oscillating part of Z is the periodic function Z∗ defined by

(1.17) Z∗(θτ , θr) := Z(θτ , θr)− Z(θτ ).

• The double mean value of Z (in both variables θτ and θr) or the quick mean value of Z is
the constant

(1.18) 〈Z〉 :=
1

2π Tr(z0)

∫ 2π

0

∫ Tr(z0)

0
Z(θτ , θr) dθτdθr =

1

2π

∫ 2π

0
Z(θτ ) dθτ .

• The quick oscillating part of Z is the periodic function Z
?

given by

(1.19) Z
?
(θτ ) := Z(θτ )− 〈Z〉.

Retain that this induces a decomposition of Z according to

(1.20) Z(θτ , θr) = 〈Z〉+ Z
?
(θτ ) + Z∗(θτ , θr).

Our purpose in Sections 2, 3 and 4 is to find a setting under which the system (1.12) can be solved
on a time interval that is uniform in ε ∈ ]0, ε0]. It is also to exhibit conditions leading to a three-
scale asymptotic description (when ε goes to zero) of the flow, showing the three frequencies of size
1, ε−1 and ε−2 that are associated to the underlying presence of the time variables τ , s and t.

1.3. Assumptions and results. When solving (1.12), the oscillations at frequencies 1, ε−1 and
ε−2 are closely interlinked. They are difficult to disentangle. To guess what happens, as a first
step, it is interesting to interpret (1.12) in terms of the quick time variable s. By this way, with(

z̊
ν̊

)
(ε, z0,ν0; s) :=

(
z
ν

)
(ε, z0,ν0; εs),

we get

(1.21) ∂s

(
z̊
ν̊

)
=

(
A
V

)(
ε, z0; z̊; s,

ν̊

ε

)
,

(
z̊
ν̊

)
(0) =

(
z0

ν0

)
.

By Picard-Lindelöf theorem, a local solution to the Cauchy problem (1.21) exists on a maximal
time interval [0, S(ε, z0,ν0)[ with S(ε, z0,ν0) ∈ R∗+ ∪ {+∞}. Fix z0 and ν0. The right hand side
of (1.21) is no more stiff and it is periodic with respect to θr. Thus, it is (locally in z̊) uniformly
bounded with respect to ε ∈ ]0, ε0]. Taking into account the explosion behavior that a maximal
solution must have at the boundary of its domain of definition, it follows that

(1.22) ∃S(z0,ν0) ∈ R∗+ ; ∀ε ∈ ]0, ε0], 0 < S(z0,ν0) ≤ S(ε, z0,ν0).

Now, the source term of the system (1.21) is still oscillating. In view of (1.15) with τ replaced by
εs, it contains oscillations at high frequencies of size

ε−1 ν̊(s) = ε−1 ν(εs) = ε−1 (ν0 + vε,εs s) = O(ε−1).
6



Since V0 (and therefore V for small values of ε) is assumed to be a positive valued function, the
function ν̊ is strictly increasing, and the oscillations with respect to θr are certainly effective. After
integration in time (in s), these oscillations compensate each other to deliver some average evolution.
During quick times s, at leading order, the behavior of z̊ inside (1.21) may be approximated by the
mean flow introduced below.

Definition 1. [Notion of mean flow associated with the quick time evolution of z] Define

Amf(z0; z; θτ ) :=
1

Tr(z0)

(
1

Tr(z0)

∫ Tr(z0)

0

1

V0(z0; z; θτ , θr)
dθr

)−1 ∫ Tr(z0)

0

A0(z0; z; θτ , θr)

V0(z0; z; θτ , θr)
dθr.

The mean flow associated with (1.21) is the mapping Ξmf(z0; ·) : Rn×R −→ Rn obtained by solving

(1.23) ∂sΞmf(z0; z; s) = Amf

(
z0; Ξmf(z0; z; s); s

)
, Ξmf(z0; z; 0) = z ∈ Rn

on its maximal interval of existence [0,Smf(z0, z)[ where Smf(z0, z) ∈ R∗+ ∪ {+∞}.

The equation (1.23) is derived in Subsection 2.4 from some homological equation (Lemma 2.3).
Observe that, when V0 does not depend on θr, the function Amf is extracted from A(0, z0; z; ·) as it
is indicated in (1.16), that is

(1.24) Amf(z0; z; θτ ) = A0(z0; z; θτ ) =
1

Tr(z0)

∫ Tr(z0)

0
A0(z0; z; θτ , θr) dθr .

In general, the lifespan Smf(z0, z) is finite, and the same applies concerning S(ε, z0,ν0).

Example 1.1. For instance, just take n = 1 and A ≡ z2 together with ∂θrV0 ≡ 0 so that

(1.25) A ≡ A0 ≡ Amf ≡ z2, z̊(ε, z0,ν0; s) = Ξmf(z0; z0; s).

In this simple case, we can see that

∀ (z0,ν0) ∈ R∗+ × R, S(ε, z0,ν0) = Smf(z0, z0) = z−1
0 < +∞.

It follows that the lifespan T (ε, z0,ν0) = εS(ε, z0,ν0) associated with (1.12) is finite, and shrinks
to 0 like εz−1

0 when ε goes to zero. Then, there is no way to guarantee that

(1.26) ∃ T (z0,ν0) ∈ R∗+ ; ∀ε ∈ ]0, ε0], 0 < T (z0,ν0) ≤ T (ε, z0,ν0).

When dealing with (1.25), the discussion about what could happen during current times τ ∼ 1 is
over. We would like to avoid such situations. ◦

To obtain (1.26), supplementary conditions on Amf are clearly needed. As a prerequisite we have
to impose Smf = +∞ on Rn ×Rn. However, this condition may not be enough. And it is certainly
not sufficient to separate the quick and rapid oscillations, and then to get a complete description
of them. To this end, we need more restrictive conditions.

Assumption 5. [Complete integrability of the mean flow] For all position (z0, z) ∈ Rn × Rn, the
function Ξmf(z0, z, ·) issued from (1.23) is globally defined and periodic in s of period 2π.

Assumption 5 implies a strong geometrical restriction concerning (1.23). Indeed, this means that
the integral curves associated with (1.23) must form (by varying the initial data z ∈ Rn) a foliation
of Rn by circles. After a normal form procedure (see Remark 2.2), the equation on z̊ inside (1.21)
can be transformed into a perturbed version of (1.23). From this perspective, Assumption 5 says
that the dynamical system thus obtained is nearly integrable.

By construction, the function Amf(z0; z; ·) is periodic (with respect to θτ ) with period 2π, and
therefore the same holds true (with respect to the quick time variable s) for the source term inside
(1.23). Assumption 5 requires also that all solutions to (1.23) share the same period 2π. This
second condition is natural (but it is far from being systematically verified).

7



Theorem 2. [Uniform lifespan with respect to ε ∈ ]0, ε0] of the flow generated by (1.12)] Under
Assumption 5, the lifespan T (ε, z0,ν0) that is associated with (1.12) is uniformly bounded below by
some T (z0,ν0) ∈ R∗+, as indicated in (1.26).

From there, the issue about the oscillating structure of t(z,ν) during current times τ ∼ 1 becomes
meaningful. Now, to obtain a precise asymptotic description of the flow t(z,ν), we need to impose
supplementary restrictions on V0.

Assumption 6. [Positivity condition on the component V0] The function V0 is positive and it does
not depend on θr. Retain that

(1.27) ∀ (z0, z, θτ , θr) ∈ Rn × Rn × T× Tr,z0 , 0 < V0(z0; z; θτ , θr) ≡ V0(z0; z; θτ ).

This simplifies the self-interactions at the level of the equation on ν. Indeed, at leading order, the
source term V is not impacted by the rapid variations (in ν/ε).

Theorem 3. [WKB expansion at all orders in ε ∈ ]0, ε0] of the flow induced by the system (1.12)]
Under Assumptions 5 and 6, we can find profiles

Zj(z0,ν0; τ, θτ , θr) ∈ C∞
(
Rn × R× [0, T (z0,ν0)]× T× Tr,z0 ;Rn

)
, j ∈ N,

Vj(z0,ν0; τ, θτ , θr) ∈ C∞
(
Rn × R× [0, T (z0,ν0)]× T× Tr,z0 ;R

)
, j ∈ {−1} ∪ N,

which are determined through a hierarchy of well-posed modulation equations (starting from j = −1
up to any integer value of j), which are such that

(1.28) V−1 ≡ 〈V−1〉(z0; τ), V0 ≡ V 0(z0,ν0; τ, θτ ), Z0 ≡ Z0(z0; τ, θτ ),

and which are adjusted in such a way that, in terms of the sup norm, for all N ∈ N∗, we have

z(ε, z0,ν0; τ) =
N−2∑
j=0

εj Zj

(
z0,ν0; τ,

τ

ε
,
〈V−1〉(z0; τ)

ε2
+

V 0(z0,ν0; τ, τε )

ε

)
+O(εN−1),(1.29)

ν(ε, z0,ν0; τ) =

N−2∑
j=−1

εj Vj
(
z0,ν0; τ,

τ

ε
,
〈V−1〉(z0; τ)

ε2
+

V 0(z0,ν0; τ, τε )

ε

)
+O(εN−1).(1.30)

The two expansions (1.29) and (1.30) shed light on the time oscillations but also on the spatial
oscillations (encoded in the variations with respect to z0 and ν0), thus revealing collective aspects
of the motion (which are important in many applications). This is achieved through different types
of phases, including mainly:

• The time phase τ which is associated with quick variations.

• The exact phase ν. It has ε−1 in factor at the level of the source term of (1.12). There,
the scalar component ν/ε comes to replace the periodic variable θr and therefore it indeed
plays the role of a phase.

• The frozen phase νf which is defined by

(1.31) νf(τ) ≡ νf(ε, z0,ν0; τ) :=
1

ε
〈V−1〉(z0; τ) + V 0

(
z0,ν0; τ,

τ

ε

)
.

It is a truncated version of ν which, like ν, operates with ε−1 in factor.

• The rapid phase 〈V−1〉 which is associated with rapid variations (at frequencies of size ε−2).
As a consequence of Assumption 6, we will find that 〈V−1〉(τ) > 0 for all τ > 0. Thus, the
presence of rapid oscillations is sure to happen.

Remark 1.2 (About supercritical features). It is worth underlying that in (1.30), the same profiles
V−1 and V0 take part in the description of amplitudes and phases. This is typical of supercritical
regimes for quasilinear equations. ◦
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Remark 1.3 (About the notion of phase). The definition ii of a phase ϕ (in terms of its bounded
aspects) is open to various interpretations. Indeed, it is based on the dependent or independent
variables that are implied. For example:

• The functions ϕ ≡ ν and ϕ ≡ νf viewed as depending on the state variable ν or νf and
from the perspective of the profiles A and V inside (1.12) can be viewed as phases.

• The functions ϕ ≡ εν and ϕ ≡ ενf viewed this time as depending on (ε, z0,ν0, τ) and from
the perspective of the profiles A and V inside (1.12) or Zj and Vj inside (1.29) or (1.30)
play the role of phases.

On the other hand, even if ν/ε and νf/ε come to replace the periodic variable θr, the functions
ϕ ≡ ν and ϕ ≡ νf viewed as depending on (ε, z0,ν0, τ) are not (strictly speaking) phases because
they are obviously not uniformly bounded. It must be clear that the above names of exact phase
and frozen phase are a matter of convention. ◦

Looking at (1.29) and (1.30), at the end, we can recognize the simultaneous presence of oscillations
implying the frequencies ε−1 and ε−2 with corresponding phases τ and 〈V−1〉. There is also a
nonlinear imbrication of oscillations carried by the (slightly unusual) expression V 0(·, τ, ε−1τ)/ε.
The study of multiscale oscillations has been intensively developed in the past decades in various
contexts including the topic of geometric optics [15, 24, 26, 27, 28], the theory of homogenization
[1, 25], two-scaled Wigner measures [16, 22] or microlocal Birkhoff normal forms [22]. However,
the coverage of situations which can mix oscillations of the above different types is relatively new.
This is technically a difficult challenge (with potential extensions in the domain of PDEs) which
apparently is not directly within reach of the aforementioned methods.

Asymptotic expansions similar to (1.29) and (1.30) already appear in the articles [7, 8]. There,
they were motivated by questions arising in the study of magnetized plasmas. The actual approach
is much broader than in [7, 8]. The purpose is indeed to achieve a comprehensive analysis in
more general situations than before. It is to extend the preceding tools and also to explain them
more briefly and clearly. We exhibit integrability and positivity conditions (Assumptions 5 and 6)
allowing to progress. These conditions encompass and extend the framework of [7, 8]. They are
both intrinsic, easy to test, and suitable for many applications. They are considered in Section 5
in the case of Hamilton Jacobi equations, and they are designed [9] to incorporate the influence of
an external electric field (in addition to the magnetic field) on the long time dynamical behavior of
charged particles. The main outcomes of our work concerning (1.12) are the following:

• A model for the leading behavior of the flow provided by

z(ε, z0,ν0; τ) = Z0

(
z0; τ,

τ

ε

)
+ εZ1

(
z0,ν0; τ,

τ

ε
,
νf(τ)

ε

)
+O(ε2),(1.32)

ν(ε, z0,ν0; τ) = νf(ε, z0,ν0; τ) +O(ε).(1.33)

• A careful analysis of the underlying stability and instability properties. This aspect is more
subtle and less easy to expose since it appears throughout the text. Let us just outline some
difficulties. The precise knowledge of ν (or νf) is essential to get the L∞-precision. As a
matter of fact, a perturbation of size ε2 at the level of 〈V−1〉 may have an impact of size 1
in the calculation of the O(εj)-terms of (1.29) and (1.30). This means that a very precise
access to ν is crucial to govern the stability properties of the flow.

From the above perspective, our strategy is based on two main arguments:

• First, we implement a blow-up procedure. As explained in a series of remarks (see 2.2, 2.7
and 4.2), this is a kind of normal form method adapted to our context. In Section 2, this
already leads to the uniform local existence of solutions (z,ν).
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• Then, in Section 3, we perform a three-scale WKB calculus with supercritical attributes.
The idea, as is typical in geometric optics [10, 13], is to replace (1.12) by profile equations.
But this time, we implement the component ν of the solution previously obtained as a
phase (see Remarks 3.1 and 3.2 for this unusual trick). This means in particular that ν
is viewed as oscillating with respect to itself through the oscillating implicit relation (3.1).
This yields a special notion of profile equations. This is like investigating the stability issue
in a quotient space: we work modulo the determination of the unknown function ν.

Due to its importance from an application standpoint, we focus below on the content of (1.32).
The behavior of z is mainly governed by the profile Z0 which reveals some kind of (large amplitude
oscillating) reduced dynamics during current times τ ∼ 1. The determination of Z0 may be achieved
as indicated bellow.

Theorem 4. [Reduced equations] The function Z0(·) does not depend on ν0. It can be expressed
in terms of Ξmf(·) according to

(1.34) Z0(z0; τ, θτ ) = Ξmf

(
z0; 〈Z̄0〉(z0; τ); θτ

)
.

The function 〈Z̄0〉 in the right hand side of (1.34) can be determined by solving

(1.35) ∂τ 〈Z0〉(z0; τ) = 〈A1〉
(
z0; 〈Z0〉(z0; τ)

)
, 〈Z0〉(z0; 0) = z0,

where, with ∂−1
θr

as in (2.24) (by identifying θ ≡ θr and T ≡ Tr,z0), we have introduced

(1.36)

A1(z0; z; θτ , θr) :=DzΞmf(z0; z; θτ )−1{[
A1 + V−1

0

(
∂−1
θr

A∗0 · ∇z
)
A0 − ∂θτ (V−1

0 ∂−1
θr

A∗0)− V1 V
−1
0 A∗0

+
(
∂−1
θr

A∗0 · ∇z
)

(V−1
0 ) A∗0

](
z0; Ξmf(z0; z; θτ ); θτ , θr

)}
and where the access to the double mean value 〈A1〉 is furnished by (1.18).

Retain that the two symbols A1 and A1 are different (we have A1 6≡ A1). The notations A1 and
A1 will be used with different meanings. Given the numerous difficulties of understanding the
complex interplay between the various types of oscillations, Theorem 4 produces a rather easy and
explicit way to determine what remains in a first approximation. In fact, it gives access to effective
equations which are amenable to numerical computations.

1.4. A few comments on the results. The aim of this subsection is to help the reader understand
the position, content and significance of the four preceding theorems. This is done below through
a list of remarks.

Remark 1.4 (About the effective content of 〈Z0〉). The expression 〈A1〉 is issued from the double
averaging procedure (1.18) which may go hand in hand with a number of cancellations. It follows
that all the components of 〈Z0〉 are not necessarily activated when solving (1.35). In general, there
remains a reduced number of unknowns. These are the so-called adiabatic (or guiding-center)
invariants in the case of charged particles. ◦

Remark 1.5 (About the determination of Z0). The expression Z0 consists of two distinct parts:
Ξmf and 〈Z̄0〉. As explained before, the mean flow Ξmf can be extracted from (1.21). In fact, this
amounts to a multiplication of (1.12) by ε, and then to the extraction of a mean value involving
A0 and V0, as in Definition 1. Observe that

(1.37) z̊(ε, z0,ν0; s) = Ξmf(z0; z0; s) +O(ε).
10



Thus, in coherence with what has been said before, the mean flow does furnish the leading behavior
of z during quick times s near the current time τ = 0. But, near other current times τ ∈ R∗+, the

use of 〈Z̄0〉(z0; τ) is needed to well describe Z0(·). The access to 〈Z̄0〉 is much more complicated
than to Ξmf . It involves the determination of A1 which, in view of (1.36), is built with various
derivatives and integrations of A0 and V0, as well as terms of size ε inside A, like A1. Now, such
information should be invisible (or vanishing) when performing (even multiscale) weak limits at
the level of (1.12) or (1.21). ◦

Remark 1.6 (About the geometrical interpretation of the content of Z0). Under Assumption 5, the
integral curves associated to (1.23) draw a family of circles

C(z0; z) :=
{

Ξmf(z0; z; s) ; s ∈ R
}
⊂ Rn, (z0, z) ∈ Rn × Rn.

Given z0 ∈ Rn, these circles form a foliation of Rn parameterized by z. The role of z is twofold.
First, since z ∈ C(z0; z), the parameter z points to the circle C(z0; z). Secondly, it specifies some
origin on this circle. This allows to make sense of the numerical value θτ which at the level of the
expression Ξmf(z0; z; θτ ) is comparable to the number of turns performed around C(z0; z), departing
from the position z. In this context, the geometrical interpretation of (1.34) is the following. The
value of Z0(z0; τ, θτ ) is obtained by selecting the circle C

(
z0; 〈Z0〉(z0; τ)

)
and by carrying out on it

a rotation which starts from the initial point 〈Z0〉(z0; τ) and whose numerical value is θτ . Now, in
view of (1.35), the position z = 〈Z0〉(z0; τ) is in general different from z0 as soon as τ 6= 0. Thus,
to get a representation formula of Z0 which is in line with (1.34), it does not suffice to work with
z = z0. This remark justifies the introduction at the level of (1.23) of the extra variable z. In
practice, we have indeed to solve (1.23) with z other than z0. ◦

Remark 1.7 (About the content of the leading order term). At the end, the main limit behavior

(1.38) z(ε, z0,ν0; τ) = Ξmf

(
z0; 〈Z̄0〉(z0; τ);

τ

ε

)
+O(ε)

is built with the help of Ξmf(z0; ·; ·) through a current time variation corresponding to the passage
from z = z0 to z = 〈Z0〉(z0; τ), combined with a quick time variation (made of rotations) when θτ
is replaced by τ/ε (with a number of turns that becomes very large when τ ∈ R∗+ is fixed and ε

tends to zero). At the level of (1.38), the rapid oscillations which are associated with the phase νf

do not yet appear. ◦

Remark 1.8 (About the structure of the whole asymptotic expansions). Look at the contribution
which at the level of (1.32) has ε in factor. In general, we have ∂θrZ1 6≡ 0. This means that the rapid
variations are activated with a small amplitude ε and corresponding frequency ε−2. These rapid
oscillations lead to many technical problems. Physically, when dealing with magnetized plasmas,
they come from a fast gyromotion. At the end, the structure of z is made of the superposition of
two regimes which are built with:

• Large amplitude oscillations. We find that ∂θτZ0 6≡ 0 when the mean flow is not constant.
Then, there are quick variations (involving θτ ) of amplitude 1 ;
• Strong oscillations. We find that ∂θrZ1 6≡ 0 when A∗0 6≡ 0. Then, if we adopt the terminology

of [11] (with ε replaced by
√
ε), there are rapid variations (involving θr) of amplitude ε. ◦

Remark 1.9 (About the imbrication between the averaging procedures). The extraction of (1.29)
and (1.30) results from two averaging procedures. The first (in θr) is revealed by (1.24); the second
(in θτ ) occurs along the circles generated by Ξmf . There is no evident order between these highly
interconnected operations. In the blow-up Section 2, priority is given to θτ . But, in the WKB
Section 3, the integration is first in θr and then in θτ , as when passing from (1.16) to (1.18). ◦
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Remark 1.10 (About the origin of Theorem 1). The Hamilton-Jacobi equations will be solved by the
method of characteristics. When doing this, the expansion (1.10) appears through a composition of
the oscillations involved by (1.29) or (1.30), roughly speaking by replacing (z0,ν0) inside (1.30) by
(z0,ν0)(ε, x−1) where x−1 (Lemmas 5.5 and 5.6) is the inverse of the spatial characteristic x (Lemma
5.3). This is why it is very important to keep track of the dependence on the initial data (z0,ν0) at
the level of (1.30). This also explains how the complexity of the oscillating structures may increase.
The chain rule indicates that the number of scales could become larger. In Subsections 5.3 and 5.4,
we will show that this number does indeed increase. ◦

1.5. Plan and motivations. The plan of the paper is as follows.

• In Section 2, we introduce a lifting (or blow-up) procedure which may be regarded as an
adapted kind of the (more classical) normal form procedure. The purpose is to remove
from the right hand side of (1.12) as much non-significant singular terms as possible. The
idea is to absorb some artificial oscillations by changing the unknowns. This is done by
(the inverse of) a nonlinear oscillating transformation. As a corollary, in Subsection 2.2.3,
we can already prove Theorem 2.

• In Section 3, we develop a three-scale WKB analysis involving the exact phase ν. We work
at the level of the profile equations (3.3) which allow to get rid of ν. The idea is to seek
approximate solutions t(Za,Va) of (3.3) in the form of expansions in powers of ε, like in
(3.11) or (3.12). Formal computations lead to a hierarchy

(
indexed by j ∈ {−1}∪N

)
of well-

posed equations which are highly interconnected and which allow to determine successively
all the profiles Zj and Vj that constitute Za and Va. In particular, in Paragraph 3.3.1, we
identify the leading profile Z0 which can be described as in Theorem 4.

• In Section 4, we justify the interest of the preceding procedure (the formal calculus) by
showing that the approximate solutions t(Za,Va) lead indeed to exact solutions of the
system (1.12). This means passing from the Zj and Vj of (3.11) and (3.12) to the Zj and

Vj of (1.29) and (1.30). This implies the freezing of the phase ν into νf (through the
implicit function theorem, see Subsection 4.2) as well as a coming back to the original field
(Subsection 4.3). At the end, this yields the proof of Theorem 3.

• In Section 5, we implement our analysis to construct classical solutions for the Cauchy
problem associated with a class of oscillating Hamilton-Jacobi equations. Of course, weak
solutions may exist [14]. But the vanishing viscosity method does not furnish a precise
description of their oscillating structures. By contrast, the method of characteristics does
apply and it makes such accurate information available. Still, to this end, we need to
implement some specific nontrivial arguments. Indeed, the differential of x is apparently
highly singular which indicates that supercritical phenomena are achieved. However, this
can be overcome through the Hadamard’s global inverse function theorem by exploiting
transparency conditions (Paragraph 5.3.2) emanating from Assumption 5 (or 3). At the
end, we achieve the proof of Theorem 1 in Subsection 5.5.

Hamilton-Jacobi equations like (1.5), implementing a small parameter ε→ 0, can appear in many
situations which inspire our interest in this topic, like: homogenization theory [1, 5, 6, 17, 18, 19, 25]
where they are applied to traffic flows, light propagation and optics [26, 28], plasma physics [8, 9],
in the presence of rough domains [21], and so on. In these references, the above different multiscale
aspects are often discussed separately and partially. We provide here an extensive overview and
we investigate new facets. Most importantly, we achieve a better comprehension of the nonlinear
specificities induced by the influence of the oscillating term u/ε inside H. Such aspects have already
been raised (for instance in [23]) but without going as far as we do.

12

http://www.math.ualberta.ca/~xinweiyu/317.Q1.17w/317Q1Winter2017_L15_20170203.pdf


The present approach is also motivated by the need for an accurate long time (τ ∼ 1) description
of the dynamics of charged particles in strongly magnetized plasmas. Recall that the gyrokinetic
equations [4] deal with systems of the type (1.12) during quick times, for τ ∼ ε or s ∼ 1. In fact,
the mean flow can be related to the guiding center motion, while Theorem 3 goes far beyond this.
It significantly enhances the information content of standard ray tracing methods [29] by justifying
asymptotic descriptions which prevail over longer times (namely during current times τ ∼ 1)
and which are valid with any order of precision (expressed in powers of ε). Given the potential
implications, there is a very abundant literature (both in physics and mathematics [2, 4, 29])
related to this subject. Usual approaches are however limited because they do not capture the
imbrication of oscillations revealed by (1.29) and (1.30). The introduction of the preceding three-
scale framework is necessary to progress. Historically, the structure of (1.12) is already implicit in
[20], and it becomes more visible in the two following contributions [7, 8] where it is studied in the
purely magnetic case. The formulation and assumptions retained here are much more general, and
they are designed to take into account the (potentially disruptive) influence of electric fields. But
this requires a long preparatory work and a number of specific considerations. This is why this
important aspect is developed in the separate contribution [9] with in perspective an analysis of
the dynamical confinement properties inside fusion devices during long times.

2. The blow-up procedure.

The main goal of this section is to get rid of the irrelevant oscillations which are put in factor
of the large weight ε−1 in the source term of the system (1.12). As stated in Subsection 2.1, at
the level of Proposition 2.1, we can exchange (1.12) with (2.3). In this procedure, the general form
of the equations is not modified but (A,V) is replaced by (A,V), with A satisfying the simplified
condition (2.4). When doing this, the crucial tool is a change of variables involving a map Ξ.
The general structure of Ξ is specified in Subsection 2.2. The transformation of (1.12) under the
blow-up procedure is detailed in Subsection 2.3, where it is explained how A and V can be deduced
from A and V. By this way, it becomes possible to exhibit necessary and sufficient conditions on Ξ
leading to (2.4). These conditions are the gateway to Assumption 5. The proof of Proposition 2.1
is achieved at the end, in Subsection 2.4.

Remark 2.1. As commented in Remark 1.1, we can always start with some θτ ∈ Tτ,z0 := R/(Tτ (z0)Z).
It bears noting that, in such a case, Assumption 5 implies that the function Ξmf(z0, z, ·) issued from
(1.23) should be periodic in s of period Tτ (z0) (instead of period 2π). ◦

2.1. The desingularization method. The aim of this subsection is to replace the original field
z by some auxiliary field z. In practice, the new unknown z cannot be directly expressed in terms
of z. Instead, it is revealed after a blow-up procedure on z. The term blow-up must be understood
here in the sense of lifting. More precisely, given z(ε, z0,ν0; ·) : R −→ Rn and

(2.1) Ξ(ε, z0; z; θτ , θr) ∈ C∞([0, ε0]× Rn × Rn × T× Tr,z0 ;Rn),

a lifting ` of z to Rn × T× Tr,z0 is an application

`(ε, z0,ν0; ·) : R −→ Rn × T× Tr,z0

τ 7−→ `(ε, z0,ν0; τ) =
(
z(τ),

τ

ε
,
ν(τ)

ε

)
leading to the following commutative diagram

Rn × T× Tr,z0

R Rn

Ξ(ε,z0;·)`(ε,z0,ν0;·)

z
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or equivalently to the following formula

(2.2) z(τ) = Ξ
(
ε, z0; z(τ);

τ

ε
,
ν(τ)

ε

)
.

In this process, the function ν is viewed as an input. The transformation (2.2) is driven by ν.
The correspondance through (2.2) between z and z (and conversely) makes sense only on condition
that ν is identified and, for the moment, it is supposed to be the local solution of (1.12). Knowing
this, the key tool is the map Ξ(·) which must be adjusted first. Then, we can pass from z to z by
following the two arrows at the top of the preceding diagram, or equivalently by using (2.2).

The interest of a lifting is to put (a part of) the singularities (of z) aside by raising the number of
variables. Here, oscillations are put in factor inside Ξ(·), at the level of the periodic variables θτ
and θr. Note again that the whole procedure is very sensitive to the choice of both ν and Ξ. The
purpose is to adjust ν and Ξ in such a way that z solves a system of ODEs which is inherited from
(1.12) but which is less complicated than (1.12). In practice, this should manifest as a simplification
of the source term A.

Proposition 2.1. [Desingularization] Under Assumption 5, there exists a map Ξ(·) allowing to
convert (1.12) through (2.2) into the following redressed system

(2.3) ∂τ

(
z
ν

)
=

1

ε

(
A
V

)(
ε, z0; z;

τ

ε
,
ν

ε

)
,

(
z
ν

)
(0) =

(
z0
ν0

)
which takes the same form as (1.12), with new expressions A and V satisfying (for all N ∈ N)

C∞([0, ε0]× Rn × Rn × T× Tr,z0 ;Rn) 3 A(ε, z0; z; θτ , θr) =
N∑
j=0

εj Aj(z0; z; θτ , θr) +O(εN+1),

C∞([0, ε0]× Rn × Rn × T× Tr,z0 ;R∗+) 3 V(ε, z0; z; θτ , θr) =
N∑
j=0

εj Vj(z0; z; θτ , θr) +O(εN+1),

but which now involves a first component A that is subject to the crucial property

(2.4) A0(z0; z; ·) = A(0, z0; z; ·) ≡ 0.

Retain that A and V are likely distinct from A and V. These functions are defined up to ε = 0,
and they are smooth near ε = 0. As well as for A and V from which they are issued, they do not
involve ν, but only z. This nonlinearity will be sometimes marked by the notations A(z) and V(z),
which focus on the dependence on z and simply dismiss the role of (ε, z0, θτ , θr).

The proof of Proposition 2.1 is postponed to Subsection 2.4.

Corollary 2.1. [Uniform time of existence for (2.3)] The lifespan T (ε, z0,ν0) that is associated
with (2.3) is uniformly (in ε when ε goes to 0) bounded below by some T (z0) ∈ R∗+.

In other words, we have (1.26) with z0 replaced by z0.

Proof. Taking into account (2.4), the source term ε−1A in front of ∂τ z at the level of (2.3) is of
size A1 +O(ε) = O(1) instead of being of size O(ε−1). As long as z remains in a compact set, say
z ∈ B(0, r] where r is adjusted in such a way that z0 ∈ B(0, r/2], the two expressions ε−1A and V
are bounded uniformly with respect to ε, z and τ by

M := sup
ε∈]0,ε0]

sup
z∈B(0,r)

sup
θτ∈T

sup
θr∈Tr,z0

max
(
ε−1 |A(ε, z0; z; θτ , θr)| ; |V(ε, z0; z; θτ , θr)|

)
< +∞.

Moreover, they are Lipschitz continuous with respect to z and θr. By Cauchy-Lipschitz theorem,
there exists a unique local solution t(z,ν) to (2.3).
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Since A and V are periodic with respect to θr, the explosion, if any, can only occur at the level of
the component z. Let τ̄(ε) ∈ R∗+ be such that

τ̄(ε) := sup
{
τ̃ ∈ [0, T (ε, z0,ν0)[; |z(τ)| ≤ r, ∀τ ∈ [0, τ̃ ]

}
.

By construction, we have τ̄(ε) < T (ε, z0,ν0). Thus, if τ̄(ε) = +∞, there is nothing to prove. Now,
assume that τ̄(ε) < +∞. Then we should have

(2.5) z(τ̄(ε)) = r.

On the other hand, by the mean value theorem, the solution is such that

∀ τ ∈ [0, τ̄(ε)], |z(τ)| ≤ |z(τ)− z0|+ |z0| ≤M τ + r/2,
∀ τ ∈ [0, τ̄(ε)], |ν(τ)| ≤ |ν(τ)− ν0|+ |ν0| ≤ ε−1M τ + |ν0|.

It follows that

∀ τ ≤ min
(
τ̄(ε); r/4M

)
, |z(τ)| ≤M τ + r/2 ≤ 3r/4 < r.

If τ̄(ε) ≤ r/4M , we get |z(τ)| < r for all τ ∈ [0, τ̄(ε)]. This is a contradiction with (2.5). Thus,
we have τ̄(ε) > r/4M . Hence, the lifespan T (ε, z0,ν0) of the solution to (2.3) is uniformly (in ε)
bounded below by T (z0) := r/4M . The scenario of Example 1.1 is avoided. �

2.2. The general structure of the lifting. The map Ξ is built as a small perturbation (of size
ε) of some map Ξ0. More precisely

(2.6) Ξ(ε, z0; z; θτ , θr) = Ξ0(z0; z; θτ ) + εΞ1(z0; z; θτ , θr),

with

Ξ0 ∈ C∞(Rn × Rn × T;Rn),(2.7)

Ξ1 ∈ C∞(Rn × Rn × T× Tr,z0 ;Rn).(2.8)

Observe that the form of Ξ inside (2.1) and (2.6) is the same as the one of A and V. For illustration
purposes and to assist the reader in the understanding of the text, we will explain through a series
of remarks what happens in the case of a standard normal form procedure. We start below by
recalling what is meant by this.

Remark 2.2 (Normal form procedure: definition). This is when Ξ0(z0; z; θτ ) ≡ Ξ0nf (z0; z; θτ ) := z
and when moreover Ξ1 does not depend on θτ , that is when

(2.9) Ξ(ε, z0; z; θτ , θr) ≡ Ξnf (ε, z0; z; θr) := z + εΞ1nf (z0; z; θr).

In fact, the change (2.9) is just a small perturbation of the identity map. The formula (2.9) may
suffice during quick times but certainly not (always) during longer times, see Remark 2.8. ◦

When ε = 0 inside (2.6), we recover Ξ0(z0; z; θτ ). In the general case, as will be seen, we need
some freedom on Ξ0 in order to absorb singular terms. Thus, we do not take Ξ0 ≡ Ξ0nf . Extra
admissible functions Ξ0 are presented in Paragraph 2.2.1, while basic properties of Ξ are detailed
in Paragraph 2.2.2. At the end, in Paragraph 2.2.3, we explain how to pass from the initial data
z0 to z0. We also describe how to go from the field z to its corresponding lifting z, that is how to
get the inverse function of (2.2).
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2.2.1. Admissible functions Ξ0. From now on, we suppose that Ξ0(z0; .; θτ ) : Rn → Rn generates a
one-to-one correspondence. Under Assumption 5, as a consequence of Lemma 2.3, this condition
will be verified for the choice Ξ0 = Ξmf that we have in mind.

Condition 2.1 (Ξ0 is a global smooth diffeomorphism). The expression Ξ0 is subject to (2.7).
Moreover, for all (z0, θτ ) ∈ Rn × T, the function

(2.10)
Ξ0(z0; ·; θτ ) : Rn −→ Rn

z 7−→ Ξ0(z0; z; θτ )

is a diffeomorphism from Rn onto Rn. The corresponding inverse is denoted by Ξ−1
0 (z0; ·; θτ ). It is

a smooth function of (z0, z, θτ ) on Rn × Rn × T.

2.2.2. Properties of Ξ. We look here more closely at the characteristics of the map Ξ, viewed as a
perturbation of Ξ0.

Lemma 2.1. [A family of diffeomorphisms indexed by (ε, z0, τ, θτ , θr) ∈ [0, 1]×Rn×R×T×Tr,z0]
Select two functions Ξ0 and Ξ1 satisfying respectively (2.7) and (2.8). Assume Condition 2.1 and
define Ξ as it is indicated in (2.6). Fix a compact set K0 ⊂ Rn and a positive real number R ∈ R∗+.
Then, we can find ε0 ∈ ]0, ε0] such that, for all (ε, z0, θτ , θr) ∈ [0, ε0]×K0 × T× Tr,z0, the map

(2.11)
Ξ(ε, z0; ·; θτ , θr) : B(0, R] −→ Rn

z 7−→ Ξ(ε, z0; z; θτ , θr)

is a diffeomorphism from B(0, R] onto its image

K ≡ K(ε, z0, R, θτ , θr) :=
{

Ξ(ε, z0; z; θτ , θr) ; z ∈ B(0, R]
}
.

The corresponding inverse is denoted by Ξ−1(ε, z0; ·; θτ , θr). It is a smooth function of (ε, z0, z, θτ , θr)
chosen in [0, ε0]×K0 ×K × T× Tr,z0 which can be expanded in powers of ε according to

(2.12) Ξ−1(z0; z, θτ , θr) = Ξ−1
0 (z0; z, θτ ) +

+∞∑
j=1

εj Ξ−1
j (z0; z, θτ , θr)

where Ξ−1
0 is the inverse of the map z 7→ Ξ0(z0; z, θτ ) and where Ξ−1

1 is given by

(2.13) Ξ−1
1 (z0; z, θτ , θr) := −DzΞ0(z0; z, θτ )−1 Ξ1(z0; Ξ−1

0 (z0; z, θτ ), θτ , θr).

Moreover, given K0, by adjusting R large enough and ε0 small enough, we can always ensure that

(2.14) ∀ (ε, z0, θr) ∈ [0, ε0]×K0 × Tr,z0 , K0 ⊂ Ξ
(
ε, z0;B(0, R]; 0, θr

)
.

Proof. Consider the auxiliary map

(2.15) B(0, R] 3 z 7−→ Ξ−1
0

(
z0; Ξ(ε, z0; z; θτ , θr); θτ

)
.

Applying (2.6) and (2.7), the mean value theorem (in several variables) guarantees that

Ξ−1
0

(
z0; Ξ(ε, z0; z; θτ , θr); θτ

)
= z +O(ε).

More precisely, this is a modification of the identity map IdB(0,R] which is of size O(ε) in terms

of the C1-norm on B(0, R]. Moreover, by compactness, this holds true uniformly with respect
to z0 ∈ K0, θτ ∈ T and θr ∈ Tr,z0 . Since the set of C1-diffeomorphisms on B(0, R] is open, by
restricting ε0 if necessary, the map inside (2.15) is sure to be a diffeomorphism for all values of
(ε, z0, θτ , θr) in [0, ε0]×K0×T×Tr,z0 . Composing (2.15) by Ξ0 on the left, we recover as expected
that Ξ(ε, z0; .; θτ , θr) is a diffeomorphism from B(0, R] onto its image. Now, the set{

Ξ−1
0 (z0; z0; 0) ; z0 ∈ K0

}
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is compact as the image of K0 ×K0 by the continuous function Ξ−1
0 (·; 0). Thus, for R sufficiently

large, it can be included in a ball of radius R. And thereby, we have

∀ z0 ∈ K0, z0 = Ξ0

(
z0; Ξ−1

0 (z0; z0; 0); 0
)
∈ Ξ0

(
z0;B(0, R]; 0

)
.

This inclusion is none other than (2.14) when ε = 0. The general case follows by compactness and
perturbative arguments, by restricting ε0 ∈ ]0, ε0] again if necessary. Moreover, by the definitions
of Ξ and then Ξ−1, we must have

(2.16) Ξ(z0; Ξ−1, θτ , θr) = Ξ0(z0; Ξ−1, θτ ) + ε Ξ1(z0; Ξ−1, θτ , θr) = z.

We can seek Ξ−1 in the form of the asymptotic expansion (2.12). Then, we can exploit the formal
expansion of (2.16) in powers of ε to successively determine the Ξ−1

j with j ≥ 0. By this way, we

can extract Ξ−1
0 (term with ε0 in factor) and Ξ−1

1 (term with ε in factor) as indicated. The inverse
function theorem allows to justify this calculus. �

2.2.3. Passage from the original field z to the lifting z. In practice, we fix the compact K0, and
we consider a collection of initial conditions z0 ∈ K0. Then, we adjust R and ε0 to obtain (2.14).
The property (2.14) is essential to guarantee that all positions in K0 has a unique preimage inside
B(0, R]. More precisely, for all (ε,ν0) ∈ [0, ε0]× R, we can now assert that

(2.17) ∃ ! z0 ≡ z0(ε, z0,ν0) ∈ B(0, R] ; z0 = Ξ
(
ε, z0; z0; 0,

ν0

ε

)
or equivalently

(2.18) z0 ≡ z0(ε, z0,ν0) = Ξ−1
(
ε, z0; z0; 0,

ν0

ε

)
= Ξ−1

0 (z0; z0; 0) + εΞ−1
1 (z0; z0; 0,

ν0

ε
) +O(ε2).

Note that z0 does depend on ε (even if z0 does not) and it does oscillate in ε due to the presence of
ν0/ε. The change from z0 to z0 through Ξ−1 introduces high frequencies since in general ∂θrΞ

−1
1 6≡ 0.

However, the positions z0 remain uniformly in ε in a compact neighborhood of{
Ξ−1

0 (z0; z0; 0) ; z0 ∈ K0

}
⊂ B(0, R].

By the way of (2.18), all the initial data z0 contained in K0 can be converted into corresponding
initial data z0 ∈ B(0, R] for the forthcoming system of ODEs on z. Now, let K be a compact set

containing K0 in its interior (K0 ⊂ K̊ ⊂ K ⊂⊂ Rn). By applying Lemma 2.1 with K0 replaced by
K, we can guarantee that

(2.19) ∀ (ε, z, θr) ∈ [0, ε̃0]×K × Tr,z0 , K ⊂ Ξ
(
ε, z;B(0, R̃]; 0, θr

)
,

for some ε̃0 ≤ ε0 and R ≤ R̃. By continuity, a solution z(ε, z0,ν0; ·) of (1.12) issued from z0 ∈ K0

will remain in K for sufficiently small values of τ . Thus, at least locally in time, on some open time
interval which may be not uniform with respect to ε ∈ ]0, ε0], we can define

(2.20) z(ε, z0,ν0; τ) := Ξ−1
(
ε, z0; z(ε, z0,ν0; τ); θτ ,

ν(ε, z0,ν0; τ)

ε

)
∈ B(0, R̃].

At this stage, we have collected enough information to show Theorem 2.

Proof of Theorem 2. We can pass from the local in time solution z of (1.12) to some associated field
z through (2.20), with inverse formula (2.2). Now, Proposition 2.1 indicates that z can be charac-
terized by the equation (2.3), and therefore that it can be determined through (2.3) independently
from (1.12). This means that any local solution to (1.12) gives rise to a local solution to (2.3), and
conversely. Since by Corollary 2.1, the lifespan associated with (2.3) is uniformly bounded below
(with some stability in the sup norm), the same applies concerning (1.12). �

Now, the challenge is to derive the equation (2.3) on z, allowing to identify z.
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2.3. Transformation of the equations. Given a map Ξ as in Subsection 2.2, the matter here is
to show that the system (1.12) is transformed under the blow-up procedure into the system (2.3).
It is also to determine how the new source terms A and V inside (2.3) can be deduced from the
original A and V of (1.12).

Lemma 2.2. [Identification of the new source terms A and V from A, V and Ξ] Let t(z,ν)(ε, z0,ν0; ·)
be a local solution of (1.12). Assume Condition 2.1. Define z0 through (2.17) and z(ε, z0,ν0; ·) lo-
cally in time through (2.20). Then, the field t(z,ν) is the unique (local) solution of (2.3), with A
and V determined as indicated below:

A(ε, z0; z; θτ , θr) := DzΞ(ε, z0; z; θτ , θr)
−1
{
A
(
ε, z0; Ξ(·); θτ , θr

)
− ∂θτΞ(ε, z0; z; θτ , θr)− ε−1 V

(
ε, z0; Ξ(·); θτ , θr

)
∂θrΞ(ε, z0; z; θτ , θr)

}
,

(2.21)

V(ε; z; θτ , θr) := V
(
ε, z0; Ξ(·); θτ , θr

)
,(2.22)

where the point · must be replaced by (ε, z0; z; θτ , θr).

Proof. Recall that the component ν remains unchanged under the blow-up procedure. It is the
solution to (1.12). In view of (2.2), this forces us to define V as in (2.22). Incidentally, this means
that the amplitude is maintained when transferring from V to V.

There remains to prove that z is a solution to the first line of (2.3) with A adjusted as in (2.21).
To this end, combine (2.2) with the first equation of (1.12) to see that we have to guarantee that

∂τ

{
Ξ
(
ε, z0; z(τ);

τ

ε
,
ν(τ)

ε

)}
=

1

ε
A
(
ε, z0; z;

τ

ε
,
ν(τ)

ε

)
.

In other words, exploiting again (1.12), we must impose

(2.23)

(
DzΞ A + ∂θτΞ + ε−1 V ∂θrΞ

)
(ε, z0; z; θτ , θr)

= A
(
ε, z0; Ξ(ε, z0; z; θτ , θr); θτ , θr

)
.

By inverting the matrix DzΞ, we recover exactly (2.21). �

2.4. Proof of Proposition 2.1. In what follows, we need to invert the derivative ∂θi for i ∈ {τ, r}.
To this end, define TT := R/(TZ) and introduce the sets L1

∗(TT ) made of periodic functions with
zero mean, namely

L1
∗(TT ) :=

{
Z ∈ L1(TT ) ;

∫ T

0
Z(θ) dθ = 0

}
;

We can define the operators ∂−1
θ : L1

∗(TT ) −→ L1
∗(TT ) according to

(2.24) ∂−1
θ Z(θ) :=

∫ θ

0
Z(r) dr − 1

T

∫ T

0

(∫ s

0
Z(r) dr

)
ds.

Retain that

∀Z ∈ L1(TT ), ∂−1
θ ∂θZ = Z∗ := Z(θ)− 1

T

∫ T

0
Z(r) dr,(2.25a)

∀Z ∈ L1
∗(TT ), ∂θ∂

−1
θ Z = Z.(2.25b)

Then, we apply the above arguments to define the inverse of the operators ∂θi for i ∈ {τ, r}.
We seek conditions on A and V allowing to get rid of the problematic term of size ε−1 which may
appear when looking at the first line of (2.3). This requires to separate inside (2.21) the leading
term from the terms with ε in factor. We work at the level of (2.23). Assuming as expected that
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A0 ≡ 0, with Ξ as in (2.6) so that ∂θrΞ = ε ∂θrΞ1, with A as decomposed in the beginning, we can
expand (2.23) according to[

(DzΞ0 + εDzΞ1)
(
εA1 +O(ε2)

)
+ ∂θτΞ0 +ε ∂θτΞ1 + V ∂θrΞ1

]
(ε, z0; z; θτ , θr)

= A
(
z0; Ξ(ε, z0; z; θτ , θr); θτ , θr

)
.

On the one hand, from (2.22), we have

V = V(ε, z0; Ξ0 + εΞ1; ·)
= V0(z0; Ξ0 + εΞ1; ·) + εV1(z0; Ξ0 + εΞ1; ·) +O(ε2)
= V0(z0; Ξ0; ·) + ε (Ξ1 · ∇z) V0(z0; Ξ0; .) + εV1(z0; Ξ0; ·) +O(ε2).

On the other hand, we have

A
(
z0; Ξ(ε, z0; z; θτ , θr); ·

)
=
(
A0 + εA1

)(
z0; Ξ(ε, z0; z; θτ , θr); ·

)
+O(ε2)

= A0(z0; Ξ0; ·) + ε (Ξ1 · ∇z)A0(z0; Ξ0; .) + εA1(z0; Ξ0; ·) +O(ε2).

Thus, we have to deal with the condition

(2.26)

εDzΞ0(z0; z; θτ ) A1(z0; z; θτ , θr) + ∂θτΞ0(z0; z; θτ ) + ε ∂θτΞ1(z0; z; θτ , θr)
+
(
V0(z0; Ξ0; θτ , θr) + ε (Ξ1 · ∇z)V0(z0; Ξ0; θτ , θr)

)
∂θrΞ1(z0; z; θτ , θr)

+ εV1(z0; Ξ0; θτ , θr) ∂θrΞ1(z0; z; θτ , θr)
= A0(z0; Ξ0; θτ , θr) + ε (Ξ1 · ∇z) A0(z0; Ξ0; θτ , θr)

+ εA1(z0; Ξ0; θτ , θr) +O(ε2).

We bring together the terms with the same power of ε in factor to obtain

(2.27)

∂θτΞ0(z0; z; θτ ) + V0(z0; Ξ0; θτ , θr) ∂θrΞ1(z0; z; θτ , θr)− A0(z0; Ξ0; θτ , θr)
+ ε
[
DzΞ0(z0; z; θτ ) A1(z0; z; θτ , θr) + ∂θτΞ1(z0; z; θτ , θr)
+
(
(Ξ1 · ∇z)V0(z0; Ξ0; θτ , θr) + V1(z0; Ξ0; θτ , θr)

)
∂θrΞ1(z0; z; θτ , θr)

− (Ξ1 · ∇z)A0(z0; Ξ0; θτ , θr)− A1(z0; Ξ0; θτ , θr)
]

+O(ε2) = 0.

The first line must be zero, which is the same as

V0(z0; Ξ0; θτ , θr)
−1 ∂θτΞ0(z0; z; θτ ) + ∂θrΞ1(z0; z; θτ , θr) = (V−1

0 A0)(z0; Ξ0; θτ , θr).

First, take the mean value with respect to θr in order to get rid of Ξ1 and to identify ∂θτΞ0.
Then, subtract the result thus obtained to deduce ∂θrΞ1. Following these lines, we can exhibit two
separate conditions, namely

∂θτΞ0 =
((

V−1
0

)−1
V−1

0 A0

)
(z0; Ξ0; θτ ),(2.28)

∂θrΞ1 =
(
V−1

0 A0 − V−1
0

(
V−1

0

)−1
V−1

0 A0

)
(z0; Ξ0; θτ , θr).(2.29)

Definition 2. [Homological equation] The nonlinear ordinary differential equation (2.28) in the
variable θτ is called the homological equation (or sometimes the first modulation equation).

We can complete (2.28) with some initial data z ∈ Rn whose introduction has been motivated by
Remark 1.6. Hence, the expression Ξ0 becomes a function of z0, z and θτ , together with

(2.30) Ξ0(z0; z; 0) = z.

Remark 2.3 (About the passage from z0 to z0). The condition (2.30) implies that Ξ−1
0 (z0; z; 0) = z.

Thus, when Ξ1 ≡ 0, we find that Ξ−1(ε, z0; z; 0, θr) = z. Then, in view of (2.18), we have

z0 =
+∞∑
j=0

εj z0j = z0 =
+∞∑
j=0

εj z0j ,

so that z0j = z0j for all j ∈ N. ◦
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Lemma 2.3 (The mean flow is the solution to the homological equation). We have

(2.31) ∀ s ∈ R, Ξmf(z0; z; s) = Ξ0(z0; z; s).

As a consequence, under Assumption 5, the solution to the Cauchy problem (2.28)-(2.30) is global
and it is periodic with respect to θτ of period 2π.

Proof. In view of Definition 1, the vector fields Ξmf and Ξ0 are solutions to the same system
of ODEs. By Cauchy-Lipschitz theorem, local solutions do exist and (by uniqueness) they must
coincide. The content of Assumption 5 allows to conclude. �

Remark 2.4 (The impact of Assumption 5). Lemma 2.3 makes the connection between the notion
of mean flow (Definition 1 appearing in the introduction after heuristic considerations) and the
map Ξ0 (derived from formal computations). The role of Assumption 5 is clearly to furnish global
solutions to (2.28)-(2.30). It is also essential to stay in the periodic framework. ◦

Remark 2.5 (About the verification of Condition 2.1). Since the map Ξ0(z0; z; ·) can be viewed as
a flow, Condition 2.1 is automatically verified with Ξ−1

0 (z0; z; θτ ) = Ξ0(z0; z;−θτ ). ◦

Remark 2.6 (Some hidden constraint on Ξmf under Assumption 5). The right hand side of (1.23)
is periodic in s of period 2π. Thus, it can be decomposed like in (1.19) into its mean value and its
quick oscillating part. It follows that the solution to (1.23) is the sum of a linear function plus a
periodic function. The resulting expression may indeed be periodic only if

(2.32)
〈
Amf

(
z0; Ξmf(z0; z; ·); ·

)〉
= 0,

which may appear as some a posteriori condition which must be satisfied by Ξmf . ◦

By construction, the right hand side of (2.29) is periodic with respect to the variable θr, and it is of
mean zero. It can be integrated as indicated in (2.24). As a consequence, the part Ξ∗1 is completely
determined from (2.29). We fix Ξ1 ≡ 0, so that

(2.33) Ξ1 ≡ Ξ∗1(z0; z; θτ , θr) := ∂−1
θr

(
(A0 − (V−1

0 )−1 (V−1
0 A0)

(
z0; Ξ0(z0; z; θτ ); θτ , θr

)
V0

(
z0; Ξ0(z0; z; θτ ); θτ , θr

) )
.

At this stage, we have exhibited necessary conditions on A0, Ξ0 and Ξ1 ≡ Ξ∗1 to obtain A0 ≡ 0. We
have now to show that these conditions are sufficient. By Lemma 2.1, the matrix DzΞ is invertible
for the data under consideration. Coming back to (2.23), we can therefore deduce the value of A,
with A = εA1 +O(ε2). Looking at (2.27), we find that

(2.34)

A1(z0; z; θτ , θr) = DzΞ0(z0; z; θτ )−1
{
A1(z0; Ξ0; θτ , θr)

+ (Ξ1 · ∇z)A0(z0; Ξ0; θτ , θr)− ∂θτΞ1(z0, z; θτ , θr)

−
[
V1(z0; Ξ0; θτ , θr) + (Ξ1 · ∇z)V0(z0; Ξ0; θτ , θr)

]
∂θrΞ1(z0, z; θτ , θr)

}
.

Remark 2.7 (The limited framework of the normal form procedure). The restriction on Ξ which is
imposed at the level of (2.9) strongly reduces the class of systems (1.12) which can be managed by
the blow up procedure. Indeed, it generates compatibility conditions on A :

a In view of (2.28), the selection of Ξ0(z0; z; θτ ) = z is coherent with the homological equation
if and only if Amf ≡ 0. This requires that V−1

0 A0 has a zero mean (in θr), which is very
restrictive. In particular, when A0 do not depend on θr, this simply means that we start
already with A0 ≡ 0.

a In view of (2.29), the function Ξ1 does in general depend on θτ when V0 and A0 do depend
on θτ . Now, this would not be compatible with (2.9) which implies that ∂θτΞ1 = 0. In the
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normal form procedure, since DzΞ0 = Id and ∂θτΞ1 = 0, the expression leading to A1 must
be related to A1 through

A1(z0; z; θr) = A1(z0; z; θr) + (Ξ1 · ∇z)A0(z0; z; θr)

− V1(z0; z; θr) ∂θrΞ1 − (Ξ1 · ∇z)V0(z0; z) ∂θrΞ1,

where Ξ1 does not depend on θτ and is as in (2.33). ◦

In this section, we have seen that the study of the system (1.12) is under Assumption 5 completely
equivalent to the analysis of (2.3). The challenge now is to exploit (2.4) in order to derive a
description of t(z,ν) in terms of asymptotic oscillating series in powers of ε ∈]0, ε0]. In fact, this
requires in addition to Assumption 5 imposing Assumption 6.

Remark 2.8 (The simplified framework inherited from Assumption 6). Under Assumption 6, we
find that V0 does not depend on θr. More precisely, we have

(2.35) 0 < V0(z0; z; θτ , θr) ≡ V0(z0; z; θτ ) := V0

(
z0; Ξ0(z0; z; θτ ); θτ

)
.

Moreover, as seen in (1.24), the function Amf is simplified into A0. On the other hand, the formulas
(2.28) and (2.29) can be replaced by

∂θτΞ0(z0; z; θτ ) = A0

(
z0; Ξ0(z0; z; θτ ); θτ

)
,(2.36)

Ξ∗1(z0; z; θτ , θr) = V0

(
z0; Ξ0(z0; z; θτ ); θτ

)−1
∂−1
θr

A∗0
(
z0; Ξ0(z0; z; θτ ); θτ , θr

)
.(2.37) ◦

3. The three-scale WKB calculus.

We work here under Assumptions 5 and 6. The purpose is to construct approximate solutions
through formal computations. The preceding work of preparation (in Section 2) allows to formulate
the problem in terms of t(z,ν). Thus, we can consider (2.3) and we can benefit from (2.4). We
can also exploit the content of Remark 2.8. We proceed in several stages. In Subsection 3.1, we
replace t(z,ν) by some corresponding profile t(Z,V); we define a notion of profile equations with
associated approximate solutions t(Za,Va); we also state the main result (Proposition 3.1) of this
section. The construction of t(Za,Va) is clarified in Subsection 3.2. The proof of Proposition 3.1 is
achieved in Subsection 3.3.

3.1. Profile formulation. The first step is to seek solutions to (2.3) in the form

(3.1)

(
z
ν

)
(τ) =

(
Z
V

)(
τ,
τ

ε
,
ν(τ)

ε

)
,

where ν(τ) stands for the exact solution to (2.3). This multi-scale approach allows to separate
the rapid variations (which have not yet been identified due to the presence of ν) from the slower
(current and quick) variations (which must be determined first and foremost). This is like knowing
z and ν modulo the action of a one-parameter group of rotations (associated with θr ∈ R) which
are aimed to be ultimately specified through the the replacement of θr by ν/ε.

At the level of (3.1), the profile t(Z,V)(τ, θτ , θr) may depend on the parameters ε, z0 and ν0 (which
will not be always indicated). Assuming (3.1), observe that

∂τ

(
z
ν

)
(τ) =

[
Op (Z; ∂)

(
Z
V

)](
τ,
τ

ε
,
ν(τ)

ε

)
,

where we have introduced the partial differential operator

(3.2) Op(ε, z0;Z; θτ , θr) ≡ Op(Z; ∂) := ∂τ + ε−1 ∂θτ + ε−2 V(ε, z0;Z; θτ , θr) ∂θr
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which involves the parameters (ε, z0) ∈ [0, ε0]×Rn, is non-linear with respect to Z, and implies the
coefficient V which undergoes variations in (θτ , θr) ∈ T×Tr,z0 . Consider the profile equations which
are associated to (2.3). These are the relaxed version of (2.3) made of the transport equations

(3.3)

[
Op(Z; ∂)

(
Z
V

)
− 1

ε

(
A
V

)
(Z)

]
(ε, z0,ν0; τ, θτ , θr) = 0

together with the initial data (at time τ = 0)

(3.4)

(
Z
V

)
(ε, z0,ν0; 0, θτ , θr) =

(
Z0

V0

)
(ε, z0,ν0; θτ , θr).

To recover the initial data of (2.3) with z and ν as in (3.1), in view of (2.18), we have to impose

(3.5)

(
Z
V

)(
ε, z0,ν0; 0, 0,

ν0

ε

)
=

(
Ξ−1(ε, z0; z0, 0,

ν0
ε )

ν0

)
.

To this end, it suffices to work with the (relaxed) condition

(3.6)

(
Z0

V0

)
(ε, z0,ν0; θτ , θr) =

(
Ξ−1(ε, z0; z0; 0, θr)

ν0

)
.

The component Z0 may be expanded in powers of ε. The same applies to Ξ−1. Assuming that z0

does not depend on ε, this yields

(3.7) Z0(ε, z0,ν0; θτ , θr) =

N∑
j=0

εj Z0j(z0; θr) +O(εN+1) =

N∑
j=0

εj Ξ−1
j (z0; z0, 0, θr) +O(εN+1).

In particular, taking into account (2.12) and (2.30), we find that

Z00(z0, θr) = Ξ−1
1 (z0; z0, 0) = z0 ≡ Z00(z0), Z01(z0, θr) = Ξ−1

1 (z0; z0, 0, θr).

When z0 depends (smoothly) on ε, we have z0 = z00 +εz01 + · · · , and (3.7) can be further expanded
in powers of ε to get

(3.8) Z0(ε, z0,ν0; θτ , θr) =

N∑
j=0

εj Ξ̃−1
j (z00, · · · , z0j , θr) +O(εN+1).

By the way, we can observe that the oscillations of z0 are easily absorbed at time τ = 0 by the
profile formulation, just because ν(0) = ν0 and because Z0 may depend on θr. Note also that the
condition (3.4) has the effect of introducing at the level of V (and therefore Z) a dependence on ν0.
Neither Z0 nor V0 depend on θτ . But the variable θτ appears at the level of Z and V through the
variations with respect to θτ of the coefficient V inside (3.2).

By looking at the Cauchy problem (3.3)-(3.4), we can see that:

/ The presence of ν has completely disappeared;

/ The equation on Z is now decoupled from the one on V.

These two properties are major assets in what follows. In fact, knowing what the component ν(τ)
is, the solution to (2.3) can be directly deduced from (3.3) and (3.4) together with the substitution
formula (3.1). Now, we would like to find good candidates for solving (3.3)-(3.4).

Definition 3. [Formal solutions to the profile equations] Fix (z0,ν0) ∈ Rn × R. Given some
time T ∈ R∗+ and some integer N ∈ N∗, we say that t(Za,Va)(ε, z0,ν0; τ, θτ , θr) is an approximate
solution on [0, T ] of order N to the Cauchy problem (3.3)-(3.4) if it satisfies (3.3)-(3.4) modulo
some remainder which is of size εN in the sup norm.
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More precisely, Definition 3 means that t(Za,Va)(·, z0,ν0; ·) is a smooth (C∞) function of

(ε, τ, θτ , θr) ∈ ]0, ε0]× [0, T ]× T× Tr,z0

which is such that

(3.9)

[
Op(Za; ∂)

(
Za

Va
)
− 1

ε

(
A
V

)
(Za)− εN

(
RZ
N
RVN

)]
(ε, z0,ν0; τ, θτ , θr) = 0

together with

(3.10) sup
ε∈ ]0,ε0]

sup
τ∈[0,T ]

sup
θτ∈T

sup
θr∈Tr,z0

(
|RZ

N |+ |R
V
N |
)
(ε, z0,ν0; τ, θτ , θr) < +∞.

In what follows, we seek t(Za,Va) through a finite series like

Za(ε, z0,ν0; τ, θτ , θr) =

N∑
j=0

εj Zj(z0,ν0; τ, θτ , θr),(3.11)

Va(ε, z0,ν0; τ, θτ , θr) =

N∑
j=−1

εj Vj(z0,ν0; τ, θτ , θr),(3.12)

with

(3.13) t(Zj ,Vj) ∈ C∞(Rn × R× [0, T ]× T× Tr,z0 ;Rn × R).

Moreover, in the same vein as (1.28), we impose

(3.14) V−1 ≡ 〈V−1〉, V0 ≡ V0, Z0 ≡ Z0.

Proposition 3.1 (Existence of formal solutions to the profile equations). Under Assumptions 5
and 6, we can find some time T ∈ R∗+ and, for all N ∈ N∗, an approximate solution t(Za,Va) on
[0, T ] of order N to the Cauchy problem (3.3)-(3.4), which takes the form of (3.11)-(3.12) together
with (3.13)-(3.14). The parts 〈Zj〉 and 〈Vj〉 are uniquely determined by a sequence of well-posed

evolution equations associated with initial data issued from (3.4), while the expressions Z
?
j , Z

∗
j , V

?
j

and V∗j are derived from elliptic equations. We also find that Z0 ≡ 〈Z0〉 and Z1 ≡ Z1.

Remark 3.1 (Meaning of the WKB hierarchy on the profiles). Readers may wonder why the formal
calculus is not performed directly on the system (2.3), with an expansion of ν in powers of ε. This
is because a small error on the determination of ν, even of size ε, can completely shuffle (through
the substitution of θr for ν/ε) sequences which are expressed in powers of ε. In other words, a
small change of ν at the level of (3.1) can strongly modify the asymptotic representations (3.11)
and (3.12) of the profiles Z and V. It can mix the terms Zj and Vj and then cause intractable
closure problems. This is why it is so important to work with the exact phase ν. We return to this
point in Subsection 4.1. ◦

Remark 3.2 (Halfway to formal solutions of the redressed system of Proposition 2.1). Due to the
influence of ν, in the continuation of Remark 3.1, it bears noting that

(3.15)

(
za

νa

)
(τ) :=

(
Za

Va
)(

τ,
τ

ε
,
ν(τ)

ε

)
does not provide, strictly speaking, with an approximate solution to (2.3). Indeed

∂τ z
a − 1

ε
A(za) = εN RZ

N

(
ε, z0,ν0; τ,

τ

ε
,
ν(τ)

ε

)
+ ε−2

{[
V(ε, z0; z; ·)−V(ε, z0; za; ·)

]
∂θrZ

a(ε, z0,ν0; ·)
}(
τ,
τ

ε
,
ν(τ)

ε

)
.
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We will see later that ∂θrZ
a = O(ε2). To estimate the right hand side, we need to control the

difference between the exact solution z and its model za. However, there is no assurance for the
moment that z− za is small, of size εN (or less). This issue is considered in Subsection 4.1. ◦

3.2. Three-scale analysis. The expression t(Za,Va) obtained through (3.11) and (3.12) is plugged
into (3.3). The various contributions are ordered in increasing powers of ε. This yields in Subsection
3.2.1 a cascade of successive equations on t(Zj ,Vj). The methodology for solving these equations
is explained in Subsection 3.2.2.

3.2.1. Formal calculus. The matter is to list a cascade of successive equations on t(Zj ,Vj). To this
end, we perform a formal analysis at the level of (3.9) which can be expanded according to

(3.16)

Op (Za; ∂)

(
Za

Va
)

(ε, z0,ν0; τ, θτ , θr)−
1

ε

(
A
V

)
(Za) (ε, z0,ν0; τ, θτ , θr)

=

N−1∑
j=−2

εj
(

Lj
(
Z0,Z1, · · ·

)
Mj

(
Z0,Z1, · · · ;V−1,V0, · · ·

) )+O(εN ).

We can resume (3.11), (3.12) and (3.14) in the form

(3.17)

(
Za

Va
)

(τ, θτ , θr) = ε−1

(
0〈
V−1

〉 ) (τ) +
N−1∑
j=0

εj
(

Zj
Vj

)
(τ, θτ )

+

N∑
j=1

εj
(

Z∗j
V∗j

)
(τ, θτ , θr)

where the operations ·, 〈·〉 and ·∗ are furnished by (1.16)-(1.17)-(1.18). Taking into account (3.17)
when dealing with the left part of (3.16), we find that

(3.18)

Op (Za; ∂)

(
Za

Va
)

(ε, z0,ν0; τ, θτ , θr)−
1

ε

(
A
V

)
(Za) (ε, z0,ν0; τ, θτ , θr)

= ε−1 ∂τ

(
0〈
V−1

〉 ) (τ) +
N−1∑
j=0

εj ∂τ

(
Zj
Vj

)
(τ, θτ ) +

N−2∑
j=−1

εj ∂θτ

(
Zj+1

Vj+1

)
(τ, θτ )

+

N∑
j=1

εj ∂τ

(
Z∗j
V∗j

)
(τ, θτ , θr) +

N−1∑
j=0

εj ∂θτ

(
Z∗j+1

V∗j+1

)
(τ, θτ , θr)

+

+∞∑
k=−1

k∑
i=−1

εk Vk−i(z0;Za; θτ , θr) ∂θr

(
Z∗i+2
V∗i+2

)
(τ, θτ , θr)

−
+∞∑
k=−1

εk
(

Ak+1

Vk+1

)
(z0;Za; θτ , θr) .

By definition, the expressions Lj and Mj are independent of ε ∈]0, ε0]. They are obtained by
collecting the terms which, for j < N , appear in factor of εj . From this perspective, the right hand
side of (3.18) is still not in convenient form. The difficulties come from the two last lines in (3.18)
which involve in factor of εk expressions that still depend on ε. We seek the profile t(Za,Va) to be
the approximate solution to the profile equation (3.3) in the sense of preceding Definition 3. To
this end, Lj and Mj should be zero.

To begin with, by means of (2.4) and (2.35), it is easy to see that, for j = −1, we find

(3.19) L−1(Z0,Z1) = ∂θτZ0 + V0(z0;Z0; θτ ) ∂θrZ
∗
1.
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Integrate this with respect to θr to deduce that ∂θτZ0 = 0, and therefore (since V0 is positive) that
∂θrZ

∗
1 = 0. This implies that Z∗1 = 0. In fact, we have (3.30). These relations are used below in

order to exhibit the expressions of Lj for j ≥ 0.

• For j = 0:

(3.20) L0(Z0,Z1,Z2) = ∂τZ0 + ∂θτZ1 + V0(z0;Z0; θτ ) ∂θrZ
∗
2 −A1(z0;Z0; θτ , θr).

• For j = 1:

(3.21)
L1(Z0,Z1,Z2,Z3) = ∂τ Z̄1 + ∂θτZ2 + ∂θτZ

∗
2

+ [V1 + (Z1 · ∇z)(V0)] ∂θrZ
∗
2 + V0 ∂θrZ

∗
3 −A2 − (Z1 · ∇z)(A1).

• For j ≥ 2:

(3.22)

Lj(Z0, · · · ,Zj+2) = ∂τ Z̄j + ∂θτZj+1 + ∂τZ
∗
j + ∂θτZ

∗
j+1

+
∑

(i,m,k,l1,...,lk,b1,...,bk)∈Sj

1

k!

∂kVm

∂Zb1 · · · ∂Zbk
(z0;Z0; θτ , θr)

k∏
t=1

Zbtlt ∂θrZ
∗
i

−
∑

(m,k,l1,...,lk,b1,...,bk)∈S′j

1

k!

∂kAm

∂Zb1 · · · ∂Zbk
(z0;Z0; θτ , θr)

k∏
t=1

Zbtlt

where

Sj = {(i,m, k, l1, ..., lk, b1, ..., bk); 2 ≤ i ≤ N, 0 ≤ m < +∞, k ≤ j, 1 ≤ lt ≤ N,
l1 = · · · = lk, 0 ≤ bt ≤ n, t ∈ {1, ..., k}, m+ i+ l1 + ...+ lk = j + 2},

S
′
j = {(m, k, l1, ..., lk, b1, ..., bk); 1 ≤ m < +∞, k ≤ j, 1 ≤ lt ≤ N,

l1 = · · · = lk, 0 ≤ bt ≤ n, t ∈ {1, ..., k}, m+ l1 + ...+ lk = j + 1}.
The expression Lj can also be put in the form

(3.23)
Lj(Z0, ...,Zj+2) = ∂τ Z̄j + ∂θτZj+1 + V0 ∂θrZ

∗
j+2 − (Zj · ∇z)(A1)

+ (Zj · ∇z)(V0) ∂θrZ
∗
2 +Gj(Z0,Z1, ...,Zj−1,Z

∗
j ,Z
∗
j+1),

where the expression of Gj can be deduced from (3.22) as follows

(3.24)

Gj(Z0,Z1, · · · ,Zj−1,Z
∗
j ,Z
∗
j+1) = +∂τZ

∗
j + ∂θτZ

∗
j+1

+
∑

(i,m,k,l1,...,lk,b1,...,bk)∈Sj

1

k!

∂kVm

∂Zb1 · · · ∂Zbk
(z0;Z0; θτ , θr)

k∏
t=1

Zbtlt ∂θrZ
∗
i

−
∑

(m,k,l1,...,lk,b1,...,bk)∈S′j

1

k!

∂kAm

∂Zb1 · · · ∂Zbk
(z0;Z0; θτ , θr)

k∏
t=1

Zbtlt

with
Sj = Sj \ {(i,m, k) = (j + 2, 0, 0) and (i,m, k, l1) = (2, 0, 1, j)},
S
′
j = S

′
j \ {(m, k, l1) = (1, 1, j)}.

In a similar fashion, we can define the expressions Mj as indicated below.

• For j = −1:

(3.25)
M−1(Z0, 〈V−1〉,V0,V1) = ∂τ 〈V−1〉+ ∂θτV0

+ V0(z0;Z0; θτ ) ∂θrV∗1 −V0(z0;Z0; θτ ).
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• For j ≥ 0:

(3.26)

Mj(Z0, · · · ,Zj+1,V0, · · · ,Vj+2) = ∂τVj + ∂θτVj+1 + ∂τV∗j + ∂θτV∗j+1

+
∑

(i,m,k,l1,...,lk,b1,...,bk)∈Sj

1

k!

∂kVm

∂Zb1 · · · ∂Zbk
(z0;Z0; θτ , θr)

k∏
t=1

Zbtlt ∂θrV
∗
i

−
∑

(m,k,l1,...,lk,b1,...,bk)∈S′′j

1

k!

∂kVm

∂Zb1 · · · ∂Zbk
(z0;Z0; θτ , θr)

k∏
t=1

Zbtlt

with

S
′′
j = {(m, k, l1, ..., lk, b1, ..., bk); 0 ≤ m < +∞, k ≤ j + 1, 1 ≤ lt ≤ N,

l1 = · · · = lk, 0 ≤ bt ≤ n, t ∈ {1, ..., k}, m+ l1 + ...+ lk = j + 1}.

The above expression also can be put in the following form

(3.27)
Mj(Z0, · · · ,Zj+1,V0, · · · ,Vj+2) = ∂τVj + ∂θτVj+1 + V0 ∂θrV∗j+2

+Kj(Z0, ...,Zj+1,V∗1 , ...,V∗j+1),

where again the expression Kj may be deduced from (3.26). Looking at (3.16), to obtain (3.9), we
have to solve for j ∈ {−1, · · · , N − 1} the following cascade of equations

(3.28)

(
Lj
(
Z0, · · · ,Zj+2

)
Mj

(
Z0, · · · ,Zj+1,V0, · · · ,Vj+2

) ) =

(
0
0

)
.

3.2.2. Problem-solving strategy. The purpose here is to explain how we can solve the equations
Lj ≡ 0 and Mj ≡ 0 in order to determine the profiles Zj and Vj . This is a survey of the method
that will be used (in next Subsection 3.3) to find approximate solutions to (3.3). In fact, this
means manipulating the equations and expressions according to certain rules that we would like to
emphasize and make explicit now.

The well-posedness of the hierarchy of equations Lj ≡ 0 andMj ≡ 0 is the gateway to the existence
of the profiles t(Zj ,Vj). And due to the decoupling property which is highlighted in the previous
paragraph, we can primarily determine Za. Then we can explain how to recover the remaining
component Va.
Let us begin with the base case (initialization case) concerning L. This means to examine the
following system

(S0) :

{
L−1(Z0,Z1) = 0,

L0(Z0,Z1,Z2) = 0.

We will see that solving (S0) furnishes Z0 ≡ 〈Z0〉, Z
?
1 and Z∗2. Now, we address the strategy of

solving every single equation Lj = 0 for j ≥ 1 through the following three points:

• 1. First we take the average of the equation Lj = 0 in both variables θτ ∈ T and θr ∈ Tr,z0 to

get a well-posed (linear for j ≥ 1 ) Cauchy differential equation on 〈Zj〉, where the profiles

Z0 up to Zj−1, Z
?
j , Z

∗
j and Z∗j+1 are viewed as input.

• 2. Second we substitute the expression of ∂τ 〈Zj〉 obtained from 1 and take the mean value

of the equation Lj = 0 with respect to θr ∈ Tr,z0 to obtain the expression of Z
?
j+1.

• 3. Third we subtract the expressions of ∂τ 〈Zj〉 and ∂θτZ
?
j+1 in Lj = 0 to get Z∗j+2.
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Using such argument for j ≥ 1 gives rise to Zj by combining the three equations

(Sj) :


Lj−2(Z0, ...,Zj) = 0

Lj−1(Z0, ...,Zj+1) = 0

Lj(Z0, ...,Zj+2) = 0

through the following steps

• Step 1: Apply 1, 2 and 3 to the equation Lj−2 = 0; this leads to Z∗j .

• Step 2: Apply 1 and 2 to the equation Lj−1 = 0; this yields Z
?
j .

• Step 3: Apply 1 to the equation Lj = 0; this allows to identify 〈Zj〉.
Steps 1, 2 and 3 allow to determine Z∗j , Z

?
j and 〈Zj〉, and therefore Zj . By this way, it becomes

possible to access all the profiles by solving successively the systems (Sj) for j ∈ {0, ..., N − 1}.
Looking at (Sj) gives also access to Z

?
j+1 (through Lj), Z∗j+1 (through Lj−1) as well as Z∗j+2 (through

again Lj). The arising claim (for j ≥ 2) is thus as follows:

(Hj) :

{
Zk are known on the domain [0, T ]× T× Tr,z0 for 0 ≤ k ≤ j − 2,

Z
?
j−1, Z

∗
j−1 and Z∗j are known on the domain [0, T ]× T× Tr,z0 .

This means that we argue by induction. We have first to find the constraints required to validate
the starting point of the induction, which is (H2). Then, we proceed successively. We prove that
(Hj+1) holds true given that (Hk) is verified for k ∈ {2, ..., j}. By this way, we can recover Zj−1,

Z
?
j , Z

∗
j and Z∗j+1, and so on. This program is achieved in the next section.

A similar startegy is repeated concerning the profiles Vj . We start by analysing the basic case.
Then, we propagate to the higher one on the basis of the following hypothesis

(H̃j) :

{
Vk are knowns on the domain [0, T ]× T× Tr,z0 for − 1 ≤ k ≤ j − 2,

V?j−1,V∗j−1 and V∗j are known on the domain [0, T ]× T× Tr,z0 .

From the profiles Zj and Vj thus obtained, we can build the approximate solution t(Za,Va) as
indicated in (3.11) and (3.12).

3.3. Construction of approximate solutions. The strategy of constructing an approximate
solution was clarified in the previous section. We are concerned here with the verification of the
preceding arguments. Following this line, we achieve the proof of Proposition 3.1. In Subsection
3.3.1 we explain the base case where it becomes possible to access the proof of Theorem 4, whereas
in Subsection 3.3.2 we check the validity of hypotheses (Hj) and (H̃j) using the induction argument.

3.3.1. Base case. We want to prove here that the inilialization case is well-posed. To this end, we
can limit ourselves to looking at the equations L−1 ≡ 0, L0 ≡ 0 and M−1 ≡ 0. As already seen,
exploiting Assumption 6, the restriction L−1 ≡ 0 reduces to

(3.29) L−1(Z0,Z1) = ∂θτZ0 + V0(z0;Z0; θτ ) ∂θrZ
∗
1 = 0.

This amounts to the same thing as

(3.30) Z0(τ, θτ ) = 〈Z0〉(τ), Z1(τ, θτ , θr) = Z1(τ, θτ ).

Pick the expression L0 from (3.20), which becomes (in view of Assumption 6)

(3.31) ∂τ 〈Z0〉+ ∂θτZ
?
1 + V0(z0; 〈Z̄0〉; θτ ) ∂θrZ

∗
2 −A1(z0; 〈Z0〉; θτ , θr) = 0.

At this stage, we are able to complete the proof of Theorem 4.

Proof of Theorem 4. Take the average of (3.31) in both variables θτ and θr to exhibit

(3.32) ∂τ 〈Z0〉(z0; τ)− 〈A1〉(z0; 〈Z0〉(z0; τ)) = 0, 〈Z0〉(z0; 0) = Ξ−1
0 (z0; z0; 0) = z0.
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This is exactly (1.35). By restricting T if necessary, the Cauchy-Lipschitz theorem provides with
the existence on the interval [0, T ] of a local solution 〈Z0〉(z0; .) to the above non-linear differential
equation. The formula (1.36) comes from (2.34) where Ξ0 ≡ Ξmf and Ξ1 ≡ Ξ∗1 is replaced by (2.37).
On the other hand, by construction, we have (2.18) and (2.6) which lead to (1.34) after the use of
the first line inside (3.17). �

The above formula (3.32) can be viewed as a second modulation equation. It plays an important
role concerning the long time gyrokinetic equation. There are other outcomes which are issued
from (3.31) and which are given by the following lemma.

Lemma 3.1. [Determination of Z
?
1 and Z∗2] Under Assumption 6, the expressions of the profiles Z

?
1

and Z∗2 under the constraint L0 ≡ 0 are given by

(3.33) Z
?
1(τ, θτ ) = (∂−1

θτ
A
?
1)(z0; 〈Z0〉(τ); θτ ),

(3.34) Z∗2(τ, θτ , θr) = V0(z0; 〈Z0〉(τ); θτ )−1 ∂−1
θr

A∗1(z0; 〈Z0〉(τ); θτ , θr).

Proof. We take into account Assumption 6 in the following analysis. First, we average the equation
(3.31) with respect to θr to get

(3.35) ∂τ 〈Z0〉(τ) + ∂θτZ
?
1(τ, θτ )−A1(z0; 〈Z0〉(τ); θτ ) = 0.

We also plug the ansatz (3.32) into (3.35) to obtain

(3.36) ∂θτZ
?
1(τ, θτ ) = A1(z0; 〈Z0〉(τ); θτ )− 〈A1〉(z0; 〈Z0〉(τ)) = A

?
1(z0; 〈Z0〉(τ); θτ ).

Since A
?
1(z0; 〈Z0〉(τ); .) ∈ L1

∗(T), we can invert the operator ∂θτ as indicated in (2.24). Thus, we
obtain (3.33). Similarly to get Z∗2, substitute (3.35) in (3.31). This gives

(3.37) V0(z0; 〈Z0〉(τ); θτ ) ∂θrZ
∗
2(τ, θτ , θr) = A∗1(z0; 〈Z0〉(τ); θτ , θr).

Again, as A∗1(z0; 〈Z0〉(τ); θτ , .) ∈ L1
∗(Tr,z0), we can invert the operator ∂θr and the positive source

term V0(z0; 〈Z0〉(τ); θτ ) in order to recover (3.34). �

It is obvious that to solve L0 ≡ 0, it is enough to adjust 〈Z0〉, Z
?
1 and Z∗2 as indicated in (3.32),

(3.33) and (3.34). By the way, this furnishes (H2).

Similarly, we can determine basic parts of the profile Va through the following lemma.

Lemma 3.2. [Determination of 〈V−1〉 and V?0] Under Assumption 6, the expressions of the profiles

〈V−1〉 and V?0 under the constraint M−1 ≡ 0 are given by

(3.38) 〈V−1〉(z0; τ) =

∫ τ

0
〈V0〉(z0; 〈Z0〉(r))dr.

(3.39) V?0(z0; τ, θτ ) = (∂−1
θτ

V
?
0)(z0; 〈Z0〉(τ); θτ ).

Moreover, we have V∗1 ≡ 0. This means that V1 ≡ V1.

Proof. With the aid of expression (3.25), the restriction M−1 ≡ 0 reduces to

(3.40) ∂τ 〈V−1〉 −V0(z0; 〈Z0〉; θτ ) + ∂θτV
?
0 + V0(z0; 〈Z0〉; θτ ) ∂θrV∗1 = 0.

Take the average in θr to get rid of the last term, and then in θτ to suppress the penultimate term.
Complete with the initial data coming from (3.4). We find that

(3.41) ∂τ 〈V−1〉(τ)− 〈V0〉(z0; 〈Z0〉(τ)) = 0, 〈V−1〉(0) = 0

which implies (3.38). Now take the mean value with respect to θr to get rid of the term V0 ∂θrV∗1
in (3.40). Then exploit (3.41) and subtract the result thus obtained to deduce

(3.42) ∂θτV
?
0(τ, θτ ) = V0(z0; 〈Z0〉(τ); θτ )− 〈V0〉(z0; 〈Z0〉(τ)) = V

?
0(z0; 〈Z0〉(τ); θτ ).
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Since V
?
0(z0; 〈Z0〉(τ); .) ∈ L1

∗(T), we can invert the operator ∂θτ in (3.42) to get (3.39). Finally,

replace in (3.40) the expressions ∂τ 〈V−1〉 and ∂θτV
?
0 as indicated in (3.41) and (3.42), this gives

V0(z0; 〈Z0〉(τ); θτ ) ∂θrV∗1 (τ, θτ , θr) = 0.

Since V0 is positive function, we must have V∗1 ≡ 0. �

Recall that V∗0 ≡ 0. Thus, from Lemma 3.2, we have (H̃1).

Let us clarify here what happens at the initial time τ = 0. From (3.7), we have to impose

Zj(0, 0, θr) = 〈Zj〉(0) + Z
?
j (0, 0) + Z∗j (0, 0, θr) = Ξ−1

j (z0; z0, 0, θr).

This means the cauchy problem (3.49) is accompanied with the following initial data

(3.43) 〈Zj〉(0) = Ξ−1
j (z0; z0, 0, θr)− Z

?
j (0, 0)− Z∗j (0, 0, θr).

Similarly for V, we must have

(3.44) V(0, 0, θr) = ν0 = 〈V〉(0) + V?(0, 0) + V∗(0, 0, θr).

3.3.2. Induction step. We want here to verify the validity of the hypotheses presented in Paragraph
3.2.2 concerning the induction argument. We have already checked from Lemma 3.1 and the
equation (3.32) the validity of (H2). Assume that (Hk) is valid for all k ∈ {2, · · · , j}. We have to
prove that

(Hj+1) :

{
Zk are known on the domain [0, T ]× T× Tr,z0 for 0 ≤ k ≤ j − 1,

Z
?
j , Z

∗
j and Z∗j+1 are known on the domain [0, T ]× T× Tr,z0 ,

holds true. From the validity of (Hj), the profiles Zk for 0 ≤ k ≤ j − 2, Z
?
j−1, Z∗j−1 and Z∗j have

been identified. We still need to determine Zj−1, Z
?
j and Z∗j+1. To this end, consider the expression

Lj−1 as defined in (3.23), that is

(3.45)
∂τ Z̄j−1 + ∂θτZj + V0(z0; 〈Z0〉; θτ ) ∂θrZ

∗
j+1 − (Zj−1 · ∇z) A1(z0; 〈Z0〉; θτ , θr)

+ (Zj−1 · ∇z) V0(z0; 〈Z0〉; θτ ) ∂θrZ
∗
2 +Gj−1(Z0,Z1, ...,Zj−2,Z

∗
j−1,Z

∗
j ) = 0.

Substitute Zj−1 = 〈Zj−1〉+ Z
?
j−1 at the level of (3.45), we get

(3.46)

∂τ 〈Zj−1〉+ ∂τZ
?
j−1 + ∂θτZ

?
j −

(
(〈Zj−1〉+ Z

?
j−1 + Z∗j−1) · ∇z

)
A1(z0; 〈Z0〉; θτ , θr)

+ V0(z0; 〈Z0〉; θτ ) ∂θrZ
∗
j+1 +

(
(〈Zj−1〉+ Z

?
j−1 + Z∗j−1) · ∇z

)
V0(z0; 〈Z0〉; θτ ) ∂θrZ

∗
2

+ Gj−1(Z0,Z1, ...,Zj−2,Z
∗
j−1,Z

∗
j ) = 0.

We end with a linearized version of (3.31), which is

(3.47)
∂τ 〈Zj−1〉+ ∂θτZ

?
j + (〈Zj−1〉 · ∇z)V0(z0; 〈Z0〉; θτ ) ∂θrZ

∗
2

+V0(z0; 〈Z0〉; θτ ) ∂θrZ
∗
j+1 − (〈Zj−1〉 · ∇z)A1(z0; 〈Z0〉; θτ , θr) = Gj−1

where

(3.48)

Gj−1(Z0,Z1, ...,Zj−2,Z
?
j−1,Z

∗
j−1,Z

∗
j ) = −∂τZ

?
j−1 −Gj−1(Z0,Z1, ...,Zj−2,Z

∗
j−1,Z

∗
j )

+
(
(Z
?
j−1 + Z∗j−1) · ∇z

)
A1(z0; 〈Z0〉; θτ , θr)

−
(
(Z
?
j−1 + Z∗j−1) · ∇z

)
(V0(z0; 〈Z0〉; θτ )) ∂θrZ

∗
2.

It is obvious that the expression Gj−1 ≡ Gj−1(Z0,Z1, ...,Zj−2,Z
?
j−1,Z

∗
j−1,Z

∗
j ) is known function,

since by induction, the profiles Z∗j−1, Z∗j , Z
?
j−1 and Zk where 0 ≤ k ≤ j − 2 are known functions on
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the domain [0, T ] × T × Tr,z0 . With the aid of Assumption 6, average (3.47) in both variables θτ
and θr to exhibit

(3.49) ∂τ 〈Zj−1〉 − (〈Zj−1〉 · ∇z)
〈
A1(〈Z0〉)

〉
= 〈Gj−1〉.

This may be completed by the initial data, namely 〈Z0(j−1)〉 issued from (3.43) where, due to

(Hj), the expressions Z
?
j−1(0, 0) and Z∗j−1(0, 0, θr) are known. The equation (3.49) is linear. It has

therefore a solution 〈Zj−1〉 on the whole interval [0, T ]. By validity of (Hj), Z
?
j−1 and Z∗j−1 are

known. And thereby, in view of (1.20), this implies that the whole of Zj−1 has been identified.

Substitute ∂τ 〈Zj−1〉 as indicated in (3.49) inside (3.47). Then average with respect to θr to get

(3.50) ∂θτZ
?
j = G?j−1 + (〈Zj−1〉 · ∇z) A

?
1(〈Z0〉),

or equivalently

(3.51) Z
?
j = ∂−1

θτ
G?j−1 + (〈Zj−1〉 · ∇z) A

?
1(〈Z0〉).

Again substitute in (3.47) the expressions ∂τ 〈Zj−1〉 and ∂θτZ
?
j as indicated in (3.49) and (3.50).

This gives

(3.52) Z∗j+1 = (V0)−1 ∂−1
θr

[
G∗j−1 + (〈Zj−1〉 · ∇z) A∗1(〈Z0〉)− (〈Zj−1〉 · ∇z)V0(〈Z0〉) ∂θrZ∗2

]
.

This discussion determines (Hj+1).

The same strategy applies concerning the construction of the profiles Vj , for j ∈ {−1, ..., N + 1}
under Assumption 6. Lemma 3.2 gives rise to (H̃1). Assume now that the hypotheses (H̃k) are valid

for all k ∈ {1, .., j − 1}. We have to prove that (H̃j) holds true. To this end, pick the expression
Mj−2 from (3.26) and solve the equation Mj−2 ≡ 0. We find

(3.53) ∂τ 〈Vj−2〉+ ∂θτV
?
j−1 + V0 ∂θrV∗j = Kj−2

where Kj−2 is known function by induction. Average (3.53) with respect to θτ and θr, we get

(3.54) ∂τ 〈Vj−2〉 = 〈Kj−2〉.

The equation (3.54) together with the initial data coming from the second equation of (3.4) allows
to determine 〈Vj−2〉 by time integration on the interval [0, T ]. Substitute (3.54) in the equation
(3.53). Then, average with respect to θr to get

(3.55) V?j−1 = ∂−1
θτ
K?j−2.

Again, exploit (3.54) and (3.55) in (3.53), we get

V∗j = (V0)−1 ∂−1
θr
K∗j−2.

Briefly, we have just verified (H̃j).

We are able now to access the proof of Proposition 3.1.

Proof of Proposition 3.1. We select some N ∈ N∗, and we build the profiles t(Za,Va) as it is
indicated in (3.11) and (3.12), with the aid of the profiles t(Zj ,Vj) which have been determined in
the previous Paragraphs 3.3.1 and 3.3.2. It is easy then to see that t(Za,Va) is an approximate
solution to the profile equation (3.3). Indeed, by construction, we have reset to zero all the terms
composing the sum in (3.16). �
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4. Stability estimates.

Our purpose here is to show that the formal solutions to (3.3)-(3.4) can be exploited in order to
approximate through (3.15) the exact solutions of the redressed system (2.3). Note that we do not
compare t(Za,Va) and the solution t(Z,V) to the profile equation (3.3), which would be relatively
easy. Instead, we want to associate the expression t(za,νa) of (3.15) and the solution t(z,ν) of (2.3).
To this end, we can always consider the expression t(rz, rν) defined by the weighted difference

(4.1)

(
rz

rν

)
(τ) := ε−N

(
z− za

ν− νa

)
(τ)

or equivalently by the relation

(4.2)

(
z
ν

)
(τ) = ε−1

(
0〈
V−1

〉 ) (τ) +
N∑
j=0

εj
(

Zj
Vj

)(
τ,
τ

ε
,
ν(τ)

ε

)
+ εN

(
rz

rν

)
(τ).

In Subsection 4.1, we prove that t(εNrz, εNrν) can indeed be viewed as a remainder, as suggested
by (4.2). In Subsection 4.2, we highlight the role of the frozen phase νf which is given by

(4.3) νf(τ) ≡ νf(ε, z0,ν0; τ) :=
1

ε
〈V−1〉(z0,ν0; τ) + V0

(
z0,ν0; τ,

τ

ε

)
.

The frozen phase is a known quantity because it is built from 〈V−1〉(τ) and V0(τ, θτ ) which have
been already determined. It is constructed by collecting the two first terms of the expansion (4.2) of
ν. Note that the definition (4.3) coincides with (1.31) since, at the end, we will find that V−1 ≡ V−1

and V0 ≡ V0. By construction, we have

(4.4) ν(τ) = νf(τ) +
N∑
j=1

εj Vj
(
τ,
τ

ε
,
ν(τ)

ε

)
+ εN rν(τ).

For j ≥ 2, in general, we have V∗j 6≡ 0 while θr must be replaced by ν/ε. This means that the access

to ν is necessary to construct the right hand side of (4.4), or that the knowledge of ν is required to
get a precision of size ε or more. Now, we would like to derive a self-contained representation of z
and ν (which does not call for ν). In Subsection 4.2, we explain how νf/ε can become a substitute
for ν/ε in the right part of (4.2). By this way, we end up with a justified WKB expansion of the
redressed field t(z,ν) whose all components can be determined by formal computations. Finally,
there remains to interpret this result in terms of the original field z. This is done in Subsection 4.3
where the proof of Theorem 3 is completed.

4.1. Justification of the formal computations. The aim here is to compare t(z,ν) and t(za,νa).
This can be done by estimating the size of the weighted difference t(rz, rν). To this end, the strategy
is to first exhibit a non-linear differential equation satisfied by t(rz, rν).

Lemma 4.1. For all N ∈ N, the expression t(rz, rν) issued from (4.1) is subject to

(4.5) ∂τ

(
rz

rν

)
(τ) =

(
Rz

Rν

)(
ε, z0,ν0, r

z; τ,
τ

ε
,
ν

ε

)
,

(
rz

rν

)
(0) = O(1)
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where

(4.6)

(
Rz

Rν

)
(ε, z0,ν0, r; τ, θτ , θr) :=

+ ε−N−2
[
V(ε, z0;Za; θτ , θr)−V(ε, z0;Za + εN r; θτ , θr)

]
∂θr

(
Za

Va
)

+ ε−N−1

[(
A
V

)(
ε, z0;Za + εN r; θτ , θr

)
−
(

A
V

)
(ε, z0;Za; θτ , θr)

]
−
(
RZ
N
RVN

)
(ε, z0,ν0; τ, θτ , θr).

Proof. Taking into account (4.2), the equation (2.3) can be reformulated as

∂τ

[(
Za

Va
)(

τ,
τ

ε
,
ν(τ)

ε

)
+ εN

(
rz

rν

)
(τ)

]
=

1

ε

(
A
V

)(
ε, z0; z;

τ

ε
,
ν(τ)

ε

)
.

This is the same as

(4.7)

∂τ

(
Za

Va
)(

τ,
τ

ε
,
ν(τ)

ε

)
+ ε−1 ∂θτ

(
Za

Va
)(

τ,
τ

ε
,
ν(τ)

ε

)
+ ε−2 V

(
ε, z0; z;

ν(τ)

ε

)
∂θr

(
Za

Va
)(

τ,
τ

ε
,
ν(τ)

ε

)
+ εN ∂τ

(
rz

rν

)
(τ) =

1

ε

(
A
V

)(
ε, z0; z;

τ

ε
,
ν(τ)

ε

)
or equivalently

εN ∂τ

(
rzε
rνε

)
(τ) = −Op (Za; ∂)

(
Za

Va
)(

τ,
τ

ε
,
ν

ε

)
+

1

ε

(
A
V

)(
ε, z0;Za;

τ

ε
,
ν

ε

)
+ ε−1

[(
A
V

)(
ε, z0;Za + εN rzε;

τ

ε
,
ν

ε

)
−
(

A
V

)(
ε, z0;Za;

τ

ε
,
ν

ε

)]
+ ε−2

[
V
(
ε, z0;Za;

τ

ε
,
ν

ε

)
−V

(
ε, z0;Za + εN rzε;

ν

ε

)]
∂θr

(
Za

Va
)(

τ,
τ

ε
,
ν(τ)

ε

)
.

Exploit (3.9) and then divide by εN to see (4.6) appear. On the other hand, at the time t = 0, all
has been done in the WKB construction to ensure that the initial data for t(z,ν) in (2.3) matches
up to the order εN with t(za,νa). This is why we have the right part of (4.5). �

Proposition 4.1. [Weighted estimates on the difference t(rz, rν)] In the sense of the sup norm,
uniformly with respect to ε ∈ ]0, ε0] and τ ∈ [0, T ], we can assert that t(rz, εrν) = O(1).

Coming back to (4.2), this means that the contribution t(εNrz, εNrν) can indeed be viewed as a
remainder, namely of size εN−1.

Proof. It suffices to show that we can find two constants C ∈ R∗+ and C̃ ∈ R∗+ such that

sup
ε∈ ]0,ε0]

sup
τ∈[0,T ]

|rz(τ)| ≤ C eCT ,(4.8)

sup
ε∈ ]0,ε0]

sup
τ∈[0,T ]

|ε rν(τ)| ≤ C̃ (eCT + T ).(4.9)

We start with a list of information which is helpful to estimate the size of (4.6). We have:

/ ∂θrZ
a = O(ε2) since Z∗0 = 0 and Z∗1 = 0 according respectively to (3.14) and (3.30);
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/ The function V(·) is locally lipschitz with respect to z. Thus, by the mean-value theorem
and because Za, θτ and θr stay in compact sets, we can find some L ∈ R∗+ such that

sup
θτ∈T

sup
θr∈Tr,z0

|V(ε, z0;Za; θτ , θr)−V(ε, z0;Za + εN r; θτ , θr)| ≤ L εN |r|;

/ For the same reasons and due to (2.4), we can find some L′ ∈ R∗+ such that

(4.10) sup
θτ∈T

sup
θr∈Tr,z0

|A(ε, z0;Za; θτ , θr)−A(ε, z0;Za + εN r; θτ , θr)| ≤ L′ εN+1 |r|;

/ Recall also from (3.10) that we have

sup
ε∈ ]0,ε0]

sup
τ∈[0,T ]

sup
θτ∈T

sup
θr∈Tr,z0

|RZ
N (ε; τ, θτ , θr)| < +∞.

When computing the component Rz, observe in the second line of (4.6) the compensation between
the loss ε−2 and the gain ε2 brought by ∂θrZ

a. The same applies in the third line of (4.6) between
the loss ε−N−1 and the gain εN+1 given by (4.10). It follows that

sup
ε∈ ]0,ε0]

sup
τ∈[0,T ]

|∂τrz(τ)| = sup
ε∈ ]0,ε0]

sup
τ∈[0,T ]

|Rz
(
ε, z0,ν0, r

z; τ,
τ

ε
,
ν(τ)

ε

)
| ≤ C (|rz|+ 1).

On the other hand, from (4.5), we know (say with the same constant C) that

sup
ε∈ ]0,ε0]

|rz(0)| ≤ C.

Then, by Gronwall’s lemma, we can recover (4.8). Now, the situation is quite different concerning
the other component Rν. This is due to the contribution

ε−N−1
[
V0

(
z0;Za + εN r; θτ , θr

)
−V0 (z0;Za; θτ , θr)

]
which can actually be of large size ε−1. Taking this into account, we can only assert that

sup
ε∈ ]0,ε0]

sup
τ∈[0,T ]

|ε ∂τrν(τ)| ≤ sup
ε∈ ]0,ε0]

sup
τ∈[0,T ]

|εRν
(
ε, z0,ν0, r

z; τ,
τ

ε
,
ν(τ)

ε

)
| ≤ C̃ (|rz|+ 1).

The right hand side does not depend on ν. It can be bounded as indicated in (4.8). Then, after
integration in time, this yields (4.9). �

The drawback with (4.2) is the presence in the right hand side of the unknown function ν(τ). This
is remedied in the next subsection where ν is replaced by νf .

4.2. Description of the redressed field in terms of the frozen phase. The second line of
(4.2) can be interpreted as an implicit relation on ν. This is not very informative because the
explicit oscillating content of ν(·) remains to be clarified. Now, this may be achieved by cutting ν

into the (well determined) frozen phase νf introduced at the level of (4.3).

Lemma 4.2. [Description of the exact phase ν through a WKB expansion involving only the frozen
phase νf ] Fix N ≥ 2. There exist profiles

(4.11) Vj(z0,ν0; τ, θτ , θr) ∈ C∞(Rn × R× [0, T ]× T× Tr,z0 ;R), j ∈ {1, · · · , N − 2},

which can be computed from the Vk with k ≤ j with in particular

V1(τ, θτ , θr) = V1(τ, θτ ),(4.12)

V2(τ, θτ , θr) = V2

(
τ, θτ , θr + V1(τ, θτ )

)
,(4.13)
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and which are adjusted in such a way that, in terms of the sup norm, we have

(4.14) ν(τ) = νf(τ) +

N−2∑
j=1

εj Vj
(
z0,ν0; τ,

τ

ε
,
νf(z0,ν0; τ)

ε

)
+O(εN−1).

Note a loss of precision from εN to εN−1 when passing from the description (4.2) to (4.14). This is
coherent with the loss recorded in (4.9). By convention, we set V−1 := V−1 and V0 := V0. By this
way, the formulation (4.14) becomes compatible with (1.30). Moreover, from (1.27) and (3.41), we
can infer that the value of V−1(τ) is positive as soon as τ > 0. Thus, frequencies of size ε−2 are
created at time τ = 0, and then they persist.

Remark 4.1 (Exact phase vs. frozen phase). It is important to point out that neither ν nor νf

are phases in the usual sense of the term, since they both still depend on ε. The difference is that
ν is (a component of) the unknown solution whereas νf can be derived explicitly from the WKB
calculus. At the end, there remains

(4.15) ν(τ) = νf(τ) +

N−2∑
j=1

εj Vj
(
z0,ν0; τ,

τ

ε
,
〈V−1〉(τ)

ε2
+
V0(τ, τε )

ε

)
+O(εN−1).

The sole use of the time phase τ and of the rapid phase 〈V−1〉(τ) would not be consistent with
an expansion of z and ν in terms of profiles (not depending on ε) due to the presence of the extra
(large) shift V0(τ, τε )/ε. We had a choice of whether to make some phases or some profiles depend
on ε. We have selected the first option. ◦
Proof. The idea is to seek an expression Ve(ε, τ, θτ , θr, r) that is adjusted in such a way that

(4.16) ν(τ) = νf(τ) + εVe
(
ε, τ,

τ

ε
,
νf(τ)

ε
, εN−1 rν(τ)

)
.

In view of (4.2), this amounts to finding Ve so that

(4.17)

Ve
(
ε, τ,

τ

ε
,
νf(τ)

ε
, εN−1 rν(τ)

)
− V1(τ, θτ )

−
N∑
j=2

εj−1 Vj
(
τ,
τ

ε
,
νf(τ)

ε
+ Ve

(
ε, τ,

τ

ε
,
νf(τ)

ε
, εN−1 rν(τ)

))
− εN−1 rν(τ) = 0.

To this end, it suffices to achieve the relaxed condition

(4.18) H
(
ε, τ, θτ , θr, r;Ve(ε, τ, θτ , θr, r)

)
= 0

where we have introduced

(4.19) H(ε, τ, θτ , θr, r; y) := y − V1(τ, θτ )−
N∑
j=2

εj−1 Vj(τ, θτ , θr + y)− r.

The expression H(x; y) may be viewed as a nonlinear functional in y ∈ R depending on the multi-
dimensional parameter x = (ε, τ, θτ , θr, r). From this perspective, the implicit relation (4.18) may
define Ve as a function of x by applying the implicit function theorem. Here, it is possible (and
more efficient to obtain global results) to work directly. Compute

∂yH(ε, τ, θτ , θr, r; y) = 1−
N∑
j=2

εj−1 ∂yVj(τ, θτ , θr + y).

By construction, we can assert that

(4.20) sup
τ∈[0,T ]

sup
θτ∈T

sup
θr∈Tr,z0

sup
y∈R

|∂yVj(τ, θτ , θr + y)| < +∞.
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Note that the compactness of [0, T ], T and Tr,z0 , as well as the periodic behavior of Vj with respect
to θr, are crucial to get (4.20) notwithstanding the lack of compactness concerning y ∈ R. From
the bound (4.20), we can deduce that for all

(ε, τ, θτ , θr, r, y) ∈ [0, ε0]× [0, T ]× T× Tr,z0 × R× R
with ε0 ∈ R∗+ small enough, we have

∂yH(ε, τ, θτ , θr, r; y) > 0.

On the other hand, it is evident that

lim
y→±∞

H(ε, τ, θτ , θr, r; y) = ±∞.

This means that we can find a unique position Ve(ε, τ, θτ , θr, r) ∈ R leading to (4.18), with Ve
depending smoothly on its arguments. In particular, expanding Ve near r = 0 and using (4.9), we
get from (4.16) that

(4.21) ν(τ) = νf(τ) + εVe
(
ε, τ,

τ

ε
,
νf(τ)

ε
, 0
)

+O(εN−1).

Since Ve(ε, τ, θτ , θr, 0) is also smooth in ε near ε = 0, by expanding Ve in powers of ε, we can
recover (4.14) in the form

1

ε

[
ν(τ)− νf(τ)

]
= Ve

(
ε, τ,

τ

ε
,
νf(τ)

ε
, 0
)

+O(εN−2)

=
N−2∑
j=0

1

j!
εj ∂jεVe

(
0, τ,

τ

ε
,
νf(τ)

ε
, 0
)

+O(εN−2).

After comparison with (4.14), this furnishes

(4.22) Vj(τ, θτ , θr) :=
1

(j − 1)!
∂j−1
ε Ve(0, τ, θτ , θr, 0), ∀ j ∈ {1, · · · , N − 2}.

From (4.18) and (4.19) written with r = 0, it is easy to infer that

(4.23) Ve(ε, τ, θτ , θr, 0)− V1(τ, θτ )−
N∑
j=2

εj−1 Vj
(
τ, θτ , θr + Ve(ε, τ, θτ , θr, 0)

)
= 0.

The term with ε0 in factor yields Ve(0, τ, θτ , θr, 0) = V1(τ, θτ ). Applying (4.22) with j = 1, we find
(4.12). The next derivatives of (4.23) with respect to ε, taken at ε = 0, allow to deduce successively
how the profiles Vj can be expressed in terms of the Vk with k ≤ j, just by applying (4.22). For
instance, we find (4.13) and so on. �

The preceding description (4.2) of z is not fully satisfactory. Indeed, it still involves the unkown ν.
However, using Lemma 4.2, this difficulty can now easily be overcome.

Lemma 4.3. [Description of z through the frozen phase νf ] Fix N ≥ 2. There exist profiles

(4.24) Zj(z0,ν0; τ, θτ , θr) ∈ C∞(Rn × R× [0, T ]× T× Tr,z0 ;Rn), j ∈ {0, · · · , N − 2}
which can be computed from the Zk and Vk (or Vk) with k ≤ j with in particular

Z0(τ, θτ , θr) = 〈Z0〉(τ),(4.25)

Z1(τ, θτ , θr) = Z1(τ, θτ ),(4.26)

and which are adjusted in such a way that, in terms of the sup norm, we have

(4.27) z(τ) =
N−2∑
j=0

εj Zj
(
z0,ν0; τ,

τ

ε
,
νf(z0,ν0; τ)

ε

)
+O(εN−1).
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Proof. Substitute the phase ν as described by (4.14) in the first component of (4.2). Since Z0 ≡ 〈Z0〉
and ∂θrZ1 = 0, we find that

(4.28)

z(τ) = 〈Z0〉(τ) + εZ1(τ, θτ )

+
N−2∑
j=2

εj Zj

(
τ,
τ

ε
,
νf(τ)

ε
+
N−2∑
i=1

εi−1 Vi
(
τ,
τ

ε
,
νf(τ)

ε

))
+O(εN−1).

Apply taylor expansion to the function Zj with respect to the last variable to get

(4.29) Zj

(
τ, θτ , θr + V1 +

N−2∑
i=2

εi−1 Vi
)

=
+∞∑
k=0

1

k!
∂kθrZj(τ, θτ , θr + V1)

(N−2∑
i=2

εi−1 Vi
)k
.

Plug (4.29) into (4.28). Collect the terms with the same power of ε in factor. Then, compare the
result with the expansion (4.27). This allows to determine inductively the profiles Zj from the Zk
and Vk with k ≤ j. In particular, the terms which have ε0 and ε1 in factor furnish respectively
(4.25) and (4.26). �

4.3. Come back to the original field. The final stage is to provide a WKB expansion concerning
the original field z.

Lemma 4.4. [Asymptotic description of the original field] Fix N ≥ 2. There exist profiles

(4.30) Zj(z0,ν0; τ, θτ , θr) ∈ C∞(Rn × R× [0, T ]× T× Tr,z0 ;Rn), j ∈ {0, · · · , N − 2}
which can be computed from the Zk and Vk (or Zk and Vk) with k ≤ j with in particular

Z0(τ, θτ ) ≡ Z0(τ, θτ ) = Ξ0

(
z0; 〈Z0〉(τ); θτ

)
,(4.31)

Z1(τ, θτ , θr) =
(
Z1(τ, θτ ) · ∇z

)
Ξ0

(
z0; 〈Z0〉(τ); θτ

)
+ Ξ1

(
z0; 〈Z0〉(τ); θτ , θr + V1(τ, θτ )

)
.

(4.32)

and which are adjusted in such a way that, in terms of the sup norm, we have

(4.33) z(ε, z0,ν0; τ) =

N−2∑
j=0

εj Zj

(
z0,ν0; τ,

τ

ε
,
νf(z0,ν0; τ)

ε

)
+O(εN−1).

Remark 4.2 (Normal form procedure: implication). When Ξ is as in (2.9), we have ∂θτΞ0 ≡ 0, and
therefore the dependence of Z0 on θτ is not activated. Then, there remains Z0 ≡ 〈Z0〉. ◦

Proof. Using (2.2), the expression z(τ) can be recovered from Ξ, ν and z which can be extracted
respectively through (2.6), (4.14) and (4.27). By combining this information, we find the constraint

(4.34)

N−2∑
j=0

εj Zj(τ, θτ , θr) = Ξ0

(
z0; 〈Z0〉(τ) +

N−2∑
j=1

εj Zj(τ, θτ , θr); θτ

)
+O(εN−1)

+ ε Ξ1

(
z0; 〈Z0〉(τ) +

N−2∑
j=1

εj Zj(τ, θτ , θr); θτ , θr + V1 +

N−2∑
j=2

εj−1 Vj(τ, θτ , θr)
)
.

Recall that Ξ0 is the mean flow (Lemma 2.3) and that Ξ1 can be deduced from (2.37). Taylor’s
Theorem in both variables z and θr can be applied to develop the right hand side of (4.34) in powers
of ε. Then, by identifying the terms with the same power of ε in factor, we can obtain explicit
formulas yielding the Zj in terms of the Zk and Vk.

For ε0, we obviously obtain (4.31). The expression having ε in factor at the level of (4.34) is
composed of two contributions. The first coming from Ξ0 yields the first line of (4.32); the second
issued from Ξ1 leads to the second line of (4.32). �
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We end up with a brief summary of the arguments leading to Theorem 3.

Proof of Theorem 3. To conclude, it suffices to compile what has been done before. The expansion
(1.29) is the same as (4.33) in Lemma 4.4. On the other hand, the description of the exact phase ν
is achieved in (4.14), at the le vel of Lemma 4.2. The O(ε∞) in (1.29) and (1.30) can be obtained
by just varying the choice of N , with an arbitrary remainder of size εN−1 which is controlled at
the level of Proposition 4.1. �

5. Application to Hamilton-Jacobi equations

Let d ∈ N∗. We work with the scalar function

H : R× Rd × R× Rd −→ R
(τ, x, u, p) 7−→ H(τ, x, u, p) .

Given some initial data u0 : Rd −→ R, the Hamilton-Jacobi equation built with H and u0 takes
the following form

(5.1) ∂τu+H(τ, x, u,∇xu) = 0 , u(0, x) = u0(x).

The study of evolution equations like (5.1) is fundamental in classical mechanics. It is a long-
standing concern [3] which has motivated many contributions. The discussion depends heavily on
the functional framework retained on H and u. Roughly speaking:

GW) Global weak solutions u can be constructed by compactness arguments (CA), see [14] and
subsequent works. But uniqueness and stability require additional constraints on both H
(typically convexity conditions with respect to p) and u (entropic conditions);

LS) Local smooth solutions u are available by the method of characteristics (MC). But this
approach can work only under minimal smoothness conditions (say H and u0 in C2) and as
long as the spatial projections of the (phase space) characteristics do not cross.

In Subsection 5.1, we introduce a small parameter ε ∈]0, ε0] (going to zero) at the level of the system
(5.1) in order to get a family of Cauchy problems of the type (1.5). In addition, we comment the
effects of introducing such paramter in this system. In Subsection 5.2, we connect the resolution
of the PDE (1.5) to the one of the ODE (1.12). Then, we show Theorem 1 in three steps: in
Subsection 5.3, we detail the behavior of the spatial characteristic x(ε, ·); in Subsection 5.4, we
construct its inverse map x−1(ε, ·); and in the last Subsection 5.5, we complete the proof.

5.1. The oscillating framework. To go beyond the standard results, a natural strategy is to
implement a parameter (here ε ∈]0, ε0]) whose effect is to break (asymptotically when ε goes to
zero) the usual assumptions. By this way, it can be possible to better target some underlying
difficulties, and then to solve them. This is done in Paragraph 5.1.1 by introducing oscillations. In
Paragraph 5.1.2, we describe the strategy which allows to achieve the proof of Theorem 1.

5.1.1. Data adjustment. Recall that we have introduced the variables u and p in the introduction
which serve to replace respectively the terms εu and ∇xu. In addition, for ? ∈ {τ, u}, we have
denoted by θ? the periodic variable which is aimed to be replaced with the quotient ?/ε. We also
had that the expression H introduced at the level of (1.2) is indeed a function of the variables
(ε, θτ , x, u, p, θu), which is assumed to be smooth on its domain of definition. As indicated in (1.4),
the function H(ε, ·) can be expanded in powers of ε near ε = 0. Now, replace H and u0 inside (5.1)
by Hε and u0ε as indicated below:

] The hamiltonian Hε(·) ≡ H(ε, ·) may depend on ε ∈ ]0, ε0] according to

(5.2) Hε(τ, x, u, p) ≡ H(ε, τ, x, u, p) =
1

ε
H
(
ε,
τ

ε
, x, εu, p,

u

ε

)
.
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When H0 6≡ 0, the source term Hε is of large amplitude ε−1, and it does imply oscillations (in
both τ and u) at frequencies of size ε−1. The role of ε is precisely to impact the C1-estimates
(on H) which become non uniform in ε ∈]0, ε0];

] The initial data u0 inside (5.1) may depend on ε. More precisely, with U0 smooth and as
in (1.1)-(1.3), we impose u0ε(x) = U0(ε, x).

And thus, the initial value problems (5.1) with H ≡ Hε as in (5.2) and uε(0, ·) = u0ε as above
is exactly the Hamilton-Jacobi equation (1.5). From now on, we consider the smooth solutions
uε ≡ uε(τ, x) ≡ u(ε, τ, x), sometimes simply denoted by u, to the the initial value problems (1.5).

Remark 5.1 (Return to a more standard regime). Applying the method of characteristics, a smooth
solution uε does exist (locally in space) on a maximal time interval [0, Tε[, with Tε ∈ R∗+ that may
shrink to zero when ε goes to 0. Assuming that U00 ≡ 0, changing τ into ε2τ̃ and u into εũ, we get

(5.3) ∂τ̃ ũε + H(ε, ετ̃, x, ε2ũ, ε∇xũ, ũ) = 0 , ũε(0, ·) = ε−1u0ε = O(1).

It is clear that the lifespan associated with (5.3) is uniform in ε ∈]0, ε0], and therefore that ε2 . Tε.
When U00 6≡ 0, such a lower bound is no more evident. This means that, in comparison with the
first well understood situation (5.3), the study of (1.5) for τ ∼ 1 corresponds to a very long time
investigation τ̃ ∼ ε−2 for large initial data of size ε−1. The latter difficulty is of course partly offset
by the (nonlinear) periodic behavior of H with respect to θu. ◦

5.1.2. Strategy, intermediate results and notations. To construct solutions uε (uniformly in ε) and
to justify asymptotic results (when ε → 0), the above-mentioned approaches (GW and LS) face
two significant barriers:

i) Compactness arguments (CA) are not accompanied by a (strong form of) stability allowing
to compare exact and approximate solutions;

ii) The method of characteristics (MC) may be subjected (after spatial projection) to crossing
problems at times Tε vanishing when ε goes to zero.

The first challenge i) seems difficult to overcome. Indeed, the potential lack of control makes it
impossible to compare the weak and approximate solutions with each other. In particular, in the
continuation of the indent i), a method relying on the absorption of small error terms cannot
be implemented (with quantitative estimates). On the other hand, for reasons that have been
already discussed in Remark 1.5, other more direct tools like homogenization [25] or multiscale
young measures [1] are not amenable to capture the leading behavior of uε. And they cannot be
implemented to compare the exact solution to the approximate one with a high degree of precision.
To obtain accurate descriptions of the solution uε, we must stick to the approach ii).

The link between (1.5) and (1.12) is achieved through Lemma 5.1 together with the representation
formula (5.8). Then, we have to detail inside (5.8) the content of u(ε, ·) and x−1(ε, ·). To this end,
our strategy is to:

• Exhibit (Lemma 5.3) the asymptotic expansions of the spatial projections x(ε, τ, x) of the
(phase space) characteristics. This requires to check the validity of Assumptions 5 and 6
(of Subsection 1.3) in the contexts inherited from (1.12);

• Prove (this is done in Lemmas 5.5 and 5.6) that the map x 7−→ x̃ := x(ε, τ, x) is (at least
for τ small enough) uniformly in ε ∈]0, ε0], a local diffeomorphism and find the oscillating
description of the corresponding inverse x−1;

• Exploit (Theorem 1) the formula (5.8) to reveal the final oscillating structure of uε.

Now, we make a compilation of some notations that have been or will be involved. It is also to
provide additional clarification (to avoid confusion and misunderstandings). The symbol θ is always
used for a periodic (scalar) variable. But, it may be connected to the PDE setting (like θτ and θu
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in Subsection 1.1) or to the ODE context (like θτ and θr in Subsection 1.2). The connection in the
next subsection 5.2 will imply some identifications between these variables. Keep in mind that

θu ≡ θr (for u/ε or ν/ε).

On the other hand, the distinction between θ◦r (in Lemma 5.3) and θ̂◦r (Theorem 1 and Lemma 5.6)

comes from the fact that different phases come to replace θ◦r and θ̂◦r .

5.2. Connection to differential equations. In Paragraph 5.2.1, we will apply the method of
characteristics in the context of (1.5) in order to deduce a system of ordinary differential equations
which allows to solve (1.5) and which may fit with (1.12). In Paragraph 5.2.2, we provide the readers
with some comments on assumptions and main result. Indeed, we comment the assumptions related
to the PDE (1.5) in the context inherited from the ODE (1.12) and we give some interpretations
of Theorem 1.

5.2.1. Method of characteristics. Assume that u(ε, ·) is a local smooth solution to (1.5). Then, we
can always consider a local solution x ≡ x(ε, τ, x) to the self-contained system

(5.4) ẋ :=
dx

dτ
=

1

ε
∇pH

(
ε,
τ

ε
, x, εu(ε, τ, x),∇xu(ε, τ, x),

u(ε, τ, x)

ε

)
, x(ε, 0, x) = x.

Define

(5.5) p ≡ p(ε, τ, x) := ∇xu
(
ε, τ, x(ε, τ, x)

)
, u ≡ u(ε, τ, x) := u

(
ε, τ, x(ε, τ, x)

)
.

Lemma 5.1 (Tracking the characteristics). The time evolution of (x, p,u) ≡ (x,p, u)(ε, τ, x) is
governed by the following system of coupled equations

(5.6)


ẋ =

1

ε
∇pH

(
ε,
τ

ε
, x, εu,p,

u

ε

)
,

ṗ = −
(1

ε
∇xH + ∂uH p +

1

ε2
∂θuHp)

(
ε,
τ

ε
, x, εu, p,

u

ε

)
,

u̇ =
1

ε
(∇pH · p− H)

(
ε,
τ

ε
, x, εu, p,

u

ε

)
,

together with

(5.7) (x,p,u)(ε, 0, x) =
(
x,∇xU0(ε, x),U0(ε, x)

)
.

In view of (5.7), x is the spatial foot of the characteristic emanating from (x,p,u)(ε, 0, x). The
spatial projection of this characteristic is located at the time τ at the position x(ε, τ, x). When the
map x 7→ x̃ = x(ε, τ, x) is a local diffeomorphism, the inverse x−1(ε, τ, x̃) does exist and it furnishes
a unique feedback allowing to solve (1.5). Then, we can simply recover u(ε, ·) through

(5.8) u(ε, τ, x̃) = u
(
ε, τ, x−1(ε, τ, x̃)

)
.

The inversion formula (5.8) makes the transition from the lagrangian point of view in (5.6), where u
and x are functions of (τ, x), to the eulerian perspective where u is a function measuring a quantity
at the location x̃ through which the motion flows as time passes. In view of (5.8), to determine u(ε, ·)
at the position (τ, x̃), we need to compose the (oscillating) quantity u(ε, τ, x) with the (oscillating)
position x ≡ x−1(ε, τ, x̃). In doing so, we must face a composition of oscillations, where it is crucial
to know precisely how the functions u(·) and x−1(·) depend respectively on (ε, τ, x) and (ε, τ, x̃).

Proof. In view of (5.5), the first equation of (5.6) is just a reformulation of the equation (5.4). Now,
the definition (5.5) leads to

(5.9) ṗ = (∇x∂τu)(τ, x) +
(
(ẋ · ∇x)∇xu

)
(τ, x), u̇ = ∂τu(τ, x) + (ẋ · ∇x)u(τ, x).
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Compute the spatial gradiant of (1.5) to get

(5.10) ∇x∂τu+
1

ε
(∇pH · ∇x)∇xu+

1

ε
∇xH + ∂uH∇xu+

1

ε2
∂θuH∇xu = 0.

Taking into account (5.4), the first two terms of (5.10) coincide with ṗ. By this way, we can
recognize the second equation inside (5.6). Finally, combining the second part of (5.9) with (1.5),
(5.4) and (5.5), we find the third equation of (5.6). �

5.2.2. Comments on assumptions and main result. Starting from (5.6), there are different ways
of falling within the context of (1.12). Indeed, the connection between (1.5) and (1.12) can be
achieved through (5.6) by specifying the values of z and ν in terms of x, p and u. When doing this,
care must be taken to recover the special structure of (1.12). The selection of ν := u is a natural
choice. Now, one is tempted to simply take z = t(x,p). But, to ensure that the profiles A and V
do not depend on ν ≡ u as required in (1.12), we must incorporate εu as a component of z. For
this reason, we work with

(5.11) z = t(zx, zp, zu) := t(x, p, εu) ∈ Rd × Rd × R ≡ Rn, ν := u, n = 2d+ 1.

We want to be coherent with the notations used in Sections 2, 3 and 4. To this end, we compare
the system on (z,ν) that is issued from (5.6)-(5.11) with (1.12). With A = t(Ax,Ap,Au) as well as
θu ≡ θr, these two systems can be identified on condition that

(5.12)

Ax(ε; z; θτ , θr) := ∇pH(ε, θτ , zx, zu , zp, θr),

Ap(ε; z; θτ , θr) := −(∇xH + ε ∂uH zp + ε−1 ∂θuH zp)(ε, θτ , zx, zu , zp, θr),

Au(ε; z; θτ , θr) := ε
[
(zp · ∇p)H− H

]
(ε, θτ , zx, zu , zp, θr),

V(ε; z; θτ , θr) :=
[
(zp · ∇p)H− H

]
(ε, θτ , zx, zu , zp, θr).

The function Ap must be smooth near ε = 0. This could be inconsistent with the weight ε−1

remaining in the second line of (5.12). On the other hand, in coherence with Assumption 6, the
expression V0 must be positive. These considerations lead to Assumptions 1 and 2. Then, with the
convention H−1 ≡ 0 and Aj = t(Ajx,Ajp,Aju), for all j ∈ N, we find that

(5.13)

Ajx := ∇pHj ,

Ajp := −∇xHj − ∂uHj−1 zp − ∂θuHj+1 zp,

Aju := (zp · ∇p)Hj−1 − Hj−1,

Vj := (zp · ∇p)Hj − Hj .

In particular A0 = t(∇pH0,−∇xH0 − ∂θuH1 zp, 0). Since V0 is defined in terms of H0, in view of
Assumption 1, the function V0 does not depend on θr. Thus, we can apply (1.24) to see that

Amf = A0 = t(∇pH0,−∇xH0 − ∂θuH1 zp, 0) = t(∇pH0,−∇xH0, 0).

This implies that the mean flow (Definition 1) which is denoted by Ξmf ≡ Ξ0(z; s) = t(Ξ0x,Ξ0p,Ξ0u)
is such that

(5.14) Ξ0(z; s) = t(Ξ0x,Ξ0p, zu), ∀ z = t(zx, zp, zu) ∈ Rd × Rd × R,

where t(Ξ0x,Ξ0p) satisfies (with θτ ≡ s as in the introduction) the Hamiltonian system (1.8). Then,
Assumption 5 amounts to the same thing as Assumption 3.

Remark 5.2 (Common situations leading to Assumption 3). In general, it is not easy to test the
periodic condition presented in Assumption 3. We furnish below a list of situations where Ξ0(z; ·)
is indeed periodic.
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Suppose that the function H0 does not depend on x. Then, the mean flow is given by

(5.15) Ξ0(z; s) = t
(
Ξ0x(z; s), zp, zu

)
, Ξ0x(z; s) = zx +

∫ s

0
∇pH0(s̃, zu , zp) ds̃.

When 〈∇pH0〉 ≡ 0, it is obvious that the mean flow Ξ0 is periodic in s of period 2π. When moreover
∇pH

?
0 6≡ 0, the function Ξ0 is non constant (the dynamic is non trivial).

For similar reasons, if we assume that H0 does not depend on p and is such that 〈∇xH0〉 ≡ 0, the
function Ξ0(z; ·) is periodic in s of period 2π.

When ∂sH0 ≡ 0, the system (1.8) is autonomous. Then, Assumption 3 is satisfied on condition that
the level curves of H0(·, zu , ·) are (locally) diffeomorphic to a family of circles (existence of Liouville
torus and thereby of action-angle variables). ◦

In line with (2.37), we find that the lifting Ξ is given by

Ξ(z; θτ , θr) = Ξ0(z; θτ ) + ε Ξ∗1(z; θτ , θr), Ξ∗1 = t(Ξ∗1x,Ξ
∗
1p,Ξ

∗
1u)

together with

(5.16) Ξ∗1x ≡ 0, Ξ∗1p = −V0(Ξ0(z; θτ ); θτ )−1 H∗1(θτ ,Ξ0x, zu ,Ξ0p, θr) Ξ0p(z; θτ ), Ξ∗1u ≡ 0.

Due to the definition (5.11) of z and ν together with (5.5) and the initial data of (5.4), at time
τ = 0, we must start with

(5.17) (z0,ν0)(ε, x) =
(
x,∇xU0(ε, x), εU0(ε, x),U0(ε, x)

)
=

+∞∑
j=0

εj (z0j ,ν0j)(x).

Observe in particular that

(5.18) z00(x) = (x,∇xU00(x), 0), z01(x) =
(
0,∇xU01(x),U00(x)

)
, ν00(x) = U00(x).

From now on, we select x in a ball B(0, R] for some R ∈ R∗+. Knowing what A, V and Ξ0 ≡ Ξmf

(Lemma 2.3) are, we can deduce the value of A1 through (2.34), and then we have access to 〈Z0〉
through (3.31). Now, consider

(5.19) K :=
{

Ξ0

(
〈Z0〉

(
z00(x); τ

)
; r
)

; x ∈ B(0, R] , τ ∈ [0, 1] , r ∈ R
}
⊂ Rn.

Since Ξ0(z; ·) is periodic, the set K (which is presented in Assumption 4) is compact.
The main purpose of Section 5 is to prove Theorem 1 which is a difficult consequence of Theorem
3. Looking at the asymptotic description (1.10) of the solution uε, it bears noting that:

/ The function ψε is a phase in the sense ii of Subsection 1.1: it is smooth scalar function
and its first derivatives are uniformly bounded of size at most O(1);

/ The rapid variable θ̂0
r is activated at the level of the profiles Uj as soon as j ≥ 1;

/ Recall that V−1 ≡ V−1 and look at (3.41). Since V0 is a positive function, in view of (5.23),
(5.45) and (5.61), we can assert that U−1 is not zero for τ > 0. Thus (time) oscillations at
frequency ε−3 do occur inside (1.10);

/ Recall that V0 ≡ V0 = 〈V 0〉(τ) + V
?
0(τ, θτ ). At time τ = 0, taking into account (3.44), this

is just ν00 = U00 which may be chosen non-zero. The same remains true for τ ∈ R∗+ (small

enough). In view of (5.24), (5.46) and (5.62), we find in general that U 0 6≡ 0. This means
that the O(ε2) terms inside (1.11) is also essential.

The construction of the phase ψε appearing in (1.11) is explained in what follows. In the next
Section 5.3, we start the proof of Theorem 1 by looking at the component x(ε, ·) of (5.6), which is
the spatial projection of z.
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5.3. The spatial component of the characteristics x. The first thing to check is the uniform
local existence of x. Below, we prove that the map x(ε; ·) exists locally uniformly in ε.

Lemma 5.2. Select any R ∈ R∗+. Under Assumptions 1, 2 and 3, we can find some T ∈ R∗+ such
that the solution (z,ν)(ε, τ, x) to (1.12) with A and V as in (5.12) and initial data z0 and ν0 as in
(5.17) is, for all ε ∈]0, ε0], defined on [0, T ]×B(0, R]. In particular, the two components x(ε, τ, x)
and u(ε, τ, x) exist on a uniform domain.

Proof. Recall that we have selected positions x inside B(0, R]. Due to (5.17), we find that (z0,ν0)
stays in the compact set B(0, R]×B(0,M1]×B(0,M0]2 with

(5.20) Mj :=‖ U0 ‖W j,∞([0,ε0]×B(0,R];R)< +∞, j ∈ {0, 1}.
This means that the initial data coming from (5.17) remain uniformly in a compact set. On the
other hand, we have seen that Assumptions 1, 2 and 3 imply Assumption 5 when dealing with the
system on (z,ν) which is issued from (5.6)-(5.11). Thus, it suffices to apply Theorem 2. �

From there, the aspects about the oscillating structure of x make sense. To this end, we clarify the
asymptotic expansion of x in Paragraph 5.3.1. Then, in Paragraph 5.3.2, we explore the effect of a
transparency condition emanating from Assumption 3 on the differential of x: Dxx(·). Indeed, the
latter condition furnishes a control on the size of the Jacobian matrix Dxx(·).

5.3.1. The asymptotic expansion of x. Note that Assumptions 1 and 2 also imply Assumption 6.
We can apply Theorems 3 to obtain a description of (z,ν) which is coherent with (1.29) and (1.30).
We find that x ≡ x(ε, τ, x) is given by

(5.21) x =
N−2∑
j=0

εj Zjx

(
(z0,ν0)(ε, x); τ,

τ

ε
,
〈V−1〉

(
z0(ε, x); τ

)
ε2

+
V 0

(
(z0,ν0)(ε, x); τ, τε

)
ε

)
+O(εN−1)

where the Zjx, 〈V−1〉 and V 0 are issued from the procedure of Section 4. Before proceeding, the
expansion of x(ε, τ, x) must be further simplified.

Lemma 5.3. [Asymptotic oscillating description of the spatial component of the characteristics]
Under Assumptions 1, 2 and 3, the map (τ, x) 7→ x(ε, τ, x) can be expressed according to the
following asymptotic expansion (which is valid for all N ∈ N with N ≥ 2)

(5.22)

x(ε, τ, x) = Z◦0x(x; τ,
τ

ε
) + ε1 Z◦1x(x; τ,

τ

ε
)

+
N∑
j=2

εj Z◦jx

(
x; τ,

τ

ε
,
〈V ◦−1〉(x; τ)

ε2
+

V
◦
0

(
x; τ, τε )

ε

)
+O(εN+1),

where, with z00, z01 and ν00 as in (5.18), we have introduced

〈V ◦−1〉(x; τ) := 〈V−1〉
(
z00(x); τ

)
,(5.23)

V
◦
0 (x; τ, θτ ) :=

(
z01(x) · ∇z0

)
〈V−1〉

(
z00(x); τ

)
+ V 0

(
z00(x),ν00(x); τ, θτ

)
,(5.24)

and where, for j ≥ 0, the profiles Z◦jx(x; τ, θτ , θ
◦
r ) are periodic with respect to the two last variables

θτ ∈ T and θ◦r ∈ T.

Retain that the three couples of phases

〈V−1〉, V 0 in (5.21), 〈V ◦−1〉, V
◦
0 in (5.22), V̂

◦
−1, V̂

◦
0 in (5.44)

are (in general) distinct from one another. This is why the notations θr, θ
◦
r and θ̂◦r are not the

same. This is aimed at highlighting the difference between the various phases that are involved.

Proof. Compare (5.21) with (5.22). There are two improvements:
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A) The first two terms of the expansion - that is the first line of (5.22) - have been clarified;

B) The structure of the phase - that is what comes to replace θ◦r in the second line of (5.22) -
has been reduced.

Below, we first prove A) and then we consider B).

A) Recall (4.34) and (5.16). Since Ξ∗1x ≡ 0, there remains

(5.25)

N−2∑
j=0

εj Zjx
(
(z0,ν0)(ε, x); τ, θτ , θr

)
= Ξ0x

(N−2∑
j=0

εjZj
(
(z0,ν0)(ε, x); τ, θτ , θr

)
; θτ

)
+O(εN−1).

Keep in mind that θτ and θr must be replaced as indicated in (5.21). After this substitution, we
can assert that

(5.26)

N−2∑
j=0

εj Zj
(

(z0,ν0)(ε, x); τ,
τ

ε
,
〈V−1〉

(
z0(ε, x); τ

)
ε2

+
V 0

(
(z0,ν0)(ε, x); τ, τε

)
ε

)

=
N−2∑
j=0

εj Z̃j
(
x; τ,

τ

ε
,
〈V ◦−1〉(x; τ)

ε2
+

V
◦
0

(
x; τ, τε )

ε

)
+O(εN−1).

To elucidate the origin of (5.26), we expand 〈V−1〉(·; τ) and V 0(·; τ, θτ ) composed with (z0,ν0)(ε, x)
in powers of ε. Knowing (1.28), this yields (5.23) and (5.24) as well as

(5.27) 〈V−1〉
(
z0(ε, x); τ

)
+ εV 0

(
(z0,ν0)(ε, x); τ,

τ

ε

)
= 〈V ◦−1〉(x; τ) + εV

◦
0

(
x; τ,

τ

ε

)
+O(ε2).

Then, we stick to the following strategy in order to recover the profiles Z̃j introduced in (5.26):

A.1) Use (5.27) to localize the oscillations at frequencies ε−2 at the position 〈V ◦−1〉 + εV
◦
0 and

incorporate the O(1)-remainder inside a O(1)-shift in θr of the Zj
(
(z0,ν0)(ε, x); τ, θτ , ·

)
.

Note that this shift depends smoothly on x, τ and τ/ε, and therefore it can be incorporated
inside the Zj by modifying their description;

A.2) Expand the (new) preceding profiles Zj(·; τ, θτ , θr) composed with (z0,ν0)(ε, x) in powers
of ε by using (5.17);

A.3) Gather the εj-terms coming from the left hand side of (5.26) after applying the above two

steps to recover the final expressions Z̃j .
In particular, we can consider (4.25), (4.26), (4.28) and (4.29) to see that

(5.28)

Z0(z0,ν0; τ, θτ , θr) = 〈Z0〉(z0; τ),

Z1(z0,ν0; τ, θτ , θr) = Z1(z0; τ, θτ ),

Z2(z0,ν0; τ, θτ , θr) = Z2

(
z0,ν0; τ, θτ , θr + V1(z0,ν0; τ, θτ )

)
.

Following the methodology of the above explanations, (5.28) reveals that the first three terms of
the right hand side of (5.26) are defined as follows:

Z̃0(x; τ) := 〈Z0〉(z00(x); τ)(5.29)

Z̃1(x; τ, θτ ) := (z01(x) · ∇z0)〈Z0〉
(
z00(x); τ

)
+ Z1

(
z00(x); τ, θτ )(5.30)

Z̃2(x; τ, θτ , θ
◦
r ) := Z2

(
z00(x),ν00(x); τ, θτ , θ

◦
r + b(x; τ, θτ )

)
+ (z01(x) · ∇z0)Z1

(
z00(x); τ, θτ ) + (z02(x) · ∇z0)〈Z0〉(z00(x); τ)

+
1

2
D2
z0〈Z0〉(z00(x); τ)

(
z01(x), z01(x)

)(5.31)

43



where

b(x; τ, θτ ) :=V1(z00(x),ν00(x); τ, θτ ) +
[(
z01(x) · ∇z0

)
+ ν01(x)∂ν0

]
V 0(z00(x),ν00(x); τ, θτ )

+
(
z02(x) · ∇z0

)
〈V−1〉(z00(x); τ) +

1

2
D2
z0〈V−1〉(z00(x); τ)

(
z01(x), z01(x)

)
.

By exploiting (4.31) together with (5.29), the leading term issued (after expansion in powers of ε)
from the right hand side of (5.25) is

(5.32) Z◦0x(x; τ, θτ ) := Ξ0x

(
Z̃0(x; τ); θτ

)
= Ξ0x

(
〈Z0〉(z00(x); τ); θτ

)
.

Remark 5.3 (About the content of Z◦0x). The expression 〈Z0〉 is given by (3.32) with A1 as in (2.34).
Since Ξ0u(z; θτ ) = zu and because Ξ∗1u ≡ 0, we have

〈A1u〉 = 〈A1u〉 =
[
(zp · ∇p)〈H0〉 − 〈H0〉

]
(z).

Due to (1.7) we know that 〈A1u〉 > 0. The component 〈Z0u〉 is therefore strictly increasing (in τ),
and these variations can affect (by a coupling effect) the two components 〈Z0x〉 and 〈Z0p〉. On the
other hand, in view of Remark 5.2, the map Ξ0x can depend on s ≡ θτ . In general, the function
Z◦0x is subject to variations in both τ and θτ . ◦

By applying (4.32) together with (5.30) to the component Z1x, since Ξ1x ≡ Ξ∗1x ≡ 0, we can collect
the ε-terms from (5.25) after expansion to see that

(5.33) Z◦1x(x; τ, θτ ) :=
[
Z̃1(x; τ, θτ ) · ∇z

]
Ξ0x

(
〈Z0〉(z00(x); τ); θτ

)
.

In the above process, the variable θr is not requested, as it could be. This is the first important
simplification.

B) Let us now consider the second improvement. To elucidate what happens for j ≥ 2, in view of
(5.25), it suffices to compose Ξ0x(·; θτ ) with (5.26). The main things have already been said at the
level of A.1). There remains the form exhibited in (5.22) with in particular:

(5.34)
Z◦2x(x; τ, θτ , θ

0
r ) :=

(
Z̃2(x; τ, θτ , θ

◦
r ) · ∇z

)
Ξ0x

(
〈Z0〉(z00(x); τ); θτ

)
+

1

2
D2

zΞ0x

(
〈Z0〉(z00(x); τ); θτ

)(
Z̃1(x; τ, θτ ), Z̃1(x; τ, θτ )

)
.

�

Remark 5.4 (About the matching of initial data). It is instructive to compare the value x(ε, 0, x)
given by (5.17), that is z0x(ε, x) ≡ x with the formula (5.22) at time τ = 0. Since V−1 ≡ V−1,

taking into account (3.41), (5.18) and (5.23), we find 〈V ◦−1〉(x; 0) = 〈V−1〉(x,∇xU00(x), 0; 0) = 0.
On the other hand, due to (5.24) and (3.44), we have

V
◦
0

(
x; 0, 0) = V 0

(
x,∇xU00(x), 0,U00(x); 0, 0

)
= ν00(x) ≡ U00(x).

Then, from (5.22), we can infer that

x(ε, 0, x) =
N∑
j=0

εj Z◦jx

(
x; 0, 0,

ν00(x)

ε

)
+O(εN+1).

But, in line with Remark 2.3, since Ξ∗1x ≡ 0, the initial data z0x must reduce to

z0x(ε, x) = Ξ−1
0x

(
z0(ε, x), 0

)
= z0x(ε, x) = x.

This means that Z◦0x(x, 0, 0) ≡ x and Z◦jx(x, 0, 0, θ◦r ) ≡ 0 for all j ≥ 1. These properties could be
deduced from the preceding construction of the Z◦jx. The absence of the variable θ◦r is specific to zx
and to τ = 0. Since Ξ∗1p 6≡ 0, the component z0p(ε, x) can indeed oscillate with respect to ν00(x)/ε.

Moreover, due to coupling effects, the expressions Z◦jx can depend on θ◦r for τ > 0. ◦
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5.3.2. The role of transparency conditions. The aim of this paragraph is to compute Dxx. It is
also to show how some kind of transparency conditions (emanating from Assumption 3) leads to
have a control on the size of this differential. In view of the expansion (5.22), we can compute the
Jacobian matrix Dxx(ε, τ, x) according to

(5.35)
Dxx(ε, τ, x) = DxZ

◦
0x(x; τ,

τ

ε
)

+ ∂θ◦rZ
◦
2x

(
x; τ,

τ

ε
,
〈V ◦−1〉(x; τ)

ε2
+

V
◦
0

(
x; τ, τε )

ε

)
⊗∇x〈V

◦
−1〉(x; τ) +O(ε).

Recall (1.8) and (5.32) to see that

(5.36)

Z◦0x(x; τ, s) = Ξ0x

(
〈Z0〉(z00(x); τ); s

)
= 〈Z0x〉(z00(x); τ)

+

∫ s

0
∇pH0

(
r,Ξ0x(〈Z0〉(z00(x); τ); r), 〈Z0u〉(z00(x); τ),Ξ0p(〈Z0〉(z00(x); τ); r)

)
dr.

In view of (5.35), the expression DxZ
◦
0x(x; τ, s) must be computed at the position s = τ/ε. This

means that s must be replaced by τ/ε in (5.36). At first sight, the integral (in r) from 0 up to τ/ε
should furnish a contribution of size ε−1, which would indicate that Dxx(ε, τ, x) is very large (and
therefore out of control). However, as mentioned in Remark 2.6, Assumption 3 implies that

(5.37) 〈∇pH0(·,Ξ0x(z; ·), zu,Ξ0p(z; ·))〉 ≡ 0.

This identity can be viewed as a transparency condition: nonlinear terms that should contribute
(without Assumption 3) disappear in practice. As a matter of fact, denoting by bsc the integer
part of the real number s, we can assert that

(5.38)

Z◦0x(x; τ, s) = 〈Z0x〉
(
z00(x); τ

)
+

∫ s

2πbs/2πc
∇pH0(r,Ξ0x(〈Z0〉(z00(x); τ); r), 〈Z0u〉(z00(x); τ),Ξ0p(〈Z0〉(z00(x); τ); r)) dr.

We see here why the cancellation property (5.37) is crucial. It allows to reduce the long time
integration (when s is replaced by τ/ε with τ > 0 and ε � 1) in the second line of (5.36) to an
integration over some interval of uniformly bounded size (in s), as indicated in (5.38). We have the
following interesting expression of the differential Dxx.

Lemma 5.4 (The differential of the characteristic x). Select R ∈ R∗+. Under Assumption 3, for
all ε ∈ [0, ε0], for all (τ, x) ∈ [0, T ]×B(0, R], we have

(5.39) Dxx(ε, τ, x) = Id +O(τ) +O(‖ Dx,p,u∇pH0 ‖) +O(ε).

The above formula (5.39) together with Assumption 4 are the gate to prove that the map x 7→ x(ε; ·)
is uniformly invertible. We will prove this fact in the next Section 5.4.

Proof. From (3.32) together with (5.18) we have

(5.40) 〈Z0x〉
(
z00(x); τ

)
= x+

∫ τ

0
〈A1x〉

(
〈Z0〉(x,∇xU00(x), 0; r)

)
dr.

From (5.38) and (5.40), since Ξ0(z; ·) is globally bounded (since it is a periodic function), with ||| · |||
as in (1.9), we can already infer that

(5.41) DxZ
◦
0x(x; τ, s) = Id +O(τ) +O(|||Dx,p,u∇pH0|||).

On the other hand, we can exploit (3.38) together with V−1 ≡ V−1, as well as (5.18), (5.13) and
(5.23) to deduce that

(5.42) 〈V ◦−1〉(x; τ) =

∫ τ

0

[
(〈Z0p〉(x,∇xU00(x), 0; r) · ∇p)〈H0〉 − 〈H0〉

]
(〈Z0〉(x,∇xU00(x), 0; r)

)
dr.
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In view of (5.35) and taking into account (5.38), we obtain that

(5.43)

Dxx(ε, τ, x) = Id

+

∫ τ

0
Dx

[
〈A1x〉

(
〈Z0〉(x,∇xU00(x), 0; r)

)]
dr

+

∫ τ/ε

2πbτ/2πεc
Dx

[
∇pH0

(
r,Ξ0x(〈Z0〉(z00(x); τ); r), 〈Z0u〉(z00(x); τ),Ξ0p(〈Z0〉(z00(x); τ); r)

)]
dr

+ ∂θ◦rZ
◦
2x

(
x; τ,

τ

ε
,
〈V ◦−1〉(x; τ)

ε2
+

V
◦
0

(
x; τ, τε )

ε

)
⊗∇x〈V

◦
−1〉(x; τ) +O(ε).

Due to (5.42), we can control the forth line of (5.43) by some O(τ). On the other hand, we have
0 ≤ τ/ε− 2πbτ/2πεc ≤ 2π in such a way that Dxx(ε, τ, x) is as in (5.39). �

5.4. The inverse map x−1. The inverse of the spatial characteristic x(ε, τ, x) is denoted by
x−1(ε, τ, x̃). The existence part of Theorem 1 relies on (5.8). To this end, it is important to
show that x−1(ε, τ, x̃) is uniformly defined. Below, we present the statement of the uniform local
existence of x−1.

Lemma 5.5. [Uniform local existence of x−1] Select R ∈ R∗+. Under Assumptions 3 and 4, for
|τ | small enough, the map x ∈ B(0, R] 7→ x̃ = x(ε, τ, x) is for all ε ∈]0, ε0] (by restricting ε0 if
necessary) locally uniformly (in ε) invertible.

Proof. The proof is based on the expansion (5.39). We take τ ≤ T and ε ≤ ε0 with T and ε0 small
enough. We work under Assumption 4 with δ small enough. In view of (5.41) and (5.39), both
DxZ

◦
0x(x; τ, s) and Dxx(ε, τ, x) are of the form Id + B with ‖B‖ < 1. Thus, for all τ ∈ [0, T ], the

maps x 7→ Z◦0x(x; τ, s) and x 7→ x(ε, τ, x) are locally invertible (uniformly in s ≡ θτ for the first
map and in ε ∈]0, ε0] for the second). �

The next step is to find the asymptotic expansion of the inverse x−1.

Lemma 5.6. [Asymptotic oscillating description of the inverse map of the spatial component of
the characteristics] Under Assumptions 1, 2, 3 and 4, for |τ | small enough, for all ε ∈]0, ε0] and
for all N ≥ 2, the inverse map x−1(ε, τ, x̃) can be expanded according to

(5.44)

x−1(ε, τ, x̃) = Ẑ◦0x

(
x̃; τ,

τ

ε
) + ε Ẑ◦1x

(
x̃; τ,

τ

ε
)

+

N∑
j=2

εj Ẑ◦jx

(
x̃; τ,

τ

ε
,
V̂
◦
−1(x̃; τ, τε )

ε2
+

V̂
◦
0

(
x̃; τ, τε )

ε

)
+O(εN+1),

where Ẑ◦0x ≡ (Z◦0x)−1 is the local inverse of the map x 7→ Z◦0x(x; τ, θτ ), where we have introduced

V̂
◦
−1(x̃; τ, θτ ) := 〈V ◦−1〉

(
Ẑ◦0x(x̃, τ, θτ ); τ

)
,(5.45)

V̂
◦
0 (x̃; τ, θτ ) :=

(
Ẑ◦1x(x̃; τ, θτ ) · ∇x

)
〈V ◦−1〉

(
Ẑ◦0x(x̃, τ, θτ ); τ

)
+ V

◦
0

(
Ẑ◦0x(x̃, τ, θτ ); τ, θτ

)
,(5.46)

and where, for j ≥ 0, the profiles Ẑ◦jx(x̃; τ, θτ , θ̂
◦
r ) are periodic with respect to the two last variables

θτ ∈ T and θ̂◦r ∈ T.

The rest of this section is devoted to the proof of Lemma 5.6. The proof is achieved in three steps:
in Paragraph 5.4.1, we give the formal expansion of the inverse x−1; at ε2−order, we face a strong
nonlinearity which is overcome by implementing the Hadamard’s global inverse function theorem
in Paragraph 5.4.2; finally, in Paragraph 5.4.3, we complete the proof of Lemma 5.6 by justifying
the formal WKB expansion.
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5.4.1. Formal equations for x−1. We turn now to the proof of (5.44). By definition of x−1, we have

(5.47) x
(
ε, τ, x−1(ε, τ, x̃)

)
= x̃ .

We can seek x−1 in the form of an asymptotic expansion similar to (5.22), like in (5.44), that is
with a hat “ˆ” on each expression to make the distinction. In other words, we can postulate (5.44)
and use (5.47) to check that (5.44) is indeed convenient. This means to deal with

(5.48)

N∑
j=0

εj Z◦jx

(
x−1; τ,

τ

ε
,
〈V ◦−1〉(x−1; τ)

ε2
+

V
◦
0

(
x−1; τ, τε )

ε

)
+O(εN+1) = x̃ .

The leading order term inside (5.48) gives rise to Z◦0x(Ẑ◦0x; τ, θτ ) = x̃. This relation can be achieved

with Ẑ◦0x ≡ (Z◦0x)−1. The next term, the one which has ε in factor inside (5.48), leads to

Ẑ◦1x ≡ Ẑ◦1x(x̃; τ, θτ ) := −DxZ
◦
0x

(
Ẑ◦0x(x̃; τ, θτ ); τ, θτ

)−1
Z◦1x
(
Ẑ◦0x(x̃; τ, θτ ); τ, θτ

)
.

As foreseen, the rapid variable θ̂0
r can be activated at the level of the profiles Ẑ◦jx only for j ≥ 2.

Now, in coherence with (5.45) and (5.46), we can assert that

1

ε2
〈V ◦−1〉(x−1(ε, τ, x̃); τ) +

1

ε
V
◦
0 (x−1(ε, τ, x̃); τ, θτ ) =

1

ε2
V̂
◦
−1(x̃; τ, θτ ) +

1

ε
V̂
◦
0 (x̃; τ, θτ )

+
(
Ẑ◦2x · ∇x

)
〈V ◦−1〉

(
Ẑ◦0x(x̃, τ, θτ ); τ

)
+

1

2
D2
x〈V

◦
−1〉(Ẑ◦1x, Ẑ◦1x)

+
(
Ẑ◦1x · ∇x

)
V
◦
0

(
Ẑ◦0x(x̃, τ, θτ ); τ, θτ

)
+O(ε) .

We may see (5.48) as a consequence of a relaxed condition involving τ , x̃, θτ and θ̂◦r . Then, we can

work with x̃, θτ and θ̂◦r fixed in compact sets. In what follows, these variables are mentioned only
when it is necessary to avoid confusion. In this perspective, the contribution which has ε2 in factor
inside (5.48) can be written

(5.49) Ẑ◦2x + F(τ, Ẑ◦2x) = 0

with by construction

F(τ, Ẑ◦2x) := DxZ
◦
0x(Ẑ◦0x; τ, θτ )−1 Z◦2x

(
Ẑ◦0x; τ, θτ , θ̂

◦
r + (Ẑ◦2x · ∇x)〈V ◦−1〉(Ẑ◦0x; τ) +D0

)
+D1,

where D0 and D1 are entirely determined (since they depend on the already known functions Ẑ◦0x
and Ẑ◦1x). Remark that (5.49) is a nonlinear equation. This means that the actual asymptotic
calculus is critical. We come back to this point in Paragraph 5.4.2.

For j ≥ 3, the situation is easier since we have to deal with a linearized version of (5.49), which
looks like

(5.50) Ẑ◦jx + (Ẑ◦jx · ∇x)〈V ◦−1〉(Ẑ◦0x; τ) DxZ
◦
0x(Ẑ◦0x; τ, θτ )−1 ∂θ0rZ

◦
2x

(
Ẑ◦0x; τ, θτ , θ̂

◦
r + D̃0

)
+Dj = 0,

where D̃0 and Dj are known functions since they depend on the Ẑ◦kx with k < j. Due again to

(5.42), this may be formulated as
(
Id +O(τ)

)
Ẑ◦jx +Dj = 0 which has obviously a unique solution

for |τ | small enough.

5.4.2. The nonlinear modulation equation. We now come back to solve the nonlinearity inherited
from (5.49). Since Z◦2x is periodic in θ◦r , the function F is (locally in time) uniformly bounded (say

by some R ∈ R∗+) with respect to the variable Ẑ◦2x ∈ Rd. Let χ ∈ C∞(R;R) with χ ≡ 1 for |r| ≤ 1
and χ ≡ 0 for 2 ≤ r. Define χR(r) := χ(r/R). Let η ∈ R∗+, introduce the following auxiliary

expression (in the new unkown Z̃◦2x)

(5.51) fη,R(τ, Z̃◦2x) := Z̃◦2x + F(χη(τ) τ, χR2(|Z̃◦2x|2) Z̃◦2x
)
.
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Then, consider the smooth map

Fη,R : R× Rd −→ R× Rd
(τ, Z̃◦2x) 7−→

(
τ, fη,R(τ, Z̃◦2x)−F(0, 0)

)
.

We want to apply the Hadamard’s global inverse function theorem to the C2 mapping Fη,R. To this
end, we have to check the needed assumptions:

• We find Fη,R(0, 0) =
(
0, fη,R(0, 0)−F(0, 0)

)
=
(
0,F(0, 0)−F(0, 0)

)
= (0, 0);

• The limit of |Fη,R(τ, Z̃◦2x)| is +∞ when |τ | goes to +∞ is infinite because the first component

of Fη,R is just τ . The limit of |Fη,R(τ, Z̃◦2x)| is also +∞ when |Z̃◦2x| goes to +∞ because,

due to the cutoff χR2 , it is bounded below by the limit of |Z̃◦2x + F(χη(τ) τ, 0)| when |Z̃◦2x|
goes to +∞. The map F is proper;
• Let us study the structure of the Jacobian matrix of Fη,R. To this end, we have to control
∂τFη,R = (1, ∂τfη,R) and DZ̃◦2x

Fη,R = (0, DZ̃◦2x
fη,R). We start by looking at the region of

R × Rd where
√

2 R ≤ |Z̃◦2x|. Then, we consider the ball |Z̃◦2x| ≤
√

2 R with first 2η ≤ |τ |
and finally |τ | ≤ 2η.

For
√

2 R ≤ |Z̃◦2x|, we have just to deal with fη,R(τ, Z̃◦2x) := Z̃◦2x + F(χη(τ) τ, 0
)

so that
∂τfη,R = O(1) and DZ̃◦2x

fη,R = Id.

For |Z̃◦2x| ≤
√

2 R, we find that

|∂τfη,R(τ, Z̃◦2x)| ≤ (‖ τχ′(τ) ‖∞ + ‖ χ ‖∞) max
|τ |≤2η , ‖Ẑ◦2x‖≤

√
2 R
‖ ∂τF(τ, Ẑ◦2x) ‖∞< +∞.

Now, we look at DZ̃◦2x
fη,R. For 2η ≤ |τ |, since 〈V ◦−1〉|τ=0 ≡ 0, there remains

fη,R(τ, Z̃◦2x) = Z̃◦2x + DxZ
◦
0x(Ẑ◦0x|τ=0; 0, θτ )−1 Z◦2x

(
Ẑ◦0x|τ=0; 0, θτ , θ̂

◦
r +D0

|τ=0

)
+D1

|τ=0,

so that DZ̃◦2x
fη,R(τ, Z̃◦2x) = Id. In the same vein, for |τ | ≤ 2η, exploiting the structure of F

and (5.42) again, we find that

DZ̃◦2x
fη,R(τ, Z̃◦2x) = Id + (DẐ◦2x

F)
(
χη(τ) τ, χR2(|Z̃◦2x|2) Z̃◦2x

)
DZ̃◦2x

(
χR2(|Z̃◦2x|2) Z̃◦2x

)
= Id +O(1) |∇x〈V

◦
−1〉(Ẑ◦0x; τ)| = Id +O(η).

The final outcome is

Dτ,Z̃◦2x
Fη,R(τ, Z̃◦2x) =

(
1 0
O(1) Id +O(η)

)
.

For |η| chosen small enough, the Jacobian matrix of Fη,R is bounded and the corresponding
Jacobian determinant is nonzero at each point.

Thus, we can assert that Fη,R is one-to-one and onto. In particular, the position (τ,−F(0, 0)) has

a unique preimage. This furnishes some Z̃◦2x such that fη,R(τ, Z̃◦2x) = 0. In view of (5.51), this can

be achieved only by some Z̃◦2x satisfying |Z̃◦2x| ≤ R. Now, for |τ | ≤ η, knowing that |Z̃◦2x| ≤ R, the

relation (5.49) is satisfied, since it is exactly the same as Fη,R(τ, Z̃◦2x) = (τ,−F(0, 0)). At the end,

we can say that the solution Ẑ◦2x to (5.49) exists and it is just the restriction of Z̃◦2x for |τ | ≤ η.

5.4.3. Proof of Lemma 5.6. Select some N ∈ N∗ with N ≥ 2. Define the formal approximate
solution x−1

a as follows

(5.52) x−1
a (ε; τ, x̃, θτ , θ̂

◦
r ) := Ẑ◦0x

(
x̃; τ, θτ

)
+ ε Ẑ◦1x

(
x̃; τ, θτ

)
+

N∑
j=2

εj Ẑ◦jx
(
x̃; τ, θτ , θ̂

◦
r

)
,
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where the profiles Ẑ◦jx are the ones constructed in the previous Paragraphs 5.4.1 and 5.4.2. To
summarize, we have to show that this formal solution can be exploited to approximate the exact
solution x−1 of (5.47). Indeed, we consider the error term Rinv (corresponds to the inverse) defined
through the following relation

x−1(ε; τ, x̃) = x−1
a (ε; τ, x̃,

τ

ε
,
V̂
◦
−1(x̃; τ, τε )

ε2
+

V̂
◦
0

(
x̃; τ, τε )

ε
) + εN+1 Rinv.

It is sufficient then to prove that Rinv can be viewed as remainder. Now, since θτ and θ̂◦r belong to
compact sets (torus), as well as x̃ (we work locally in space, with x̃ in a compact set), the preceding
arguments (in Paragraphs 5.4.1 and 5.4.2) can be applied uniformly with respect to these variables,
yielding

• the determination of the profiles Ẑ◦0x, Ẑ◦1x and Ẑ◦jx for all j ≥ 3 and the specification of the

nonlinear equation (5.49) at ε2−order in Paragraph 5.4.1;

• the determination of some Ẑ◦2x as a solution to the above mentioned nonlinear modulation
equation (5.49) in Paragraph 5.4.2.

Moreover, the linearized version of (5.47) along this approximate solution furnishes for the error
term Rinv an equation similar to (5.50). By this way, we can construct an approximate solution to
(5.47) which takes indeed the form of (5.44) and which inherits a precision at any order (in terms
of powers of ε). Hence, we get the stability and thereby (5.44) is proved. �

5.5. Proof of Theorem 1. With u ≡ ν as in Lemma 5.2 and x−1 as in Lemma 5.5, the formula
(5.8) can be applied to recover the existence part of Theorem 1. We can now turn to the proof of
(1.10). Knowing that u ≡ ν is given by an expansion similar to (1.30) and that x−1 is as in (5.44),
the formula (5.8) reveals that uε can be obtained through a composition of three-scale oscillations.
More precisely, at the level of (1.30), the values of z0 and ν0 must be computed as indicated in
(5.17) as functions of x, and then x must be replaced by the expression x−1 of (5.44). In other
words, with x−1 ≡ x−1(ε, τ, x̃) as in (5.44), we have

(5.53)

u(ε, τ, x̃) = O(εN+1) +
1

ε
〈V−1〉

(
z0(ε, x−1); τ

)
+ V 0

(
(z0,ν0)(ε, x−1); τ,

τ

ε

)
+

N∑
j=1

εj Vj
(

(z0,ν0)(ε, x−1); τ,
τ

ε
,
〈V−1〉(z0(ε, x−1); τ)

ε2
+

V 0

(
(z0,ν0)(ε, x−1); τ, τε

)
ε

)
.

This asymptotic description of uε is not yet in suitable form. We can further improve it in order
to recover the oscillatory structure (1.10). Before proceeding, we have to consider the following
preliminary steps:

(i) Expand the initial data (z0,ν0)(ε; ·) composed with x−1 in powers of ε;

(ii) Clarify the structure of the phase that comes to replace θ̂◦r in (1.10). More precisely, explain

how θ̂◦r can become a substitute for θr in the right hand side of (5.53).

Below, we start first with (i), then we consider (ii).
i) The initial data (z0,ν0)(ε; ·) composed with x−1 ≡ x−1(ε, τ, x̃) can be expanded in powers of ε
according to

(5.54) (z0,ν0)(ε; x−1) =
N∑
j=0

εj (ẑ0j , ν̂0j)
(
x̃; τ,

τ

ε
,
V̂
◦
−1(x̃; τ, τε )

ε2
+

V̂
◦
0

(
x̃; τ, τε )

ε

)
+O(εN+1).
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In particular, taking into account (5.17), (5.18) and (5.44), we find that

ẑ00 ≡ ẑ00(x̃; τ, θτ ) := z00 ◦ Ẑ◦0x(x̃; τ, θτ ) ;(5.55)

ẑ01 ≡ ẑ01(x̃; τ, θτ ) :=
(
(Ẑ◦1x(x̃; τ, θτ ) · ∇x)z00 + z01

)
◦ Ẑ◦0x(x̃; τ, θτ );(5.56)

ν̂00 ≡ ν̂00(x̃; τ, θτ ) := ν00 ◦ Ẑ◦0x(x̃; τ, θτ ).(5.57)

ii) We need now to clarify the expansion of the part which comes to replace θr in (5.53). Exploit
(5.55), (5.56) and (5.57) in order to expand the parts involving 〈V−1〉 and V 0 according to

(5.58)

〈V−1〉
(
z0(ε, x−1); τ

)
ε2

+
V 0

(
(z0,ν0)(ε, x−1); τ, τε

)
ε

=
1

ε2
〈V−1〉

(
ẑ00(x̃; τ,

τ

ε
); τ
)

+
1

ε

{
V 0

(
ẑ00(x̃; τ,

τ

ε
), ν̂00(x̃; τ,

τ

ε
); τ,

τ

ε

)
+
[
ẑ01(x̃; τ,

τ

ε
) · ∇z0

]
〈V−1〉

(
ẑ00(x̃; τ,

τ

ε
); τ
)}

+
N∑
j=0

εj U ◦
j

(
x̃; τ,

τ

ε
,
V̂
◦
−1(x̃; τ, τε )

ε2
+

V̂
◦
0

(
x̃; τ, τε )

ε

)
+O(εN+1).

In view of (5.23), we have

(5.59) Dx〈V
◦
−1〉(x; τ) = Dxz00(x) ∇z0〈V−1〉

(
z00(x); τ

)
.

Consider then (5.23), (5.24) (5.45) and plug (5.59) in (5.46), the expression (5.58) becomes

(5.60)

〈V−1〉
(
z0(ε, x−1); τ

)
ε2

+
V 0

(
(z0,ν0)(ε, x−1); τ, τε

)
ε

=
V̂
◦
−1(x̃; τ, τε )

ε2
+

V̂
◦
0 (x̃; τ, τε )

ε

+

N∑
j=0

εj U ◦
j

(
x̃; τ,

τ

ε
,
V̂
◦
−1(x̃; τ, τε )

ε2
+

V̂
◦
0

(
x̃; τ, τε )

ε

)
+O(εN+1).

In view of (5.53) and (5.60), we can assert that the first two terms of the expansion (1.10) are
identified as follows

U−1(x̃; τ,
τ

ε
) := V̂

◦
−1(x̃; τ,

τ

ε
);(5.61)

U0(x̃; τ,
τ

ε
) := V̂

◦
0 (x̃; τ,

τ

ε
).(5.62)

This explains how the phase ψε = ε U−1 + ε2 U 0 does appear inside (1.10). The strategy of
recovering the remaining oscillatory structure (1.10) is as follows:

(1) Use (5.60) to localize the oscillations at frequencies ε−3 at the position ε U−1 + ε2 U 0 and
incorporate the O(1)-remainder inside O(1)-shift in θr of the profiles Vj in (5.53);

(2) Expand the new profiles Vj(·; τ, θτ , θr) thus obtained after step (1) composed with (z0,ν0)(ε, x−1)
in powers of ε using the expansion (5.54);

(3) Gather the εj-terms coming from (5.53) after applying the above two steps to recover the
expressions Uj for j ≥ 1.

Of course, the rapid oscillations (implying V̂
◦
−1 and V̂

◦
0 ) involved by (z0,ν0)(ε; x−1) at the level of

(5.54) and those appearing in the sum inside (5.58) are still present. But they can be incorporated
inside the profiles Uj with j ≥ 1. �
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Remark 5.5 (About the matching of initial data). We have x(ε, 0, x) = x and x−1(ε, 0, x) = x. As
prescribed by (1.3) and the initial data inside (1.5), we find that

u(ε, 0, x) = u(ε, 0, x−1(ε, 0, x)) = u(ε, 0, x) = ν0(ε, x) = (U00 + εU01 + · · ·+ εN U0N )(x) +O(εN+1).

Compare this with (1.10) at time τ = 0. The above line implies that

U−1(x; 0, 0) = 0, Uj(x; 0, 0, θ̂◦r ) = ν0j(x) = U0j(x), ∀j ∈ N.

In view of (5.61), knowing that V−1|τ=0 ≡ V−1|τ=0 ≡ 0, this is consistent. The same applies for U 0

and so on. ◦
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