
HAL Id: hal-03283200
https://hal.science/hal-03283200

Submitted on 9 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VAST 2020 Contest Challenge: GraphMatchMaker:
Visual Analytics for Graph Comparison and Matching

Natkamon Tovanich, Alexis Pister, Gaëlle Richer, Paola Valdivia, Christophe
Prieur, Jean-Daniel Fekete, Petra Isenberg

To cite this version:
Natkamon Tovanich, Alexis Pister, Gaëlle Richer, Paola Valdivia, Christophe Prieur, et al.. VAST
2020 Contest Challenge: GraphMatchMaker: Visual Analytics for Graph Comparison and Matching.
IEEE Computer Graphics and Applications, 2021, 42 (4), pp.89 - 102. �10.1109/mcg.2021.3091955�.
�hal-03283200�

https://hal.science/hal-03283200
https://hal.archives-ouvertes.fr

This is the authors’ preprint version. Please cite the following reference: N. Tovanich et al.,
“VAST 2020 Contest Challenge: GraphMatchMaker: Visual Analytics for Graph Comparison and
Matching,” in IEEE Computer Graphics and Applications, doi: 10.1109/MCG.2021.3091955.

VAST 2020 Contest Challenge:
GraphMatchMaker:
Visual Analytics for Graph
Comparison and Matching

Natkamon Tovanich
IRT SystemX and Université Paris-Saclay, CNRS, Inria, LISN, France

Alexis Pister, Gaëlle Richer
Université Paris-Saclay, CNRS, Inria, LISN, France

Paola Valdivia, Christophe Prieur
I3, CNRS, Telecom Paris, Institut Polytechnique de Paris, France

Jean-Daniel Fekete, Petra Isenberg
Université Paris-Saclay, CNRS, Inria, LISN, France

Abstract—We report on the process and design of our visual analytics graph analysis challenge
winning entry. Specifically, our team addressed the IEEE VAST 2020 Mini-Challenge 1 that asked
participants to identify a group of people that accidentally caused an internet outage. To identify
this group, we were given a network profile and a large multi-variate social network to search in.
Our approach involved statistical and graphical analysis as well as the design of three custom
visual analytics tools. The submitted solution and visualizations are available at
https://graphletmatchmaker.github.io/.

INTRODUCTION Mining graph (network)
data is a major topic in data science and has been
so for the last two decades [1]. Many methods
have been devised to search large graphs for
specific patterns in various applications ranging
from biology [2], [3] to online fraud detection [4].
Yet, effectively using such methods in practical
applications poses another set of challenges that
we tackled throughout our participation in a visual
analytics graph analysis challenge.

From May–August 2020, our team worked on
a data analysis challenge organized annually by the
IEEE Visual Analytics Science and Technology
(VAST) conference. A team of VAST challenge
chairs and colleagues design this challenge each
year to offer researchers the opportunity to test
their tools and skills on realistic tasks and datasets.
We chose to participate in the first of three
offered mini-challenges. Mini-Challenge 1 asked
for skills in the area of graph analysis, which

https://graphletmatchmaker.github.io/

matched the background and experience of our
team members. Specifically, our team consisted of
two Ph.D. students, two postdocs, and three senior
researchers in graph analysis and visualization.
Our approaches were influenced by the research
background of these various team members as
well as the research some of us were currently
working on. This team composition resulted in a
diverse and ultimately quite successful approach
to tackling the challenge.

The VAST Challenge 2020 [5] presents a
scenario in which a group of “white hat” hackers
accidentally caused an Internet outage while trying
to protect the global internet from malicious cyber-
attacks. The overall goal of Mini-Challenge 1 was
to identify who these hackers possibly were based
on an anonymous profile derived by sociopsy-
chologists to most likely resemble the structure
of the group. In Mini-Challenge 1, participants
were given a large multivariate social network
as their main data structure: the large graph as
well as a smaller template graph representing
the sociopsychologists’ anonymous profile. The
network is a directed temporal graph consisting of
multiple types of nodes and edges. The majority
of the data represents the relationship between
person nodes linked through phone call and e-mail
edges and is complemented by information on
demographics, publication records, procurement,
and travels. Participants were also presented with
possible candidate graphs extracted from the large
graph that could represent the members of the
white hat hacker group.

Our main approach is based on finding nodes
that have similar node properties and edge con-
sistency between the graphs. We present our
approach and three visualization tools we built
to address this challenge under the name Graph-
MatchMaker. Specifically, we present visualiza-
tions to compare the template graph and describe
our methods to find matching subgraphs in the
large graph. Based on the reflection of our process,
we propose the MatchMaker tool to find matching
node pairs between two graphs and incrementally
construct the matching subgraph. Thus, the tool
can be used to perform local graph comparison
and matching tasks in multilayer and dynamic
networks.

THE CONTEST PROBLEM
The 2020 VAST Challenge posed a series of
analytic questions united under an overarch-
ing cyber threat scenario:
“In response to an increase in malicious
cyber-attacks, numerous “white hat” hacker
organizations have taken it upon themselves
to fight back to protect the global internet. As
the attacks became more and more aggressive,
one white hat group, who has so far stayed
anonymous, accidentally launched a cyber
event that took down the global internet.
The world’s experts are having difficulty
understanding what happened and need to
get in touch with the group so the effects on
the internet can be neutralized and services
restored.”
This year’s mini-challenges addressed three
distinct problems at the intersection of visual
analytics and other specialties, requiring sub-
stantial creativity not only in the development
of the interactive visual analysis, but in the
data transformation and machine learning
approaches as well. The first mini-challenge,
designed as a follow-up to a large graph chal-
lenge first presented in 2018, involved both
large graph analysis and subgraph matching.
The second mini-challenge asked participants
to combine visual analytics techniques with
image labeling and interactive machine learn-
ing, demonstrating how visual analytics can
be leveraged to develop and refine machine
learning models. The third mini-challenge
focused on design rather than implementation,
asking participating teams to envision an
interface to support both real-time situation
awareness and response team composition.

VAST Challenge 2020 Co-chairs:
Kris Cook is a technical advisor at Pacific
Northwest National Laboratory. Contact her
at kris.cook@pnnl.gov.
R. Jordan Crouser is an assistant profes-
sor of Computer Science at Smith College.
Contact him at jcrouser@smith.edu.

2 VAST 2020 Contest Challenge: GraphMatchMaker

kris.cook@pnnl.gov
jcrouser@smith.edu

CONTEST EVALUATION
The 2020 VAST Challenge received 24
completed submissions from teams at 22
institutions in 6 different countries. More than
40 individual reviewers from both the visual
analytics research community and subject
matter experts volunteered their time and
expertise, evaluating submissions on their
application of visual analytics, as well as
their overarching analytic approach. Each
submission received detailed reviews from
at least three external reviewers, and each
was also reviewed by the members of the
VAST Challenge Committee. Each reviewer
received a written briefing providing relevant
context and background information for this
year’s challenge scenarios, descriptions of
known anomalies and patterns embedded
within the data, and sample solutions to
each mini-challenge. Individual reviewers
provided both a numeric score and a de-
tailed narrative describing each submission’s
strengths, as well as opportunities for im-
provement or further refinement. Addition-
ally, each reviewer was invited to nominate
exemplary submissions to the committee for
award consideration. Though submissions
that correctly identified known signals within
the data often received favorable ratings,
other factors such as creativity, clarity, and
novelty were also considered in determining
a submission’s final score.
Of the 24 completed submissions, 3 were se-
lected to receive awards, and an additional 5
received honorable mentions. The 2020 com-
mittee paper [5] details the award-winning
submissions, as well as provides a more in-
depth discussion of the challenge itself. The
committee selected “GraphletMatchMaker:
Visual Analytics Approaches to Graph Match-
ing in Cybersecurity Communities” as one
of the contest’s most exemplary submis-
sions, earning an award for their Outstanding
Comprehensive Mini-Challenge 1 Solution.
The VAST Challenge has a long history of
providing opportunities for cross-institutional
collaboration in the study of visual analytics.
The attached article is an extended discussion
of this interdisciplinary team’s results.

Table 1. List of node and edge types for each channel in
the white hat hackers network.

Channel From Node Edge To Node

Communication Person Call to Person
Person Mail to Person

Procurement Person Sell Product
Person Buy Product

Co-authorship Person Write Document
Travel Person Travel to Country

Details about the Data
Mini-Challenge 1 contained data for one year

of activities of pseudonymous white hat hackers
as a large graph of 7.4GB of data stored in
123,892,863 records. The graph contains five node
types and seven edge types associated with four
channels as outlined in Table 1. The dataset,
therefore, has been modeled as a multivariate
multilayer dynamic network with bipartite layers,
making it heterogeneous.

During the data exploration phase, we made
several observations about the graph based on
additional information:
Financial profiles: Each person had a financial
profile that consisted of his/her total financial
income or spending in 29 categories (e. g., electric-
ity, healthcare, transportation, groceries, personal
taxes).
Location: No information on the home location
for each hacker was given. Yet, each person node
had a single location for their outgoing phone calls
(phone edges). Therefore, we took this location
attribute for each person as their origin “location”.
Procurement: Most buy edges had a relative sell
edge connected to the same product and with the
same timestamp.
Authorship: People who wrote the same doc-
ument are considered co-authors. This kind of
relationship was rare in the data.

The data also consisted of an anonymous
profile, the template graph, that was presented as
most likely resembling the structure of the white
hat hacker group that caused the internet outage.
It consisted of 88 nodes and 1,325 edges with
the same data format as Table 1. Node IDs were
anonymized and did not match directly with the
large graph. Moreover, challenge participants were
given five candidate graphs, subgraphs extracted
from the large graph with approximately the same
number of nodes and edges. These candidates

Author’s Preprint Version 2021 3

were starting points that had to be compared to
the template before moving on to the large graph.

DEFINING ANALYTICS TASKS
Based on the scenario description and our first

exploration of the data structures, we abstracted
the challenge into two tasks we needed to tackle:
Task 1: Small graphs comparison: Compare the
template graph with each candidate graph and
select the most similar candidate to the template.
Explain where the two graphs agree or disagree.
Task 2: Subgraph matching: In the large graph,
find the subgraph that most resembles the template.
Start from the provided seeding edges in the large
graph.

Our work on these two tasks was non-linear.
Team members explored different approaches
in parallel, helping each other with questions
and information. The following sections provide
details on what we tried before discussing the
success or failure of our attempts to solve the
tasks.

SMALL GRAPH COMPARISON
To find out which candidate graph best com-

pared to the template, we started by both visualiz-
ing the graphs and analyzing them using graphlets.
To visualize the data, we designed multiple visu-
alizations that highlight different perspectives of
the data. We drew node-link diagrams to compare
the overall graph structures, graphlet frequencies
to understand node connectivity patterns, and
visualized temporal profiles to observe hacker
activities in each graph over time.

Node-link view
To first compare graph structures at a high

level, we visualized the template and the five
candidate graphs as node-link diagrams using
a simple force-directed layout to assess their
structural similarity visually. The visualization
combines the graphs in each channel into a single
graph and uses node color and shape to encode
node location and type, respectively (Figure 1). We
considered location an important hacker attribute
and assigned it a strong visual encoding (hue).
We also added checkboxes to filter edge types
and explore whether certain edges led to clearer
similarities than others.

We first inspected the template graph in detail.
Three specific communities emerged: the first was
a dense community of hackers connected through
the communication channel (red polygon in the
figure). The second community was smaller and
connected to the first group through a bridge
person (blue polygon). The third group was
formed by people connected by traveling to the
same location. Next, we looked at the candidate
graphs: Candidates 1 and 2 showed a structure
and communities similar to the template, while
Candidate 3 had more sparse communication
edges. The other candidate graphs (4 and 5) did
not seem similar visually. From this view, we
narrowed our answer down to Candidate Graphs 1
and 2. Next, to compare the graphs, we analyzed
their topological structures using graphlets.

Graphlet view
We conducted a graphlet analysis (see the

Graphlet sidebox) to measure the topological
similarity between the template and candidate
graphs via the communication channels (phone
and email). We assumed these channels to be
mutual between the connected hackers, so we
decided to use undirected graphlets. We chose to
study 5-node graphlets as 4-node graphlets cannot
capture complex patterns, and 6-node graphlets
are too numerous to compare.

The graphlet frequencies of each graph were
computed using an optimized version of the
gTrieScanner library [9] to count occurrences
of graphlet patterns in a given graph. Graphlet
frequencies indicate the connectivity patterns in a
graph: higher normalized frequencies mean that
the nodes in the graph are more connected in a
particular pattern. Figure 2 (A) shows histograms
that allowed us to compare the normalized graphlet
frequencies of the template and all candidates.
From the figure, the graphlet frequencies are
highly different for each graph—showing distinct
signals of connectivity patterns.

Many similarity measures exist to compare
vectors of frequencies. In this work, we chose to
use Pearson’s correlation coefficient because it
is scale independent and is one of the easiest
measures to interpret as the values are in the
limited range of [-1, 1].

Using this measure, Candidate 2 was the most
similar to the template with a correlation of 0.761,

4 VAST 2020 Contest Challenge: GraphMatchMaker

Figure 1. Node-link diagram view. Node shape corresponds to node type, while color indicates node’s
location. Edge types can be filtered with checkboxes. Candidate graphs 4 and 5 can be found at https:
//graphletmatchmaker.github.io/AVIZ-Tovanich-MC1/node-link-view/networks.html.

Template (correlation 1.0) Candidate 1 (correlation 0.247)

Candidate 2 (correlation 0.761)

N
or

m
al

iz
ed

Fr
eq

ue
nc

ie
s

41

43

45

58

47

63

56

27

37

34

57

39

40

0

67

65

66

Q1-Graph1

635665

493044

640464

550361

623295

596193

589639

599956

492777

570411

490041

533140

632150

616050

568093

512397

550287

464459

559657

591682

n
o

d
e

0 100 200 300 400 >500

Graphlet frequencies

template

41

43

45

58

47

63

56

27

37

34

57

39

40

0

67

65

66

n
o

d
e

Q1-Graph1

635665

493044

640464

550361

623295

596193

589639

599956

492777

570411

490041

533140

632150

616050

568093

512397

550287

464459

559657

591682

n
o

d
e

629627

585212

534449

544615

602912

477138

639051

527597

534034

563211

582851

505965

515794

599441

541017

488928

644830

572413

0 100 200 300 400 >500

Graphlet frequencies

Pe
rs

on
 N

od
e

B

Candidate 3 (correlation 0.588)

C Template Candidate 2

Graphlets of size 5A

Figure 2. Graphlet frequency view. (A) Graphlets of size 5 sorted by frequencies in the template graph. We
used this order on the x-axis of both charts. (B) Relative frequency of each graphlet as a histogram. (C) Graphlet
frequencies for each node as a heatmap. Nodes in the y-axis are sorted by eigenvector centrality.

followed by Candidate 3 with a correlation of
0.588. The template and Candidate 2 shared the
same most frequent graphlet pattern corresponding
to the clique-minus-one . While Candidate 3
also had a high frequency for this pattern, it was
not the most frequent. The second most frequent
pattern of the template was the clique , but
none of the candidates showed similar values.
The result demonstrated that even if Candidates
2 and 3 had a high correlation, there were still
significant discrepancies between the structures of
the template and all the candidates according to
the graphlet frequencies.

We also looked at the graphlet frequencies for
each node in the graph as a signature describ-
ing each hacker’s communication pattern. Two
nodes with similar graphlet frequencies suggest
that they might correspond to the same person.

Figure 2 (B) shows two heatmaps to compare
the graphlet frequencies of each node between
the template (left) and Candidate 2 side-by-side.
We see that the most common graphlet patterns
among the template nodes were the clique ,
indicating dense communication within the group,
and the clique-minus-three , connecting the
dense group with an outside node. On the other
hand, Candidate 2’s nodes tended to have more
clique-minus-three and bow-tie patterns
than the template, indicating a bridge connecting
two groups that we can also observe in Figure 1.

Temporal view
Time was the last graph characteristic we

investigated, focusing on the intensity of con-
nectivity in the graphs over time. Because the
graph data consisted of multiple edge types, we
visualized the temporal information at different

Author’s Preprint Version 2021 5

https://graphletmatchmaker.github.io/AVIZ-Tovanich-MC1/node-link-view/networks.html
https://graphletmatchmaker.github.io/AVIZ-Tovanich-MC1/node-link-view/networks.html

GRAPHLETS

Figure 3. List of the 30 undirected graphlets
from size 2 to 5.

Graphlets are small connected induced, non-
isomorphic subgraphs composing any net-
work. In an induced subgraph, two vertices
linked in the original graph remain linked
in the subgraph. For instance, if the original
graph is a triangle we can only induce
the simple edge or triangle subgraph
(graphlet). The path of length 2 has all
vertices of the original graph but misses an
edge and is, therefore, not a possible graphlet.
They were first introduced by Milo et al. [2]
to explore the structural differences between
biological networks, but they are now used
in several disciplines involving networks.
Usually, researchers use graphlets of a pre-
defined size, like 3, 4, or 5, since the number
of possible graphlets grows exponentially
with the graph size, making the interpretation
of the results and the computation harder.
Graphlets can be undirected or directed–the
same way networks can be. In a typical
graphlet analysis, the frequency of each
graphlet is computed and normalized, pro-
viding a distribution of the graphlets which
occur in a graph.
Graphlet frequencies can be computed on
an entire graph or around a specific node
(ego networks) to compare the frequencies
of each node [6]. This is mostly done by
computing similarity measures that grasp the
differences between the distributions of the
graphlet frequencies [7].
Finally, a fair amount of research has been
done to efficiently compute graphlet fre-
quencies [8] since it is a problem with an
intrinsically hard computational complexity.

aggregation levels. We started with an overview
of the graphs to visually compare the graphs and
decide what to analyze next in more detail. Then,
we created detailed visualizations to focus on
potential patterns of interest.

First, we created an aggregated time series
view to quickly compare the template graph and
the candidate graphs. We counted the number of
edges per day for each graph. To quantitatively
compare the temporal pattern among graphs, we
computed dynamic time warping [10] between
every graph pair and conducted a hierarchical
clustering to group similar time series using the
dtaidistance library in Python [11]. Dynamic time
warping is a standard measure to find the optimal
distance between two time series, which may
have time shifts in the patterns [10]. Figure 4 (A)
shows the time series of each graph ordered by
hierarchical clustering similarity. According to the
figure, Candidate 2 was the closest to the template.

Then, we decided to split this information for
each type of edge and created a stacked area
chart, shown in (B). From this visualization, we
confirmed again that both Candidates 1 and 2
were more similar to the template than the others
because: (1) They tended to have a similar number
of edges over time; (2) They had the same bursts
of activity throughout the year; and (3) All of them
had a peak of communication activity (phone and
emails) followed by only travel activity. We also
observed a 14-day time shift between the burst
activities in the template compared to Candidates
1 and 2.

To decide which one of the two candidate
graphs, Candidates 1 or 2, was more similar to
the template, we created a visualization focused
on the edges per node, as shown in (C). Each
horizontal line represents a node on the timeline
in the x-axis. Each edge is represented as a dot
colored by type. We observed that the buy and
sell edges (resp. light-green and red dots) had
a similar profile for both Candidates 1 and 2.
None of the graphs consistently matched the travel
edges in the template. Even if not conclusive, the
communication bursts from Candidates 2 were
more similar to the template.

Finally, we created an egocentric visualization,
including all of a node’s incoming and outgoing
edges, to see the temporal activity of nodes in
detail. In particular, we used this visualization to

6 VAST 2020 Contest Challenge: GraphMatchMaker

Figure 4. Temporal profile view at different levels of aggregation. (A) Aggregated time series for the template
graph and candidate graphs. (B) Stacked area chart with the number of edges per type for the template graph
and candidate graphs. (C) Temporal view of edges per node for the template graph and Candidate Graph 2. (D)
Detail of the in (top) and out (bottom) edges for a single node of the template graph. The full resolution of these
charts can be found in our report: https://graphletmatchmaker.github.io/AVIZ-Tovanich-MC1/index.htm.

see detail about specific nodes we identified as
“interesting” in other visualizations. For example,
Figure 1 and Figure 4 (C) showed that only one
person in the template graph bought a product.
We called this node the buyer. The visualization
of its ego network is shown in Figure 4 (D). On
the top (resp. the bottom) of the visualization, we
drew a line for each node with an edge going into
(resp. edge going out from) the buyer over time.
Time goes from left to right along the x-axis. Each
edge is represented as a dot colored by type. In the
middle, between the incoming and outgoing edges,
we show a time series aggregating the number of
in and out edges for the buyer. On the right side
of the figure, the bars indicate the number of
edges per node. The visualization allowed us to
see, for example, that the buyer purchased the
same product several times. We also saw email
exchanges with the person who sold the product.

EXTRACTING A MATCH FROM THE
LARGE GRAPH

The second task in the challenge involved
finding a subgraph in the large graph that matches

the template graph. Our approach was based on
several similarity measures to find hackers in
the large graph with the same characteristics as
hackers in the template graph. We developed a
custom visualization: a node-matching view to
help us evaluate extracted subgraphs. We also
proposed two methods to extract subgraphs using
the seeding edges and narrow the search space
without any given edge.

Node profile similarity measures
Given that we were supposed to find a group

of hackers, we focused our analysis on person
nodes. We chose four characteristics of person
nodes with similarity measures to compare person
nodes between the template and the large graph.
Financial profile similarity: Each person node
was associated with net income or spending in 29
categories. We adopted the cosine similarity metric
to calculate the similarity between the normalized
financial profiles of each person node.
Graphlet similarity: We considered the graphlet
frequencies vector for each person’s communica-
tion network to signal the person’s ego-network

Author’s Preprint Version 2021 7

https://graphletmatchmaker.github.io/AVIZ-Tovanich-MC1/index.htm

connectivity pattern. However, the algorithm to
count graphlet frequencies is computationally
expensive in the large graph. We developed
a technique to sample the graph and estimate
the graphlet frequencies vector, allowing us to
compute a graphlet-based similarity measure. The
sidebox gives more detail on our approach (see
Computing Graphlets in the Large Graph side-
box).
Traveling profile similarity: The travel channel
provided data about a person’s trips from an origin
location to a destination location, including date
and duration. To construct a travel profile, we
created tuples of trips (origin location, destination
location) and appended them to a set of trips for
each person. We applied the Jaccard similarity
coefficient to evaluate the similarity of trips made
between two people. At first, we did not consider
time overlapped between two people at the same
destination simultaneously. Later, we found out
that this fact was very useful to narrow down the
possible node matching in manual search.
Temporal activity profile similarity: We counted
the number of edges associated with a person per
day to build each person’s temporal activity profile.
We constructed two temporal profiles: (1) for the
communication channel and (2) for all channels
combined. We used dynamic time warping to
calculate the similarity of the two temporal profiles
between person nodes.

Node-matching view
We developed a custom visualization called

node-matching view shown in Figure 6. The view
consists of a heatmap matrix to display similarity
measures between nodes and arc diagrams to show
the connections between them, similar to the Arc
Diagram-HEDA [14]. Using this view, we can
evaluate the one-to-one pairing of the template’s
person nodes with those of the candidate graph.

The heatmap matrix (A) gives an overview of
the node agreement based on similarity measures.
Each node pair is represented by a column framed
by the template node (top) and the matched
candidate node (bottom). Each row represents a
similarity measure using a blue color scale rang-
ing from entirely similar (dark blue) to entirely
dissimilar (white).

The arc diagrams (B) give an overview of the
edge agreement based on the connections between

COMPUTING GRAPHLETS IN THE
LARGE GRAPH

Frequencies of graphlets
for the template

Subgraph
samplings

Population of
subgraphs

Large graph

Graphlet
frequencies

Each graphlet has a
distribution for

Figure 5. Computing pipeline for a graphlet
similarity measure between a template and a
large graph. The green node is a specific node
of the large graph.

Computing graphlet frequencies on a large
graph can rapidly become a computing re-
source bottleneck. To avoid this computing
problem, we derived a new approach to com-
pute a graphlet-based node similarity measure
between the nodes of a relatively small graph
and a large graph. For this, we approximated
the relative graphlet frequencies for each
node in the large graph. The pipeline is
depicted in Figure 5.
Our process is based on the popular idea of
extracting a population of subgraphs from the
large graph [12], with sizes and structures
similar to the small graph. Each node of the
large graph should appear in several of these
subgraphs. To be sure of that, the sampling
algorithm should start from every node at
least once. However, many methods exist for
graph sampling. To keep the structure of the
large graph in the sampled subgraphs, we
used a random walk algorithm with transition
probabilities weighted by the in-degrees of
the nodes. It means that nodes with a high
degree will be encountered more often than
more isolated nodes with a low in-degree.
Once the sampling is done, it is possible
to compute the graphlet frequencies of the
extracted subgraphs without the computation
cost exploding. For each node, we obtained
frequency distributions for each graphlet
pattern that appeared in the sampled sub-
graphs. We used the Vysochanskij–Petunin
inequality [13] to test if the frequency of
a graphlet in the subgraph is part of the
previously computed distribution. The ratio
of positive tests over negative tests (one test
is done for each graphlet) is a similarity
measure.

8 VAST 2020 Contest Challenge: GraphMatchMaker

Financial profile
Travel profile

Graphlet profile
Temporal profile

template

candidate

Financial

Matched: 49/51

Matched: 17/51

Graphlet

Financial & travel

Node agreement

highlow

similarity

no measure

Financial profile
Travel profile

Graphlet profile
Temporal profile

template

candidate

similarity
heatmap
matrix

Edge agreement
agree

∉ template
∉ candidate

bottom arc
diagram

top arc
diagram

pair of matched nodes

Matched 49/51

0
100
200

0
100
200

Financial profile
Travel profile

Graphlet profile
Temporal profile

template

candidate

0
100
200

2138
145

A
114

54 47B

C
8366 78

Figure 6. Node-matching views for the subgraphs resulting from the greedy matching algorithm from seed
1 using different similarity measures: (A) graphlet profile, (B) financial profile, and (C) financial and travel
profiles combined. Node-matching views allow us to evaluate the agreement between the template graph
and a matching subgraph. The diagram has three elements: (1) The template nodes on the top and the
matching subgraph nodes on the bottom. In this challenge, the node’s color indicates the person location,
derived from its phone calls, and edges are from the communication channel; (2) The inner heatmap
matrix shows node agreement according to the four similarity measures; and (3) Arc diagrams on the
top and bottom show matching edges (green), missing edges (red), or additional (grey) edges between
the two graphs. We additionally show the number of matching nodes on the top left of the chart. The
bottom right holds a bar chart that shows the number of edges for each type. The demo can be found at
https://graphletmatchmaker.github.io/AVIZ-Tovanich-MC1/person-pairing-view/comparison.html.

paired nodes on both graphs. The arcs on the top
represent the edges of the template graph. An arc’s
color indicates whether the edge is matched in the
candidate graph (green, true positive) or missing
(red, false negative). The arcs on the bottom show
the additional edges of the candidate that have no
match in the template (grey, false positive). To
reduce the number of edges, the edge agreement
assessment does not consider the location and time
of the original edge.

From this view, we can assess the quality of
a candidate matching based on three criteria:

1) Node coverage: how many template nodes
are matched (counter on the top-right),

2) Node similarity: the similarity of node pairs
for the chosen similarity measures (we want
mostly dark cells in the heatmap), and

3) Edge matching: how many template edges

exist in the candidate graph (high number
of green arcs on the top arc diagram and
few grey arcs on the bottom arc diagram).

We used this node-matching view to visually
assess matches for the template extracted from
the large graph.

Matching based on a seeding edge
As part of the challenge, we were given three

seeding edges as starting points to find suitable
matching subgraphs in the large graph. With seed-
ing edges, the matching task can be generalized to
solving the maximum bipartite matching problem
between nodes in the template and the large graph.
We extracted the person node from the seeding
edge (referred to as the seeding node) and used
similarity measures to compare with person nodes
in the template graph. Because there were many
nodes in the large graph, it was impossible to

Author’s Preprint Version 2021 9

https://graphletmatchmaker.github.io/AVIZ-Tovanich-MC1/person-pairing-view/comparison.html

compute all possible matchings and find the best
matching subgraph. We, therefore, modified a
greedy matching algorithm to dynamically add
the large graph’s person nodes to match the
template as described in Algorithm 1. The idea
is to iteratively match the nodes in the template
with a set of candidate nodes of the large graph,
initialized as the seeding node and its neighbors
(line 3). At each step, the pair of nodes with
the highest similarity value is matched together
(lines 5 and 6), and the nodes are removed from
the candidates (lines 7 and 8). Then the set of
candidates in the large graph is extended with
the neighbors of the latest matched node (line 9).
This process is repeated until every person from
the template matching set is coupled with a large
graph person. The template matching set is only
constituted of people whose similarity values are
defined for the chosen similarity measures.

Since not every node in the template had
information on every channel, we combined sim-
ilarity measures as different similarity functions
and used them to extract subgraphs with the
algorithm. We tried three different functions: (1)
graphlet similarity, (2) financial profile similarity,
and (3) the average of financial and travel profile
similarities. After the extraction, we added all
other node types, such as products and locations,
connected to the person nodes in the matching
subgraphs.

We evaluated the subgraphs extracted from
the algorithm and different similarity measures
with the node-matching view. Figure 6 shows
the result graphs obtained from Seed 1. Seed 2’s
person node did not connect to any other person
by communication, so we could not use this seed
as a starting point. The subgraphs extracted from
Seed 3 were very similar to Seed 1.

From Figure 6, we can visually evaluate that
the subgraph extracted from the graphlet similarity
function (A) does not provide a good match with
the template graph. The algorithm matched only
17 out of the 51 nodes, indicating a low node
coverage of the subgraph. Although the financial
profile similarity between the two graphs seems
high, the overall edge agreement is low. Most
of the retrieved edges are not matched in the
template. There are a lot of missing edges (red)
and a few numbers of matching edges (green) and
extra edges (grey).

The subgraphs extracted using financial pro-
files (B) and the combination of financial and
travel profiles (C) shows 49 out of 51 matching
nodes, indicating a high node coverage for both
subgraphs. We can see that these subgraphs have
a higher number of matching edges than the
graphlet subgraph. However, it is not easy to
judge which one is better visually. We counted the
number of edges in each color, as shown in the
bottom right of the figure. The subgraph from the
financial profile has a higher number of matching
edges than the combination of financial and travel
profiles. The numbers of missing edges and the
extra edge are lower. Therefore, we conclude that
the financial profile provides the best matching
subgraph for the template graph out of the three
similarity functions using this algorithm.

The result showed that the graphlet profile
similarity did not provide a good subgraph in this
challenge. Instead, using financial profile similarity
led to a better solution. However, it still did not
match exactly with the template. We carefully
looked at the large graph and found that the person
nodes were generally more densely connected than
in the template. Indeed, the template was sampled
from the large graph. This explains why subgraphs
extracted using the algorithm had a high number
of matched nodes but many additional edges (grey
color on the bottom arc diagram). To reduce the
false-positive error rate, we need to filter the edges
that are not matched with the template graph. In
the next subsection, we proposed a strategy to
manually find matching nodes and filter edges in
the large graph.

Manual node matching in the large graph
Without a seeding node, it became very chal-

lenging to find the template structure in the large
graph. We cannot generate all possible subgraphs
and evaluate them one by one. Consequently,
we investigated the large graph and proposed a
“narrow down and conquer” strategy to find the
matching subgraph. We show the step of manual
node matching in Figure 7.

From the exploratory analysis performed to
solve Task 1, we had identified a node with a
record of purchases from the same seller in the
template (Figure 4 (D)). We chose this buyer pat-
tern and looked for person nodes who purchased
several products from a single person in the large

10 VAST 2020 Contest Challenge: GraphMatchMaker

Algorithm 1: Subgraph matching with a seeding node.
Inputs :GT = (VT , ET) the template graph

G = (V,E) the large graph
v0 the seeding node.
SIM = [simi,j]i∈VT ,j∈V the similarity matrix between nodes of the template and of

the large graph.
Result: matches, a list of pairs in VT × V .

1 matches← [];
2 to matchGT ← VT ;
3 to matchG ← set(v0,Neighbors(v0, GT));
4 while to matchx is not empty do
5 (bestGT , bestG)← idxmax([simi,j]i∈to matchGT ,j∈to matchG);
6 matches.append((bestGT , bestG));
7 to matchGT .remove(bestGT);
8 to matchG.remove(bestG);
9 to matchG.extend(Neighbors(bestG, G));

10 end

Figure 7. The steps of manual node matching in the large graph.

graph. We manually looked for nodes in the large
graph with a similar financial profile and temporal
activity and used those nodes as a starting point
to extract the subgraph.

In the large graph, we found 3 buyer candidates
with more than 7 purchases. In particular, we ob-
served that one of the candidates’ temporal activity
was very similar to the buyer in the template graph
with a 14-day time shift (Figure 7:Step 1 in the
pink triangle). We also observed that the financial
profiles matched well. Based on this finding, we
extracted the person nodes with the most similar
financial profiles and found more matching nodes
with the same travel profile (Step 1).

We used node-link diagrams (Figure 1) and
temporal profile charts (Figure 4) to filter edges
that matched the template graph. We added the
edges that shared the same travel location first

(Step 2) and then added the communication edges
among nodes (Step 3). Finally, we found a person
with one publication and a financial profile similar
to the publishing person in the template graph and
included that publication edge to the matched
subgraph (Step 4). This subgraph also had a very
high edge agreement when visualized using the
node-matching view.

MATCHMAKER TOOL
While working on the challenge, we incremen-

tally developed a visual analytics tool to join the
visualizations and measures that were useful in
finding the challenge answer. The Matchmaker
tool allows analysts to test different matching
strategies quickly (e. g., prioritizing one node
characteristic or another). Using the tool, analysts
build a match for the template graph by finding

Author’s Preprint Version 2021 11

A B

C D

E
distance table filtered

to show pairs involving 47
2

selected pair of nodes3

F

node pair has
similar profile

4

After accepting the pair

 node pair
has high
similarity

node pair shares multiple events7

DEMOGRAPHICS NODE & EDGE AGREEMENT

TEMPORAL VIEW

 1/2 edges
is matched

5

1 template node (47)
is connected to

two matched nodes

6

Figure 8. Manual node-matching tool. On the left, node-link diagrams and temporal views give an overview of
the template (A, B) and the current state of the match graph (C, D). On the right, analysts can sort, search and
select possible node pairs from the pairwise similarity view (E). Once a pair is selected, the comparison views
(F) allow the pair’s node and edge agreement to be investigated relative to the current match graph, i. e. list of
validated pairs.

promising node pairs and inspect them in detail
(human-in-the-loop analysis). It could work on
any multi-layer and dynamic networks, assuming
that multiple measures of node similarity have to
be considered. The detailed views we developed
to compare a candidate node pair are currently
specific to the challenge data (e. g., travel activity,
financial profile). However, it is easy to swap them
out for measures present in other datasets.

When using the tool, the analyst starts by
choosing an initial set of paired nodes. In our
case, these paired nodes are candidate matches
for the buyer-seller pattern and act as different
entry points the analyst can choose from to start
creating a match.

The tool consists of multiple linked views,
shown on Figure 8. The left panel shows an
overview of the template and the subgraph being
built using the node-link view and temporal view.
This overview also highlights which nodes of the
template graph are already matched. The right

panel consists of the pairwise similarity view
and the node comparison views. On the top, the
pairwise similarity view is a sortable table that
contains similarity measures between all pairs of
person nodes. Upon selection of a node pair in the
table, 3 node comparison views appear: a side-by-
side view of the demographic data as heatmaps;
the agreement of the pair following the encoding
of the node-matching view; and a side-by-side
temporal views for the pair. Together, these views
allow analysts to identify node pairs with high
node similarities: demographic, communication,
and temporal data. With this information, the
analyst validates whether the node pair is a proper
match. If so, the node appears on the left panel,
together with the edges associated with it. The
analyst continues this process until all (or almost
all) template nodes are matched.

In Figure 8, we show a step-by-step example of
how one may choose which template node to focus
on and how to find a proper match for it using

12 VAST 2020 Contest Challenge: GraphMatchMaker

the tool. We started with an initial node pairing
of two nodes, based on a buyer-seller pattern (see
C and D). Then, we focused on template node
47 since it is connected to both the buyer and
the seller (Step 1) and consequently filtered out
the table to show the corresponding candidate
pairs (Step 2). We went through multiple pairs
with good scores, looking for one with some edge
agreement. The selected pair (Step 3) shows a
very similar financial profile (Step 4), one edge
matched out of the two (Step 5), and has multiple
events in common (Step 6), which suggests it is
a good match, especially compared to the other
possible pairs inspected so far.

EVALUATION OF OUR APPROACH
After the end of the review period, we obtained

the correct answer from the challenge organizers
to evaluate our results.

Small graph comparison
We concluded that Candidate 2 was the best

match compared to the template, followed by
Candidate 1 based on three views we produced.
However, the correct answer is Candidate 1,
followed by Candidate 2.

A closer look at the node-link view might have
helped us derive the correct answer. Inspecting
the bridging nodes between the two communities
carefully and counting the number of nodes and
edges in each community would have helped to get
the correct answer. In the graphlet and temporal
views, we mainly focused on communication
as the most active channel in the network data.
However, the solution highlights a difference
in edge counts in publication and procurement
channels, which we did not consider in these views.
Here, the graphlet method did not work well.
Each graph had a very different frequency pattern
because the graphs were intentionally manipulated
by sampling and removing edges.

Subgraph matching
The organizers provided a set of node IDs that

constitutes the solution subgraph. We evaluated
our subgraphs using the precision, recall, and F1-
measure metrics in Table 2.

• Precision: How many nodes we identified
correctly compared to all nodes in our subgraph,

Table 2. Performance metrics of matched subgraphs using
a seeding edge and manual matching.

Method Precision Recall F1

Graphlets 0.604 0.330 0.426
Financial profile 0.699 0.659 0.678
Financial & travel profile 0.762 0.727 0.744
Final matching 1.000 1.000 1.000

• Recall: How many nodes we identified correctly
compared to all nodes in the solution, and

• F1-measure: The harmonic mean of precision
and recall.

For subgraphs extracted from the seeding
nodes, the combination of financial and travel
profiles provided the best result, followed by the
financial profile solely. This result highlights that
node attributes’ similarity played a large role in
finding the matched graph for this challenge.

Graphlet similarity produced the worst match.
We investigated the data in detail and found that
the template graph was a sampling of edges
from the large graph. In this case, the graphlet
approach did not work well because it assumes
that the structure of nodes in the template and
large graph is similar. Graphlet frequencies are
sensitive to the edges in the graph [15]. By adding
or removing edges in the template graph, the
graphlet frequencies can change significantly and
differ from the true distribution in the large graph.
As a result, the graphlet structure of nodes in
the large graph was largely different from the
template, leading to the worst result compared to
other similarity measures.

The nodes retrieved using manual matching
matched precisely with the solution as our ex-
tracted subgraph matched the template graph
almost perfectly. According to the result, knowing
the underlying assumption of the graphs is the first
priority. We tried out different strategies without
knowing the assumption and eventually found that
node similarities led to the correct solution. Based
on this need, we developed the MatchMaker tool to
discover the similarity measure that best matches
the template graph.

DISCUSSION AND CONCLUSION
Analyzing and visualizing the multidimen-

sional and temporal social network was demand-
ing. Searching subgraphs based on approximate

Author’s Preprint Version 2021 13

matching is difficult, especially when the graph
is complex and nodes and edges hold multiple
parameters. The graph given was composed of
several layers that should be matched together,
and we had no algorithm available to perform
an automatic search and matching. Basic graph
visualization approaches also did not scale to this
challenge as the overall graph was large and multi-
layered. Even if we had managed to visualize the
whole structure, subgraphs would not have been
detectable in the large graph using vision alone.

To solve the challenge, we had to combine
analytical and visual methods, making the chal-
lenge a perfect target for visual analytics. Our
approach was to use analytical methods to narrow
down the larger problem to smaller subgraphs that
could be visualized. We had hoped to confirm
the final solution both visually and analytically
but ended up relying more on our visual solutions
because we found the graphlets to be less effective
to confirm our findings than we had hoped.

We learned, somewhat to our surprise, that
the graphlet matching approach was not very
accurate for graph matching, especially for Task 2.
Although we tried to improve the graphlet match-
ing by weighting different graphlets according
to their inverse frequency—the least represented
graphlets being most informative about particular
structures—the weighted profiles matching were
still not entirely satisfactory. For Task 1, it was
hard to see if there was a good subgraph match,
while for Task 2, the graphlet similarity measure
produced subgraphs of low quality. More research
is needed to understand if this inaccuracy is
intrinsic to graphlet-based methods or sensitive to
the size and structure of the graph.

We also found it difficult to find the right
similarity measures and channels to use because
what worked for Task 1 was different from what
helped us to find the solution to Task 2. We tried an
automatic matching approach based on a greedy
algorithm. However, we had trouble balancing
those measures or determining which one was the
most important. One aspect of that difficulty was
to find which node properties of the template were
the most selective to the large graph.

The graph matching result from the greedy
algorithm turned out to depend on the similarity
measure used. In some cases, the extracted sub-
graphs were good matches relative to these similar-

ity measures but unsatisfactory overall with major
differences in communication edges or origin
locations of paired nodes. A future improvement
of the algorithm could be to add neighborhood
consistency criteria and node similarity measures
when comparing node pairs to improve the edge
matching accuracy. We think the algorithm can
be integrated into the MatchMaker tool to suggest
matching nodes and allow users to add nodes to
the subgraph in a semi-automated way.

Only by trying to match nodes manually on
the large graph, we found some properties that
were efficient in discriminating possible node pairs.
This eventually led to our solution and then to
better automated extraction strategy. From these
findings, our MatchMaker tool was able to help
compose a good match from a couple of initial
node matches. Having these initial matches is
necessary for the manual matching process: it
allows extracting from the large graph a subgraph
of reasonable size around the initial node matches
and makes the set of possible node pairs inspected
by the analyst more manageable. An automated
process to find motifs of the template that are rare
in the large graph would have been helpful to find
such initial node matches.

Overall, the challenge forced us to use all
our skills in visualization, visual analytics, and
graph analysis. Even if the graphlet methods were
not reliable enough yet, we hope more research
will improve them. For future work, it would be
interesting to experiment with our approaches
to combine real-world social network graphs
with many types of connections and temporal
relationships. Besides, we would like to combine
our approach with graph representation learning
methods such as node2vec and graph2vec to solve
this challenge. Analyzing and understanding the
characteristics of the individual graphs allows
better assessing the combined results derived from
a mix of automated and visual methods. We
concluded that a combination of interactive visual-
ization tools coupled with a search using classical
similarity measures remains quite effective when
used by motivated practitioners.

REFERENCES
1. R. Zafarani, M. A. Abbasi, and H. Liu, Social media

mining: an introduction. Cambridge University Press,

2014.

14 VAST 2020 Contest Challenge: GraphMatchMaker

2. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,

D. Chklovskii, and U. Alon, “Network motifs: simple

building blocks of complex networks,” Science, vol. 298,

no. 5594, pp. 824–827, 2002.

3. N. Pržulj, “Biological network comparison using graphlet

degree distribution,” Bioinformatics, vol. 23, no. 2, pp.

e177–e183, 2007.

4. A. Mukherjee, B. Liu, and N. Glance, “Spotting fake

reviewer groups in consumer reviews,” in Proceedings

of the 21st International Conference on World Wide

Web. New York, NY, USA: Association for Computing

Machinery, 2012, p. 191–200.

5. K. Cook and R. J. Crouser. VAST Challenge 2020.

[Online]. Available: https://vast-challenge.github.io/2020/

6. R. Charbey and C. Prieur, “Stars, holes, or paths across

your facebook friends: A graphlet-based characterization

of many networks,” Network Science, vol. 7, no. 4, pp.

476–497, 2019.

7. N. Pržulj, D. G. Corneil, and I. Jurisica, “Modeling

interactome: scale-free or geometric?” Bioinformatics,

vol. 20, no. 18, pp. 3508–3515, 2004.

8. P. Ribeiro, P. Paredes, M. E. Silva, D. Aparicio, and

F. Silva, “A survey on subgraph counting: concepts, algo-

rithms and applications to network motifs and graphlets,”

arXiv preprint arXiv:1910.13011, 2019.

9. P. Ribeiro and F. Silva, “G-tries: an efficient data structure

for discovering network motifs,” in Proceedings of the

2010 ACM symposium on applied computing, 2010, pp.

1559–1566.

10. P. Senin, “Dynamic time warping algorithm review,” In-

formation and Computer Science Department University

of Hawaii at Manoa Honolulu, USA, vol. 855, no. 1-23,

p. 40, 2008.

11. W. Meert, K. Hendrickx, and T. V. Craenendonck, “wan-

nesm/dtaidistance v2.0.0,” https://github.com/wannesm/

dtaidistance/tree/v2.0.0, Aug. 2020.

12. X. Chen, Y. Li, P. Wang, and J. Lui, “A general framework

for estimating graphlet statistics via random walk,” arXiv

preprint arXiv:1603.07504, 2016.

13. D. Vysochanskij and Y. I. Petunin, “Justification of the 3σ

rule for unimodal distributions,” Theory of Probability and

Mathematical Statistics, vol. 21, no. 25-36, 1980.

14. M. H. Loorak, C. Perin, C. G. Collins, and S. Carpendale,

“Exploring the possibilities of embedding heterogeneous

data attributes in familiar visualizations,” IEEE Transac-

tions on Visualization and Computer Graphics, vol. 23,

no. 1, pp. 581–590, Jan. 2017.

15. T. Rito, Z. Wang, C. M. Deane, and G. Reinert, “How

threshold behaviour affects the use of subgraphs for

network comparison,” Bioinformatics, vol. 26, no. 18, pp.

i611–i617, 2010.

Natkamon Tovanich is a Ph.D. student at IRT Sys-
temX and Université Paris-Saclay, France. His re-
search topic is visual analytics on blockchain data.
Contact him at natkamon.tovanich@irt-systemx.fr.

Alexis Pister is a Ph.D. student at Inria in Aviz team
and SID team of Telecom Paris. His main research
areas are information visualization and visual analyt-
ics, with a focus on graph visualisation and analysis.
Contact him at alexis.pister@inria.fr.

Gaëlle Richer is currently a Postdoctoral Researcher
at Inria, France in the Aviz team. Her main research
areas are information visualization and visual analyt-
ics with on focus on scalable techniques. Contact her
at gaelle.richer@inria.fr.

Paola Valdivia is a Postdoctoral Researcher at Tele-
com Paris. Her main research areas are visual an-
alytics and information visualization with a focus
on dynamic network visualization. Contact her at
paola.valdivia@inria.fr.

Christophe Prieur is an associate professor in the
social sciences department of Telecom Paris. His
main research areas are computational social sci-
ence, with a focus on networks and how people man-
age their relationships, and sociology of data. Contact
him at cprieur@enst.fr.

Jean-Daniel Fekete is the scientific leader of the
Inria project team Aviz. His main research areas
are visual analytics, information visualization and
human-computer interaction. Contact him at jean-
daniel.fekete@inria.fr.

Petra Isenberg is a research scientist at Inria, France
in the Aviz team. Her main research areas are infor-
mation visualization and visual analytics with a focus
on novel display devices, interaction, and evaluation.
Contact her at petra.isenberg@inria.fr.

Author’s Preprint Version 2021 15

https://vast-challenge.github.io/2020/
https://github.com/wannesm/dtaidistance/tree/v2.0.0
https://github.com/wannesm/dtaidistance/tree/v2.0.0

	Details about the Data
	DEFINING ANALYTICS TASKS
	SMALL GRAPH COMPARISON
	Node-link view
	Graphlet view
	Temporal view

	EXTRACTING A MATCH FROM THE LARGE GRAPH
	Node profile similarity measures
	Node-matching view
	Matching based on a seeding edge
	Manual node matching in the large graph

	MATCHMAKER TOOL
	EVALUATION OF OUR APPROACH
	Small graph comparison
	Subgraph matching

	DISCUSSION AND CONCLUSION
	REFERENCES
	Biographies
	Natkamon Tovanich
	Alexis Pister
	Gaëlle Richer
	Paola Valdivia
	Christophe Prieur
	Jean-Daniel Fekete
	Petra Isenberg

