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ABSTRACT
The field of Earth Observation (EO) change detection has been
fostered with new sources of satellite image data coupled with the
development of deep learning algorithms. However, the output of
these algorithms lacks context. Contextual knowledge explaining
a detected change is required to better analyze those images and
understand the phenomenon that caused the change. This paper
presents a semantic-driven data integration approach that supports
the generation of a knowledge graph from a raster change file and
from various data sources of events that may explain the changes.
The output graph represents spatial and temporal features for areas
affected by a high change, as well as various kinds of contextual
data useful for explaining the detected changes. We validate the
approach with a real-case scenario of fire monitoring. We process
changes detected between pairs of Sentinel-2 images located on the
same tiles, with contextual data such as administrative units, tweets,
and thermal sensors. We show the added value of the proposed
approach for i) explaining change detection and ii) validating the
results from unsupervised deep learning algorithms.

CCS CONCEPTS
• Information systems→ Information integration; • Computing
methodologies → Ontology engineering; • Applied comput-
ing → Earth and atmospheric sciences; • Theory of compu-
tation → Data integration.
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1 INTRODUCTION
Earth Observation (EO) is a domain that has greatly evolved in the
last years thanks to large-scale Earth monitoring programs, such
as the US Landsat Program1 and the EU Copernicus Program2. In
particular, with the Copernicus program launched by the European
Space Agency (ESA), data is collected by Earth observation satel-
lites and combined with observation data from sensor networks on
the Earth’s surface. Nowadays, two types of satellites are in pro-
duction, Sentinel-1 and Sentinel-2, with several other types being
expected by 2030. Since 2015, Sentinel-1 and Sentinel-2 are deliver-
ing high-quality Earth images (estimated between 8TB to 10TB of
data daily), providing users with free, reliable and up-to-date Earth
image data and metadata. The availability of these data sources has
opened the opportunity to better support existing domain-oriented
applications and to boost emerging new ones, from agriculture
to forestry, environmental monitoring to urban planning, climate
studies and disaster monitoring. In all these domains, change de-
tection using series of satellite images is of paramount importance
[4, 23], supporting decision making, monitoring or risk manage-
ment. EO change detection is the process of comparing two or more
satellite images of the same area on the Earth surface taken at dif-
ferent points in time. The goal of this task is to identify differences
between the images in areas as detailed as the image pixel. As an
example, let’s consider Figures 1(a) and 1(b), which depict snapshots
of the same area, located on North of San Francisco Bay area in
California on 2019, October 22nd and 2019, November 1st. This area
has been affected by an important fire during that period, which can
be hardly detected by human eye when comparing the two images.
This is why imagery, and particularly change detection on images,
can be a means to check precise fire impacts after they occurred,
or to follow them while they are still active, even in hard-to-reach
places.

Over the past few years, change detection on images has been
fostered thanks to increasingly efficient deep learning algorithms,

1https://www.usgs.gov/land-resources/nli/landsat
2http://www.copernicus.eu/en
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(a)

(b)

Figure 1: Sentinel-2 images of California used as input data
((a) 22/10/2019 - (b) 01/11/2019). The red rectangle indicates
an area affected by the fire after the first image.

with or without supervision, dealing with different image resolu-
tions [2, 13] and applying different levels of optimization [2, 16].
These algorithms are based on a core process that is able to iden-
tify changes in pixels between two images or a series of them. In
general, they produce a raster change map as output, where each
pixel (numerical) value evaluates the degree of change. However,

their output lacks context. Without additional information or con-
text, it is almost impossible to know the nature of the events that
caused the changes. In the case of the above example, the change
detection algorithm outputs a raster file where the highlighted ar-
eas on the second image are evaluated as highly changed between
the captures of image 1 and image 2. But without any additional
information, it is hard to provide an explanation for this change.
A human may know that the actual reason for this change is a
fire thanks to contextual information (personal contact, pieces of
news, tweets or any social network data, or fire maps from other
sensor measures). Providing contextual knowledge for explaining
a detected change helps domain experts analyzing those images,
understanding the phenomenon, and taking the appropriate deci-
sion. Back to the example, relevant information about the changes
can be the administrative units, so that one knows in which place
(city and/or county) the fire took place, land cover to know the
kind of affected vegetation or inhabited area, tweets or peaces of
news that could confirm that the event causing the change is a fire,
and temperature sensor measures, hoping that higher temperature
confirms the fire activity.

This paper proposes a semantic-driven approach for characteriz-
ing Earth Observation (EO) changes detected by unsupervised deep
learning algorithms. This approach relies on a semantic representa-
tion of image tiles and open data sources that provide context to
the images. Its output is a knowledge graph that represents spatial
and temporal features for areas affected by a high change, as well
as various kinds of contextual data useful for explaining the de-
tected changes. This output can hence be exploited for a) explaining
change detection and b) validating the results from unsupervised
deep learning algorithms. We applied our approach in a use case of
fire monitoring. Three sources of data have been exploited (tweets,
administrative units and thermal maps captured by embedded sen-
sors) and made available through an RDF endpoint so that it could
be queried to help user in better understanding the changes.

The rest of this paper is organised as follows. Section 2 discusses
the main related works. Section 3 overviews our approach while
Section 4 details the knowledge graph generation process. Section 5
describes the evaluation of the approach in terms of changes expla-
nation and detection of false negatives. Finally, Section 6 concludes
the paper and presents future work.

2 RELATEDWORK
Image change detection. Image change detection is the study

of detecting changes between two different images with the same
footprint, taken at different times, with different levels of detection.
Qualifying a change only based on image processing is not enough
and that is why it is relevant to combine these results with data from
other sources. Annotating the images with external data or with
data calculated from the images themselves has been addressed
in different proposals. In [21], vegetation indexes are computed
from satellite image processing and exposed as RDF triples using
GeoSPARQL [19]. The changes in these indexes are used for sup-
porting forest monitoring. Close to that approach, in [18] statistical
data is collected from open sources to monitor the deforestation
of Amazonian rainforest, with temporal series, and translated into
RDF. In [20], background information (OpenStreetMap, GeoNames,
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etc.) is used to identify hot spots concerned by a wildfire, in order
to refine the process and to reject hot spot candidates. The work
made by [14] uses heuristics to detect changes between two satellite
images, extracting extract contextual change information such as
damage caused by natural hazards.

With a learning perspective, the work from [1] applies a Con-
volution Neural Network (CNN) to detect different classes of land
cover in the satellite image (vegetation, ground, road, building,
water, railroad, parking), which are enriched with semantic labels
from OpenStreetMap and government sources. The study by [17]
involves inserting semantic meaning into detected change areas
with hypermaps, as a way of indexing the semantic information to
pixels. They apply their CNN method to the TSUNAMI Panoramic
Change Detection dataset and re-annotate the changed areas with
semantic classes (car, building and rubble). In the same line, [10]
proposes a CNN-based learning approach that simultaneously per-
forms change detection and land cover mapping, while using the
predicted land cover information to help to predict changes. Also
close to our study, [22] enriches change detection over Sentinel-1-A
images with event detected in media content (news, posts). Social
sensing applies event detection techniques to cluster together news
items and social media posts that pertain to the same real-world
event and are located in the area where changes were detected.

Geo-spatial and temporal data linking. Interlinking data on
EOmeans discovering spatial and temporal links among RDF graphs
[8]. It is close to what we have done in terms of data integration.
Thanks to spatial links, data from observations can be associated
to tiles and then to EO images. Thanks to temporal links, temporal
observations can be linked to images too. In case entities of the
same nature are collected from various sources, an entity resolu-
tion algorithm can identify mappings between similar or identical
spatial entities. We are concerned only by temporal and spatial
relationships. The OGC introduced the notion of geolinked data
to refer to geographically related data. In early works, geometry
was not directly stored within the attribute data, but in a separate
geo-spatial data-set. This option adds constrains when comparing
the geometry of each entity. However, current repositories store
together an RDF representations of the geometry with the RDF
spatial entities. In [5], various types of geometries (point, line or
polygone) have been identified, together with various tools to build
an RDF representation of the geometry (like Geometry2RDF3 or
TripleGeo4). The process from [9] compares data geometries, so
that spatial data could be retrieved and interlinked on a high level
of granularity. We have adopted a similar strategy in our approach,
and rely on a precise comparison of the spatial component of each
entity to integrate data. More recently, [1] proposes a framework in
which satellite images are classified and enriched with additional
semantic data in order to enable queries about what can be found
at a particular location.

In order to compute links between Linked Open Data (LOD)
resources with temporal, and thus event-like properties, the work
in [12] uses the intervals of Allen’s algebra. Their approach reduces
the number of Allen’s temporal relationships from 13 to 8, and
optimally implements them to more quickly perform the temporal

3https://github.com/boricles/geometry2rdf
4https://github.com/GeoKnow/TripleGeo

property comparisons needed to compute temporal relationships.
Another way of linking is referred to entity matching (or entity
resolution). It is a matter of associating equivalent entities. More
generally, link discovery (entity linking) aims to find semantic links
between entities from different knowledge bases [7, 25]. Accord-
ing to [25], most approaches focus on the search for equivalence
between entities (same labels, same names or same types), leaving
other types of relationships, e.g. spatial or temporal relations, unex-
ploited. They propose to use spatio-temporal links to improve the
process. However, the spatial representation of most geo-located
data is complex, taken the form of a polygon. Calculating relation
between polygons in very large datasets is particularly complex
and time consuming. A pre-processing step is necessary to trans-
form the data (from RDF vocabularies, CRS, serializations, etc.) into
a single model. Then, a technique of blocking aims to reduce the
computational complexity. It consists of dividing the earth’s surface
into “blocks” (curved rectangles) and then evaluating the topologi-
cal relations between entities based on this division. Similarly, [24]
propose to discover topological links even more efficiently by in-
dexing entities using tiles cutting the land surface into rectangles.
This method speeds up the computation of topological relationships
between two feature geometries in the map.

As [5], we propose an ontology that extends standard vocabu-
laries to better represent image metadata and their contextual data
as entities associated with classes having spatial (geometry) and
temporal (dating) properties. To integrate these data, we first rely
on their spatial dimension and like [25]. We then use the notion
of ROI which corresponds to the minimum bounding box of every
polygons extracted from the machine learning change algorithm
output to reduce the costs of computing spatial relationships be-
tween entities representing data and images, in the sense of [24].
However, we chose to limit ourselves to the spatial relationships de-
fined by GeoSPARQL in order to use this language to query the data.
In a second step, the integration takes into account the temporal
and spatial properties of the data, as detailed in the following.

3 OVERVIEW OF THE SEMANTIC-DRIVEN
DATA INTEGRATION APPROACH

This section presents our approach to detect high change areas
from the result of a machine learning algorithm on satellite images
and to associate contextual data to them. This process produces an
RDF knowledge graph (KG, in short), as shown in Figure 5 from
data selected from various sources with heterogeneous formats and
structures. We illustrate the approach with a running use case on
fire monitoring.

3.1 Data sources
The data integration process takes as input two kinds of data orga-
nized in two different types of datasets:

• Change rasters computed from Sentinel-2 images and the
corresponding tile definitions;

• Contextual data with spatial and temporal features available
as open data or extracted from text, social networks, etc.

3.1.1 Change rasters and tiles.
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Sentinel-2 tile: In order to avoid duplicating static data that would
tag all the images of the same area over time, the notion of
tile defined by ESA is convenient. When using a tile grid,
the whole Earth surface is associated a grid where a tile
represents a fixed area on this surface. Each Sentinel-2 image
is associated a single tile with a surface of 100km2, which
means that the image footprint is a tile. Tiles are linked to
EO images as one of their metadata.

Change raster: A change raster is produced from a couple of
Sentinel-2 images having the same tile, and captured at dif-
ferent dates. The tile and the dates are part of the raster
metadata. It is a grid in which each pixel is associated a
change value according to the change level computed by a
given algorithm. Figure 2 is an example of change raster.

3.1.2 Contextual data.

Firecast dataset: Data collected from the Firecast5 website comes
from several satellites like MODIS and VIIRS. Thermal sen-
sors on these satellites capture Earth temperature and make
it possible to identify wild fires with a confidence value. So,
this dataset contains all the detected fires with their confi-
dence index in shape file format. The fire points are updated
daily which provides an NRT (Near Real Time) monitoring.
Each fire point is located with coordinates and has a times-
tamp.

Yago2geo dataset: The second contextual data source we used
here is the Yago2geo6 dataset, accessible via a SPARQL end-
point. This dataset gathers administrative units with their
spatial data from different sources. Administrative units are
geolocated with a polygon using the WKT format. We use
them to geolocate related entities (such as events).

Social data: The third contextual knowledge source is the Twitter
social network. The keywords in tweets help identifying the
kind of change that has occurred in the tile footprint during
the period of the change raster. The tweets are extracted
from the tweet collection captured in our lab, IRIT, on the
OSIRIM7 platform. This platform is storing a corpus con-
taining 1 percent of the global tweets since 2016. It collects
between 20 and 30 tweets per seconds without any restric-
tion criteria. In the current keyword extraction process, place
name ambiguity is not treated. In order to deal with English
stop words we used the open source module NLTK (Natural
Language ToolKit) provided by Python.

3.2 Main steps of the process
The overall KG generation is illustrated in Figure 3. It takes a change
raster and the various contextual datasets as input, and generates
a set of RDF triples. We give here an overview of the three main
steps of the process, and we will set them out in the next section:

Step 1: Processing image change raster Given a change raster
file, we get the image footprint (the tile geometry) and the
raster period. Then, we identify on the raster areas where

5https://firecast.conservation.org/
6http://yago2geo.di.uoa.gr/
7https://osirim.irit.fr/site/

Figure 2: Interpretation of a change raster with the follow-
ing change levels: No Change (blue), Low Change (green),
Middle Change (yellow), and High Change (red).

changes are the most significant. We call these areas Regions
of Interest (ROIs).

Step 2: Retrieving contextual data Considering the tile geome-
try and the period of concern of the images, contextual data
is retrieved from each of the data sources introduced above.

Step 3: Generating the knowledge graph A set of transforma-
tion rules are applied to extract the appropriate data from the
different data sources and to create an RDF graph. Several
RDF graphs are conceptually linked together into one, as
soon as a node identifier (URI) appears in each of them. Thus
the set of all the RDF sub-graphs generated from a raster
forms a KG (Figure 5). It can be used to retrieve the number
of ROIs and their size, the number of firepoints and the name
of the cities located in these ROIs, and keywords extracted
from tweets dealing with these cities (Figure 5.2).

3.3 Semantic vocabulary
We have defined a vocabulary to represent contextual data sources
and rasters. It reuses standard vocabularies, namely GeoSPARQL
(for geospatial data) and OWL-Time [15] (for temporal series), with
respectively the geo and time prefixes.

GeoSPARQL [19] is an OGC standard which allows to repre-
sent an entity of the real world (called geo:Feature) and geometries
(called geo:Geometry). The first one represents spatial entities while
the second represents all geometric forms defined on a spatial co-
ordinate reference system. An entity is associated to its geometries
by the geo:hasGeometry property. GeoSPARQL provides topological
relations and functions to link spatial objects (intersects, touches,
etc.). Geo-spatial entities, i.e. instances of geo:Feature, described
with a specific vocabulary (a specific prefix), are tiles (o-grid), ROIs
(o-change) and administrative units (o-admin).

OWL Time [15] is recommended by the W3C for modeling tem-
poral entities (instants and intervals) and expressing topological

https://firecast.conservation.org/
http://yago2geo.di.uoa.gr/
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Figure 3: Pipeline for generating a knowledge graph from a change raster.

relations as defined in the theory of Allen between them (before,
after, etc.). It is used to describe temporal series. Rasters (o-change),
social data (o-socialData), and fire points (o-firecast) are instances of
time:TemporalEntity. The temporal dimension of a ROI is provided
by its raster (o-change:hasHighChangePolygon property). While the
spatial dimension of a raster and a firepoint is provided by the tile
to which they are linked (property o-change:hasChange for rasters
and property o-firecast:hasFirePoint for fire points), the spatial di-
mension of social data is the geometry of the administrative unit
associated with it using a property o-socialData:hasSocialData.

4 FROM CHANGE RASTERS TO RDF GRAPHS
STEP BY STEP

In the following, we will detail the main steps of the workflow
introduced above.

4.1 ROI processing
This step consists of transforming a change raster to a shapefile
containing all the polygons corresponding to the ROIs. Similar
pixels are first grouped. We used the open source library GDAL and
the polygonize algorithm in order to produce a shapefile containing
polygons formed by highest changes values from the raster. As the
change raster contains values between 0 for the lowest changes and
1 for the most important changes, we decided to polygonize the
pixels with a value above 0.66. Having these polygons represented
in a shapefile, we then represented each polygon with its envelope.
When having several envelopes intersecting themselves, they are
merged into one polygon. Only pixels having a high change value
(above a predefined threshold) are considered in order to process

significant changes. This process gives many polygons, several of
them having only one pixel. Several iterations are thus made in
order to group close polygons: when two polygons touch each
other they become one and the new shape is the bounding box
grouping these two polygons. At the end all polygons are disjoint
and correspond to ROIs (Pink areas in Figure 4). Using the size of
these polygons we are able to identify where are the most important
changes on the tile.

Figure 4: Representation of high change polygons (ROI) on
a Sentinel 2 tile
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This is an example of the corresponding RDF graph produced.
Entities can be identified using their URI:

• ML_Change_: a change raster
• ML_EOData_: raster metadata
• Tile_: a Sentinel 2 tile
• highChange_: a ROI

# the change raster
g-ch:ML_EOData_T10SEH_20191022T214432_20191101T213037

o-change:hasSource
"S2B_MSIL2A_20191022T185429_T10SEH..."^^xsd:string .

g-ch:ML_EOData_T10SEH_20191022T214432_20191101T213037
o-change:hasSource

"S2B_MSIL2A_20191101T185529_T10SEH..."^^xsd:string .

g-ch:ML_EOData_T10SEH_20191022T214432_20191101T213037
time:hasBeginning g-ch:Instant_20191022T214432;
time:inXSDDateTimeStamp

"2019-10-22T21:44:32Z"^^xsd:dateTimeStamp

g-ch:ML_EOData_T10SEH_20191022T214432_20191101T213037
time:hasEnd g-ch:Instant_20191101T213037 ;
time:inXSDDateTimeStamp

"2019-11-01T21:30:37Z"^^xsd:dateTimeStamp .

g-grid:Tile_T10SEH o-change:hasChange
g-ch:ML_Change_T10SEH_20191022T214432_20191101T213037 .

g-ch:ML_Change_T10SEH_20191022T214432_20191101T213037
o-change:calculatedFrom

g-ch:ML_EOData_T10SEH_20191022T214432_20191101T213037 .

# a ROI
g-ch:ML_Change_T10SEH_20191022T214432_20191101T213037

o-change:hasHighChangePolygon
g-ch:highChange_T10SEH_20191022_20191101_roi0 .

g-ch:highChange_T10SEH_20191022_20191101_roi0
geo:hasGeometry

g-ch:highChange_T10SEH_20191022_20191101_roi0_geo .
g-ch:highChange_T10SEH_20191022_20191101_roi0_geo geo:asWKT

"POLYGON ((...))"^^geo:wktLiteral .

4.2 Event selection
From the firecast website, we have downloaded the data corre-
sponding to the Earth area and the period covered by the raster.
The period starts from the date of the first image and the end of
the period is the date of the second image taken for the change
detection. We do not take into account other dates between this
period as we took the Sentinel 2 images with the closest date from
each other. In order to avoid false positives while keeping a signifi-
cant number of firepoints, we have only retrieved those having a
confidence index greater than 0.65. The example in the following
corresponds to the RDF graph produced for one fire point:
g-firecast:FirePoint_108566952 geo:hasGeometry

g-firecast:FirePoint_108566952_geo .
g-firecast:FirePoint_108566952_geo geo:asWKT

"POINT (...)"^^geo:wktLiteral .

g-firecast:FirePoint_108566952 time:hasTime

g-firecast:instant_1571644800 .
g-firecast:instant_1571644800 time:inXSDDateTimeStamp

"2019-10-21T10:00:00Z"^^xsd:dateTimeStamp .

g-firecast:FirePoint_108566952
o-firecast:hasConfidence "75.0"^^xsd:decimal .

g-firecast:FirePoint_108566952
o-firecast:hasType "VIIRS"^^xsd:string .

g-grid:Tile_T10SEH o-firecast:hasFirePoint
g-firecast:FirePoint_108566990 .

4.3 Administrative unit selection
In order to have the name of the different cities located in the raster
tile, we retrieve in Yago2geo those with a geometry that intersects
the tile geometry using a SPARQL query. This is relevant for the
next step consisting in retrieving data from the social networks.
Yago2geo contains an important part of all the data of Open Street
Map8 and Global Administrative Areas (GADM)9.

The RDF graph produced for each administrative unit looks as
follows:
g-grid:Tile_T10SEH o-admin:hasAdminUnit

g-admin:Richmond-California .
g-admin:Richmond-California owl:sameAs

<http://yago-knowledge.org/resource/Richmond,_California> .

4.4 Keyword selection
From the social data source, we retrieved all the keywords of avail-
able tweets related to the raster tile footprint and during the period
of the analysed images. The goal here is to fetch keywords from
the topic of tweets. So we decided to search all the tweets that
contain the name of the administrative areas identified at step 3
and between the two defined dates. The reason why we use the
names of the administrative units rather than the tweet locations
is that some people can tweet about a particular area being located
in another area. We chose to keep the 5 keywords with the highest
frequency for an administrative area. To do so, we used the NLTK
(Natural Language Toolkit) python module.

In the running example, two keywords (“evacuation” and “#kin-
cadefire”) could be collected from tweets between 2019-10-23 and
2019-11-01 about the city of Calistoga. The example in the following
corresponds to the generated RDF graph:
g-admin:Calistoga-California o-socialData:hasSocialData
g-sd:SocialData_Calistoga-California_20191023_20191101 .

g-sd:Instant_20191023 time:inXSDDate
"2019-10-23"^^xsd:date .

g-sd:SocialData_Calistoga-California_20191023_20191101
time:hasBeginning g-sd:Instant_20191023 .

g-sd:Instant_20191101 time:inXSDDate
"2019-11-01"^^xsd:date .

g-sd:SocialData_Calistoga-California_20191023_20191101
time:hasEnd g-sd:Instant_20191101 .

g-sd:Keyword_evacuation o-socialData:hasValue

8https://www.openstreetmap.org/
9https://gadm.org/

https://www.openstreetmap.org/
https://gadm.org/
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"evacuation"^^xsd:string .
g-sd:Keyword_evacuation o-socialData:hasFrequency

"234"^^xsd:decimal .
g-sd:SocialData_Calistoga-California_20191023_20191101

o-socialData:hasKeyword g-sd:Keyword_evacuation .

g-sd:Keyword_kincadefire o-socialData:hasValue
"#kincadefire"^^xsd:string .

g-sd:Keyword_kincadefire o-socialData:hasFrequency
"229"^^xsd:decimal .

g-sd:SocialData_Calistoga-California_20191023_20191101
o-socialData:hasKeyword g-sd:Keyword_kincadefire .

4.5 Generating a knowledge graph
The process that generates a knowledge graph is similar for all
data sources. Given a source dataset, once data has been extracted
according to spatial and temporal features, it is converted to JSON
format. Then, a Python script uses a template to generate RDF
triples from the JSON file. A template defines the mapping between
a JSON schema and an RDF model to be instantiated. In our case,
JSON schemes match the data structure of the data sources listed
in Section 3.1.2; and the model is the vocabulary presented in Sec-
tion 3.3. We wrote one specific template in Turtle format for each
data source. We reused and evolved the mapping template and
processing mechanism of previous work [3]. These templates and
functions help to perform sophisticated mapping operations that
are not possible in alternative approaches like RML rules. Moreover,
they make it easy to enrich the knowledge graph with new data,
or to generate a new graph if either the data source schema or
the modelling vocabulary are changed. One just has to adapt the
template and to run the process with the new template and data.
As an illustration, the following template applies to the fire points
extracted from the Firecast source.

dummy a o-firecast:FirePoint .
dummy geo:hasGeometry dummy_geo .
dummy_geo geo:asWKT valueToWktLiteral($.geometry) .
dummy time:hasTime stringValueToTimeInstant($.date) .
dummy o-firecast:hasConfidence

valueToDecimalLiteral($.confidence) .
dummy o-firecast:hasType stringToLiteral($.type) .

5 EVALUATION
Supervised machine learning approaches usually require the user
to annotate a large set of training examples, i.e. changes in the
perspective of change detection, like in [11]. As shown in Figures
1(a) and 1(b), some cases of change may be hard to be detected by
humans. In an unsupervised setting, automatic semantic annota-
tions are of paramount importance for helping users to evaluate
learning results. We argue here that semantic annotations help
a) for explaining change detection and b) for validating results
from unsupervised deep learning algorithms. We validate these hy-
potheses through an empirical experiment with changes detected
on Sentinel-2 images (Section 5.1) and the data sources listed in
Section 3.1.2 to provide semantic annotations. We performed the
process detailed in Section 4 to generate RDF triples which can
be queried either to explain the changes to end-users (Section 5.2)

or to validate the changes detected by the unsupervised learning
process (Section 5.3).

5.1 Change detection dataset
We have experimented our process on change raster files produced
by Thales Alenia Space from Sentinel-2 images thanks to an un-
supervised machine learning algorithm [6]. This algorithm relies
on TensorFlow and requires no previous annotation. The model
has been trained on collections of pairs of Sentinel-2 images with
the same tile captured at different dates, which makes it generic
enough to process any Sentinel-2 pair of images of the same area.
For each input pair of images, its output is a one band GeoTiff raster
file where each pixel is associated a change value according to the
change level computed by the algorithm. The change value varies
from 0 (no change detected) to 1 (high change detected). We only
consider pixels having a value between 0.66 and 1.

5.2 Explaining change detection
The following SPARQL query retrieves all the ROIs of tiles, the
number of linked fire points and the keywords of the cities in the
ROI for the period. The first step of the query collects the change
raster data. This raster gives us the raster date and location as well
as its Sentinel-2 tile. The next step of the query is dedicated to
fetch all the ROIs on this change raster and their geometry. For
each ROI it collects all the fire points that intersects the geometry
and the time period. We chose to count the number of these fire
points. The other contextual data we can have on a high change
polygon is the administrative units that intersect the geometry.
Labels of administrative units are important because they are used
to get keywords from social data (Twitter data source) about these
administrative units. Retrieving the keywords associated to the
administrative unit and their frequency is the last step of the query.

SELECT ?tile ?start ?end ?roi
(count(distinct ?firepoint) as ?nbFirePointROI) ?adminUnitName
?keywordAdminUnit ?keywordFrequency

WHERE{

#Step 1 - Change raster data
?MLchange o-change:calculatedFrom ?ML_EO_Data .
?ML_EO_Data o-change:hasSource ?image .
?ML_EO_Data time:hasBeginning/time:inXSDDateTimeStamp ?start .
?ML_EO_Data time:hasEnd/time:inXSDDateTimeStamp ?end .
?MLchange ^o-change:hasChange ?tile .

#Step 2 - ROI list
?MLchange o-change:hasHighChangePolygon ?roi .
?roi geo:hasGeometry/geo:asWKT ?roiWkt .

#Step 3 - Firepoints
?tile o-firecast:hasFirePoint ?firepoint .
?firepoint geo:hasGeometry/geo:asWKT ?firepointWKT .
?firepoint time:hasTime/time:inXSDDateTimeStamp ?firepointTime .
FILTER(bif:st_intersects (?firepointWKT, ?roiWkt)) .
FILTER(?firepointTime > ?start && ?firepointTime < ?end)

#Step 4 - Administartive units
?tile o-admin:hasAdminUnit ?adminUnit .
?adminUnit rdfs:label ?adminUnitName .
?adminUnit geo:hasGeometry/geo:asWKT ?adminWKT .
FILTER(bif:st_intersects (?adminWKT, ?roiWkt)) .

#Step 5 - Keywords from Twitter
?adminUnit o-socialData:hasSocialData ?socialData .
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Figure 5: Knowledge graph (KG) model of a change raster.

?adminSocialData time:hasBeginning/time:inXSDDateTimeStamp
?socialDataStart .

?adminSocialData time:hasEnd/time:inXSDDateTimeStamp
?socialDataEnd .

?socialData o-socialData:hasKeyword ?socialDataKeyword .
?socialDataKeyword o-socialData:hasValue ?keywordAdminUnit .
?socialDataKeyword o-socialData:hasFrequency ?keywordFrequency .
FILTER(?socialDataStart > ?start && ?socialDataEnd < ?end)

}
ORDER BY ?adminUnitName

From the result of this query on the RDF triples built from a
change raster, we can get the ROI that contains the highest number
of fire points in the area of this raster and the keywords associated
to the administrative unit that intersects with this ROI. Keywords
can contribute to determine if there is a fire in the ROI. In Figure
6, we can see that the ROI number 273 contains 2167 fire points
during the raster time period (from 2019-10-22 to 2019-11-01). The
word “fire” is one of the keywords detected at this period for the
city of Healdsburg in California. Hence, contextual data explains
that the change observed on this area has been caused by a fire.
This data documents properly the kind of event that has caused a
detected high change.

5.3 Enriching results from unsupervised
learning

The RDF triples can also contribute to validate the results from the
machine learning algorithm. To do so, we cross-checked the results
obtained from the different sources on the same tile and period
of time as in the previous section. The results from deep learning

process show a high change on the image. The Firecast data show
also many fire points in the area that explain that the change is due
to a fire. This information is also corroborated by the data collected
from tweets, that report a forest fire called Kincade Fire 10 in this
area of California during this period.

Contrariwise, one can observe a fire in a smaller area in the lower
right part of the image, as indicated by a grouping of fire points
(Figure 7). However, this fire has not been detected as a significant
change from the change raster because there are not enough pixels
with a value above 0.66 to detect an abnormal change. Nevertheless,
our processing chain was able to detect multiple fire points thanks
to the Firecast data (see Figure 4). In that way, our approach is
able to identify false negative areas of the change. Moreover, it
corroborated the changes detected by the unsupervised algorithm.
In a further work, RDF data could be more tightly coupled with
the change learning process to improve it results, for instance by
providing feedback or training examples.

6 CONCLUSIONS
Machine learning algorithms for change detection in images are
able to identify changes at pixel level. Pixels with similar change
values can be aggregated to detect change areas. In unsupervised
approaches, no information is available about the phenomenon
that caused the change. An interpretation of the “meaning” of each
change would require contextual information to be integrated ei-
ther in the machine learning process or after the change areas are
identified. We proposed a semantic-based support to the second
10https://www.fire.ca.gov/incidents/2019/10/23/kincade-fire/

https://www.fire.ca.gov/incidents/2019/10/23/kincade-fire/
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Figure 6: Result of SPARQL query of a change raster and contextual data

Figure 7: Fire points as image semantic annotations.

option, i.e. to provide contextual information that can document
changes. More precisely, we make it possible to confirm that auto-
matically detected changes are related to a specific type of event.
We addressed this problem for Earth observation images captured
by Sentinel-2 satellites, and changes detected by unsupervised deep
learning algorithms. We defined a generic process that takes dated
and geolocated changes in raster files as input, various open dated
and geolocated data sources (events of interest, territorial units,
social network short messages, etc.) as contextual information, to
produce a knowledge graph. An important concept in the data in-
tegration vocabulary is the notion of tile, that plays a major role to
structure data according to its location on Earth. We showed that
by querying this graph one can get (i) contextual information about
changes, like the name of the closest city, the event that caused the
change or its date, and (ii) a kind of confirmation and assessment
of the confidence that a change actually occurred.

We plan to carry out new experiments to confirm the generality
of the integration process, using similar or new types of events

(i.e. urbanization, migration flows, ...) and other types of contextual
data. We will also investigate how to reuse the RDF data to improve
the change detection process.
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