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Abstract 

One of the most intriguing features of inhibitory synapses is the precision by which they innervate 

their target, not only at the cellular level but also at the subcellular level (i.e axo-dendritic, axo-

somatic, or axo-axonal innervation). In particular, in the cerebellum, cortex, and spinal cord, 

distinct and highly specialized GABAergic interneurons form precise axo-axonic synapses, 

allowing them to directly regulate neuronal output and circuit function. In this review, we 

summarize our latest knowledge of the cellular and molecular mechanisms that regulate the 

establishment and maintenance of axo-axonic synapses in these regions of the CNS. We also detail 

the key roles of the L1CAM family of cell adhesion molecules in such GABAergic subcellular 

target recognition. 
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Introduction 

The development of single-cell transcriptomic datasets reveals the extraordinary complexity and 

diversity of two broad types of neurons: (1) glutamatergic excitatory neurons, which are the central 

players propagating signals across diverse brain areas, and (2) GABAergic interneurons (GIs), 

which organize neural signal flow, both in time and space, that is critical for information 

processing associated with behavioral and cognitive functions [1,2]. Although GIs account for only 

20% of total neurons, they seemingly have the greatest diversity in their morphological, 

neurochemical, and electrophysiological features [3]. In particular, one of the most striking 

features of GIs is their highly structured axonal arbors which target postsynaptic partners with 

exquisite subcellular synapse specificity [e.g., axo-dendritic, axo-somatic, or axo-axonic synapses] 

to control the input, integration, and output of their target cells [4]. A classic example of such 

synaptic specificity is provided by the so-called “axo-axonic” subtype of GIs which innervate the 

axon initial segment (AIS) of principal cells in different cortical and subcortical brain regions in 

addition to presynaptic sites of neurotransmitter release in the spinal cord. How the precise 

innervation of such discrete subcellular compartments is orchestrated during neural circuit 

formation remains an open question paramount to our understanding of neuronal network 

assembly and function.  

The assembly of neuronal networks is achieved by means of several developmental events, from 

neuronal migration and axon guidance to cell-type innervation and subcellular synapse formation. 

For example, cell migration and axon growth are regulated by long and short-range guidance cues 

that provide spatial information for proper neuronal positioning and formation of neural process 

trajectories [5]. Axonal terminals integrate multiple sources of spatial information to accurately 

locate their postsynaptic targets with cellular and subcellular precision. Multiple classes of 
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molecules cooperate to ensure proper target recognition such as diffusible chemotropic cues, 

membrane-bound adhesive molecules, and extracellular matrix and repellent molecules. Most of 

these molecules were initially studied in isolation; however, recent work has begun to reveal key 

roles for intricate/complex molecular combinations of such factors in vivo in facilitating precise 

subcellular synaptic specificity. Here, we review recent advances in our understanding of the 

cellular and molecular mechanisms engaged by axo-axonic neurons to innervate discrete axonal 

compartments (i.e. AIS or axonal terminals) of their postsynaptic partner cells as well as compare 

and contrast the unique targeting strategies leveraged by axo-axonic GIs in several brain regions, 

including the cerebellum, cortex, hippocampus, and spinal cord (Figure 1). 

 

The axon initial segment as a strategic target to regulate firing 

The AIS of neurons is a specialized subcellular domain located at the most proximal portion of the 

axon responsible for action potential initiation [6] and, as such, serves as a strategic point to 

regulate neuronal output and network activity [7]. The molecular organization of the AIS is 

dependent on a specialized scaffolding protein, ankyrin-G (AnkG), that acts as a hub to link the 

submembranous actin cytoskeleton to various transmembrane proteins, including ligand and 

voltage gated ion channels and cell adhesion molecules (CAMs) of the L1 immunoglobulin (Ig) 

family [8]. Members of this family, which include L1CAM, neurofascin (NF), NrCAM, and 

CHL1, all share a similar domain organization comprising six extracellular N-terminal Ig domains, 

five fibronectin type 3 domains, a single transmembrane segment, and a short C-terminal 

intracellular sequence. The extracellular domains of L1 family CAMs can mediate both 

homophilic binding and heterophilic interactions with soluble proteins and other CAMs that play 

critical roles in several developmental processes, including migration, neurite outgrowth, axon 
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guidance, and synapse formation. At the AIS, the interaction of L1 family members with AnkG is 

thought to increase the local concentration and oligomerization state of L1 family members at the 

cell surface to support high affinity cell adhesion activity [9]. The interaction of L1 proteins with 

AnkG is regulated by tyrosine phosphorylation of the FIGQY motif located in the C-terminus of 

L1 proteins. Tyrosine phosphorylation of this motif inhibits AnkG binding and decreases L1 

proteins’ local concentration by increasing their lateral mobility [10]. Hence, phosphorylation and 

dephosphorylation of the FIGQY motif could decrease or increase, respectively, cell adhesion via 

ankyrin. In addition to the distinctive expression of L1 family members in axonal compartments, 

expression of ankyrin isoforms are restricted to subcellular compartments. Specifically, AnkG is 

localized at the AIS of principal cells (i.e. purkinje cells (PCs) in cerebellum or principal neurons 

in cortex, hippocampus, or amygdala) while ankyrin-B (AnkB) is enriched at sensory terminals in 

the spinal cord [8,11]. Thus, the localization and interaction between L1 family members and 

ankyrin isoforms provide unique molecular tools to investigate subcellular-specific synapse 

localization, formation, and/or stabilization of axo-axonic cells, such as basket cells (BCs) in the 

cerebellum, chandelier cells (ChCs) in the cortex, and GABApre interneurons in the spinal cord 

(Figure 1). 

 

Chemotactic- and chemoaffinity-based mechanisms in Purkinje cell AIS 

innervation in the cerebellum 

Over one hundred years ago, the first identification of axo-axonic synapses in the mammalian CNS 

was made by Santiago Ramòn y Cajal (1911) in the cerebellum. Ramòn y Cajal described a 

“paintbrush-like” pinceau synapse, in which multiple presynaptic axonal branchlets innervate the 

AIS of cerebellar purkinje cells (PCs). Subsequent studies determined that such connections arise 



 6 

from the specific targeting of GI basket cell (BC) axon terminals to the cell body and AIS of PCs 

and have started to reveal the chemotactic mechanisms underpinning the formation of such 

subcellular synapse formation [12] (Figure 2). 

The presynaptic GI in pinceau synapses, BCs, are derived from dividing progenitors in the white 

matter of the postnatal cerebellum [13]. At the end of the first postnatal week, BCs complete their 

migration, settling into the molecular layer of the cerebellum immediately above the soma of 

neighboring PCs. BC axons then extend rostrocaudally above the PC layer and send multiple 

descending collaterals towards PC somata. The descending collaterals initially enwrap the somata 

of PCs, forming GABAergic synaptic contacts, before subsequently extending towards the AIS of 

PCs and forming pinceau synapses [12]. Noteworthy, the strong directional growth of BC axons 

from PC soma to AIS requires an AnkG-dependent subcellular gradient of the L1 family member 

neurofascin 186 (NF186) which is most highly enriched at the AIS (Figure 2). This AnkG-bound 

form of NF186 is critical for pinceau synapse formation and/or stabilization, since depletion of 

AnkG or disruption of the NF186-AnkG complex is sufficient to inhibit formation and 

maintenance of the pinceau [12,14]. 

Recently, the presynaptic binding partner of PC-expressed NF186 on BC axon terminals was 

identified as the axon guidance receptor neuropilin-1 (Nrp1) (Figure 2). Such work found that 

Nrp1 is expressed on BC axons and directly interacts in trans with postsynaptic NF186 during 

target recognition [15]. Notably semaphorin 3A (Sema3A), the canonical ligand of Nrp1, is only 

expressed by PCs during cerebellar development [16] where it triggers BC axon guidance towards 

the PC somata. At the PC somata, Sema3A stabilizes Nrp1 and facilitates its interaction with 

NF186 at the AIS [15]. Of note, Sema3A also induces BC axon terminal branching through a Fyn-
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dependent mechanism to regulate the size of the pinceau synapse [17]. Interestingly, a recent study 

found BCs to be patterned along PC functional zones according to the size of their pinceau [18].  

Such distribution into size-specific zones is eliminated without PC output, pointing to an activity-

dependent regulation of cerebellar pinceau synapses.  

 

Chandelier cells: key cellular players in axo-axonic synapse formation in the 

cortex 

Unlike BCs in the cerebellum which form pinceau synapses at PC AISs, BCs in the cortex 

predominantly innervate the proximal dendrites and cell soma, but not the AIS, of neighboring 

excitatory PyNs. Instead, a very distinctive type of GI, called chandelier cells (ChCs), was found 

to form axo-axonic synapses exclusively onto the AIS of cortical PyNs. Although first described 

in the neocortex in the 1970s, ChCs have also been found in the hippocampus, piriform cortex, 

and amygdala [19-22]. Typified by their characteristic chandelier/candelabrum-like morphology, 

ChCs possess a unique, highly-branched axonal arbor that terminates in parallel arrays of short 

vertical strings of presynaptic boutons, known as cartridges [23,24] (Figure 3). Each of these 

cartridges selectively innervate neighboring PyN AISs, the site of action potential initiation, 

enabling ChCs to exert decisive control over the spiking of large PyN populations and directly 

regulate excitatory-inhibitory (E/I) balance [24, 25, 26]. 

Neocortical ChCs arise from multipotent NKX2.1-positive progenitors in the medial ganglionic 

eminence (MGE) and are primarily generated at the latest stages of embryonic cortical 

neurogenesis [27, 28, 29]; albeit subsequent work indicates that a smaller population of ChCs is 

also produced as early as embryonic day 12 (E12) [30,31]. From their place of birth, nascent 

neocortical ChCs migrate along stereotyped routes on a defined schedule to ultimately settle at the 
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border of layers 1 and 2 (L1/2) and in L5/6 between postnatal day 3 (P3)-P7 [28] (Figure 3). From 

P7 onwards, ChCs begin to elaborate their axon with a dramatic increase in axonal 

branching/complexity first noted at P11/P12. This increase in axonal complexity continues through 

P14 before plateauing at around P28 [32,33]. In regards to the timing of ChC axo-axonic synapse 

formation, neocortical ChC-PyN AIS synapses are established following a similar temporal 

schedule. Namely, ChC/PyN axo-axonic innervation in the murine neocortex was found to be 

minimal from P8-P11, but, starting at approximately P12, ChC/PyN AIS connectivity dramatically 

increases. Such a spike in axo-axonic innervation continues into the third/fourth postnatal week 

before plateauing at approximately P28, when, on average, each cartridge possesses four to nine 

boutons and is approximately 16-28 μm in length [32,34,35]. At this time, most PyN AISs in L2/3 

of the murine somatosensory cortex are innervated by three to four ChC cartridges originating 

from distinct ChCs [35]. 

 

Molecular mediators of ChC axo-axonic synapse development  

While the mechanistic basis of functional ChC/PyN AIS connectivity still remains incompletely 

understood, recent studies have begun to identify and characterize key regulators of ChC 

cartridge/bouton development and axo-axonic synapse targeting/formation in the cortex (Figure 

3). The first molecule implicated in ChC bouton morphogenesis was ErbB4, a receptor tyrosine 

kinase expressed by parvalbumin (PV)-positive interneurons, including ChCs. Loss of ErbB4 in 

ChCs using conditional ErbB4 mice caused a decrease in ChC bouton density without impacting 

ChC cartridge density and length nor gross ChC morphology [29]. Moreover, a reduction in the 

number of 2-containing GABAA receptor (GABAAR) clusters at the AIS of PyNs was observed 

in such animals [36]. Interestingly, concurrent work linked ErbB4’s function(s) in ChC 
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morphogenesis to the Rac/Cdc42 guanine nucleotide exchange factor (GEF) DOCK7 [34]. This 

study found that DOCK7 acts as a cytoplasmic activator of ErbB4 and, most importantly, promotes 

ChC cartridge/bouton development by augmenting ErbB4 activation independent of its GEF 

activity. As seen for ErbB4 depletion, knockdown of DOCK7 in neocortical ChCs induced a 

marked reduction in the size and density of ChC boutons and a disorganization of ChC cartridge 

networks, while ectopic DOCK7 expression in ChCs dramatically increased ChC bouton size and 

density [34]. Finally, a decrease in ChC bouton number was more recently also reported in Nkx2.1-

CreER;ErbB4fl/fl mice [37]. Noteworthy, in concurrence with the observed decrease in 2-

containing GABAAR clusters at PyN AISs in ErbB4 mutant mice, proper AIS GABAAR 

clustering/distribution itself is critical for AIS synapse formation. Specifically, use of the Gabra2-

1 transgenic mouse line, which harbors a mutation in the 2 subunit of GABAARs, found that 

these animals had a decreased number of VGAT-positive clusters at the AIS of cortical PyNs, 

indicating a reduction in axo-axonic innervation by ChCs [38]. 

More recent work leveraging RNA sequencing and whole transcriptome analyses of different 

classes of murine interneurons during peak synaptogenesis led to the identification of the 

nonsecretory growth factor FGF13 as a regulator of ChC synapse development. Knockdown of 

FGF13 in ChCs at P2 and at P14, when axon development is largely completed, was found to 

induce a significant decrease in the density of ChC presynaptic boutons [39].  

Despite the importance of ErbB4, DOCK7, and FGF13 in the regulation of neocortical ChC 

cartridge bouton/synapse development, it is worth noting that ChCs depleted of these molecules 

still make contact with PyN AISs, indicating that another/other molecule(s) must govern such a 

selective form of neocortical axo-axonic innervation. To this end, recent RNA interference (RNAi) 
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screening of PyN-expressed CAMs identified the pan-axonally expressed L1 family member 

L1CAM, and not AIS-localized NF186, as a key regulator of neocortical ChC/PyN axo-axonic 

innervation [32]. Embryonic depletion of PyN L1CAM caused a marked decrease in the 

percentage of L1CAM-depleted PyN AISs innervated by ChCs at P28. In line with this, the number 

of VGAT and gephyrin puncta at the AIS, but not along the somatodendritic compartment, were 

concomitantly reduced in L1CAM-depleted PyNs, indicating that PyN L1CAM selectively 

regulates ChC/PyN AIS synaptic innervation. Noteworthy, L1CAM was found to be required for 

both the establishment of ChC/PyN AIS innervation at P11/P12 and for the maintenance of such 

synaptic contacts into adulthood. L1CAM’s ability to direct ChC/PyN innervation selectively to 

the AIS results from its interaction with the AIS-localized AnkG-IV-spectrin cytoskeletal 

complex as disruption of this complex was found to reduce ChC/PyN AIS contacts. From this, a 

model emerges in which AnkG/IV-spectrin-clustered L1CAM at the AIS promotes high-affinity 

cell adhesion between ChC cartridges and PyN AISs, thereby facilitating neocortical ChC/PyN 

synapse formation/stabilization [32]. 

It remains to be seen whether L1CAM is also involved in/required for selective ChC/PyN AIS 

contact formation in the hippocampus and/or amygdala. Noteworthy, while NF186 is dispensable 

for neocortical ChC/PyN AIS innervation, recent studies have implicated NF186 in the regulation 

of axo-axonic synapse assembly in the murine hippocampus and amygdala. In cultured 

hippocampal neurons, NF186 expression was found to be necessary for the formation of AIS 

postsynaptic gephyrin clusters, and, in vivo, knockdown of NF186 in dentate gyrus granule cells 

(GCs) impaired both AIS gephyrin and GABAAR clustering [40,41]. In addition, a decreased 

number of GAD65-positive presynaptic terminals at the AIS of GCs was observed, suggesting an 

impairment of axo-axonic synapse formation. Likewise, in the basolateral amygdala (BLA), 
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knockdown of NF186 in principal neurons induced a drastic reduction of inhibitory synapses at 

the AIS of such neurons [42]. Interestingly, in this context, reduced axo-axonic synapse numbers 

in the BLA impaired synaptic plasticity and also modulated fear memory extinction, but not 

acquisition and consolidation, pointing to potential axo-axonic synapse-specific function(s) in the 

amygdala [42].  

 

Axo-axonic synapses in the spinal cord  

In the ventral spinal cord, proprioceptive sensory terminals that make synapses onto motor neurons 

are the sole synaptic targets of the GABApre class of inhibitory interneurons. GABApre neurons 

gate sensory inputs onto motor neurons by directly regulating the release of neurotransmitters from 

presynaptic axon terminals [43] (Figure 4). The formation of this axo-axonic synapse is 

exclusively dependent on proprioceptive sensory terminals as ablation of sensory neurons induces 

the retraction of GABApre axon terminals that failed to form synapses with non-target cells [43].  

Like in the cerebellum and cortex, a molecular recognition mechanism between synaptic partners 

through a lock and key-like mechanism has been identified for this specialized synapse. More 

specifically, a survey of Ig-domain-containing proteins conducted in sensory and GABApre 

neurons led to the identification of NB2 (Contactin5) and Caspr4 on sensory neurons and L1 family 

members NrCAM and CHL1 on GABApre neurons [44]. Subsequent molecular genetic 

approaches in mice showed that an NB2/Caspr4 coreceptor complex on sensory terminals directs 

the formation of GABApre bouton synapses and that GABApre-expressed CHL1 and NrCAM are 

required for the formation of GABApre synapses with sensory neurons (Figure 4). Thus, sensory 

NB2/Caspr4 interact with GABApre CHL1/NrCAM to control synapse formation at the axonal 

termini of sensory afferents [44]. 



 12 

Concluding remarks 

Although the significance of intercellular communication within the CNS has long been 

appreciated, a growing number of studies highlight the importance of targeted/selective cell-cell 

signaling at discrete subcellular domains in proper neural circuit function. In particular, axo-axonic 

synaptic connectivity has gained recent attention given its powerful regulation of principal cell 

firing and E/I homeostasis in diverse cortical and subcortical regions. Central to axo-axonic 

synapses are GIs; namely, AIS-targeting BCs and ChCs in cerebellar and cerebral cortices and 

GABApre interneurons, which innervate sensory neuron presynaptic axon terminals, in the spinal 

cord. Recent work leveraging RNAi screening and transgenic mouse models has begun to elucidate 

the molecular mechanisms underlying the selective targeting of such subcellular axonal domains, 

highlighting key roles for the AnkG- and IV-spectrin-based AIS cytoskeleton in addition to the 

L1 family of Ig CAMs. Among the identified molecules, the postsynaptically-localized CAMs 

NF186 and L1CAM have proven to be essential for proper AIS innervation in BC-PC pinceau 

synapse formation and ChC-PyN synapse establishment/maintenance. In the spinal cord, 

GABApre interneuron innervation of sensory neurons employs a trans-synaptic multi-protein 

complex, comprised of sensory neuron-expressed NB2 and Caspr4 and GABApre interneuron-

expressed NrCAM and CHL1, for proper subcellular targeting. Noteworthy, while these examples 

of axo-axonic innervation involve distinct cell types and are found in vastly different regions of 

the CNS, some conservation of mechanism is apparent, given the shared reliance of all such 

connectivity on members of the L1 family of CAMs. Given the importance of axo-axonic signaling 

in proper neural circuit function, it is of little surprise that perturbations in such connectivity have 

been linked to neural disorders. For instance, altered regulation of PC firing activity has been found 

in movement disorders as well as cognitive dysfunction, including autism spectrum disorder 
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(ASD) [45]. ChC connectivity defects have also been tied to ASD, in addition to schizophrenia 

and epilepsy, likely due to imbalances in E/I homeostasis [46-49]. Lastly, in the spinal cord, 

deficits in presynaptic inhibition of sensory neurons by GABApre terminals has been observed in 

individuals with Huntington and Parkinson diseases [50]. In sum, these findings strongly implicate 

perturbed axo-axonic connectivity in neural disorders, such as schizophrenia, epilepsy, ASD, and 

movement-related diseases, but, most importantly, further underscore the clear need for additional 

research on this unique form of cell-cell communication to prevent and/or treat these debilitating 

conditions.  
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Figure Legends 

Figure 1. Axo-axonic synapses in the central nervous system 

Left: Schematic depicting the so-called "pinceau synapse" made by BC (green) at the AIS of PC 

(blue) in cerebellar cortex. The French word "pinceau" is used to describe the paintbrush-like shape 

of these synapses that are formed by multiple terminal BC axonal branchlets. Center: Schematic 

depicting a GABAergic ChC (red) positioned at the neocortical layer 1/2 (L1/2) border, 

specifically targeting the AIS of numerous PyNs in L2/3 and L5 (green). The axon terminals of 

ChCs, known as cartridges, are composed of a string of synaptic boutons that selectively innervate 

the AIS. Right: Schematic depicting SN (green) – MN (blue) innervation in the spinal cord. A 

GABApre (red) interneuron forms an axo-axonic synapse specifically at the presynaptic terminal 

of the SN. Abbreviations: BC, basket cell; PC, purkinje cell; ChC, chandelier cell; PyN, pyramidal 

neuron; AIS, axon initial segment; SN, sensory neuron; MN, motor neuron. 

Figure 2. Molecular mechanisms orchestrating pinceau synapse innervation in the 

cerebellum  

Left: BCs (green) develop a stereotyped axonal architecture consisting of a main branch, which 

extends parallel above the cell bodies of neighboring PCs, and multiple descending secondary 

branches which innervate the soma and AIS of PCs. Right: At the AIS of PCs, AnkG is required 

to maintain a high concentration of NF186, which is necessary for pinceau synapse formation. At 

BC terminals, Neuropilin-1 is stabilized at the cell surface by its cognate axon guidance ligand, 

Sema-3A, to facilitate interaction with NF186 and axo-axonic synapse formation. Abbreviations: 

BC, basket cell; PC, purkinje cell; AnkG, ankyrin-G; NF186, neurofascin-186; Sema-3A, 

semaphorin-3A. 
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Figure 3. Neocortical ChC spatial positioning and molecular mechanisms governing 

cartridge/bouton morphogenesis and axo-axonic innervation 

Left: Schematic depicting the perinatal and early postnatal spatial positioning of superficial and 

deeper layer ChCs (red cells at layer 1/2 (L1/2) border with axons extending into L2/3 and in L5/6, 

respectively) produced by NKX2.1+ progenitors in the medial ganglionic eminence (MGE). 

Right: ChCs possess a highly-branched axonal arborization characterized by terminal strings of 

synaptic boutons, known as cartridges, that form axo-axonic synapses at the AIS of neocortical 

PyNs. ChC cartridge/bouton and synapse development relies on ChC ErbB4-DOCK7- and FGF13-

mediated signaling. In addition, the AIS of neocortical PyNs has α2-containing GABAA receptors 

(GABAAR-α2) necessary for ChC-mediated GABAergic neurotransmission, as well as a highly 

complex cytoskeleton comprising ankyrin-G (AnkG) and β4-spectrin. Among the many cell 

adhesion molecules (CAMs) present at the AIS of PyNs, AnkG-bound L1CAM is critical for 

ChC/PyN AIS innervation in the neocortex. For ease of visualization, innervation between a single 

ChC and one neighboring PyN is depicted. In vivo, single neocortical ChCs are able to 

simultaneously innervate hundreds of PyNs with each PyN AIS typically being innervated by 3-4 

cartridges originating from distinct ChCs. Abbreviations: ChC, chandelier cell; AIS, axon initial 

segment; DOCK7, dedicator of cytokinesis 7; FGF13, fibroblast growth factor 13; PyN, pyramidal 

neuron. 

Figure 4: A multi-protein Ig CAM superfamily recognition mechanism regulates axo-axonic 

synapse specificity in the spinal cord  

Left: In the spinal cord, SN terminals in the dorsal root ganglion form excitatory synapses on 

MNs. The presynaptic axon terminals of SNs are exclusively targeted by GABApre interneurons. 

Right: Selective axo-axonic synapse formation between SNs (VGLUT1+) and GABApre 
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terminals is orchestrated by a complex of L1 family members, NRCAM and CHL1 on GABApre 

terminals, and a receptor complex of the Ig CAM superfamily proteins NB2/CNTN5 and CASPR4 

on SN axon terminals. Shank 1A labels the postsynaptic site of MNs. Abbreviations: SN, sensory 

neuron; MN, motor neuron; NrCAM, neuronal cell adhesion molecule; CHL1, close homologue 

of L1; NB2/CNTN5, contactin 5; CASPR4, CNTN-associated protein 4; Ig, immunoglobulin. 
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