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Abstract

In this work, we study optimistic planning methods to solve some state-constrained optimal control prob-

lems in finite horizon. While classical methods for calculating the value function are generally based on a

discretization in the state space, optimistic planning algorithms have the advantage of using adaptive dis-

cretization in the control space. These approaches are therefore very suitable for control problems where the

dimension of the control variable is low and allow to deal with problems where the dimension of the state

space can be very high. Our algorithms also have the advantage of providing, for given computing resources,

the best control strategy whose performance is as close as possible to optimality while its corresponding

trajectory comply with the state constraints up to a given accuracy.
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1. Introduction

This paper concerns a numerical approach for solving some state-constrained non-linear optimal control

problems. Let T > 0 be a fixed final horizon, and let A be a given non-empty compact subset of a metric
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space. Consider two closed subsets K and C of Rd (d ≥ 1). For x ∈ Rd, the control problem is the following

ϑ(x) := inf

{∫ T

0

`(yαx (s), α(s)) ds+ Φ(yαx (T ))

∣∣∣∣ α(s) ∈ A, yαx (s) ∈ K for s ∈ [0, T ], and yαx (T ) ∈ C
}
,

(1)

where the state yαx (·) and the control α(·) are related by the following non-linear differential equation

ẏ(s) = f(y(s), α(s)) a.e. s ∈ (0, T ), y(0) = x. (2)

In this problem, the functions f : Rd×A→ Rd, ` : Rd×A→ Rd and Φ : Rd → R are Lipschitz continuous (the

precise assumptions are given in section 2). Several mathematical and numerical contributions have been

devoted to the analysis and approximation of the solutions of (1). Most of the classical optmisation-based

methods are only able to guarantee the computation of local solutions, but there are also some mathematical

methods that aim at computing the global solutions. Among these methods, the dynamic programming

approach gives a mathematical characterization of the value function ϑ and provides the optimal control law

in a feedback form, which is interesting for many engineering applications. However, the numerical cost of

this approach restricts its application to problems where the state space is of small dimension.

The approach that we would like to investigate in the present work is based on optimistic planing (OP)

algorithms [9, 10]. These algorithms use a discretization in the space of controls (and do not require any

discretization of the state space). This approach is very interesting especially for many applications where

the control dimension q is much lower compared to the state dimension d. On a given discretization of the

time interval, our approach will seek to identify the best control strategy to apply on each time sub-interval.

The OP methods perform the optimal control search by branch and bound on the control set, always refining

the region with the best lower bound of the optimal value (this is what justifies the label ”optimistic”).

An interesting feature of these algorithms is the close relationship between computational resources and

quasi-optimality, which exploits some ideas of reinforcement learning [18]. Indeed, for given computational

resources, the OP approaches provide a sub-optimal strategy whose cost is as close as possible to the optimal

value (the measure of ”close to the optimum” will be clarified in section 3).

Many OP variants have been proposed in the literature (see [8, 13, 14, 15] and the references therein) with

mainly heuristic rules for the refinement and without convergence analysis. In [9, 10], some OP methods are

proposed for continuous actions. These methods use selection rules for adaptive refinement of the control. A

rigorous analysis of convergence and of the complexity of the methods are also presented in [9], within the

framework of an infinite horizon problem with a discount factor and without state constraints.
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Our main contribution is to extend some optimistic planning algorithms to solve finite horizon control

problems in presence of state constraints. We first use some ideas introduced in [2, 4] to reformulate the

original control problem as an auxiliary problem without state constraints. In this auxiliary problem, the set

of controls remain the same, however, the dimension of the state space is increased by one more component.

We adapt two algorithms introduced in [10, 9] (OPC - ”Optimistic Planning with Continuous actions”,

and SOP(or SOPC) - ”Simultaneous OPC”) to solve the auxiliary control problem and then to get an

approximation of the optimal control strategy for the original state-constrained problem. We show that in

this framework, we can obtain convergence results similar to those established in [10]. Besides, we improve

the analysis of the complexity of these algorithms and provide simplified proof arguments for this analysis.

Furthermore, we propose an algorithm which combines both the optimistic planning approach with ideas

from the MPC (Model Predictive Control). This algorithm gives numerical results similar to those of SOP

but reduces significantly the computational time. We illustrate the relevance of the OP algorithms on several

non-linear optimal control problems (in one of these examples, the dimension of the state is 103).

Notations. In all this paper, R denotes the set of real numbers, ‖ · ‖ denotes the Euclidean norm on Rr(for

any r ≥ 1). For any set S ⊆ RN , ∂S, denotes its boundary. The distance function to S is dist(x, S) =

inf{‖x− y‖ : y ∈ S}. For any a1, · · · , aq ∈ R, the notation

q∨
i=1

ai stands for max(a1, · · · , aq). For any finite

set U , |U | is the cardinality of U . Finally, the abbreviation ”w.r.t.” stands for ”with respect to”, and ”a.e.”

means ”almost everywhere”.

2. State-constrained control problems.

Let T > 0 be a fixed final time, and let A be a given non-empty compact subset of Rq (q ≥ 1) . Consider

the controlled system:

ẏ(s) = f(y(s), α(s)) a.e. s ∈ (t, T ), and y(0) = x, (3)

where α(·) is an admissible control in

Aad :=

{
α : (0, T )→ Rq measurable, α(t) ∈ A a.e.

}
,

and the dynamics f : Rd ×A→ Rd is a Lipschitz continuous function satisfying:

(A1) There exist Lf,x > 0 and Lf,a > 0, for any x, y ∈ Rd, for all a, a′ ∈ A, we have:

‖f(x, a)− f(y, a′)‖ ≤ Lf,x‖x− y‖+ Lf,a‖a− a′‖.
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Under assumption (A1), for any α ∈ Aad and for any x ∈ Rd, there exists a unique absolutely continuous

trajectory y = yαx satisfying (3). Let K and C be two non-empty closed sets of Rd. A trajectory yαx will be

said feasible (on the time interval (0, T )) if

yαx (s) ∈ K, for all s ∈ (0, T ), and yαx (T ) ∈ C. (4)

Now, consider two Lipschitz continuous functions ` : Rd ×A→ R and Φ : Rd → R satisfying:

(A2) There exists L`,x ≥ 0 and L`,a ≥ 0 such that for any x, y ∈ Rd and for any a, a′ ∈ A, we have:

|`(x, a)− `(y, a′)| ≤ L`,x‖x− y‖+ L`,a‖a− a′‖.

(A3) There exists LΦ ≥ 0 such that for any x, y ∈ Rd , we have: |Φ(x)− Φ(y)| ≤ LΦ‖x− y‖.

Throughout the paper, we will assume that assumptions (A1)-(A3) are satisfied. The state-constrained

control problem is formulated as follows:

ϑ(x) := inf

{∫ T

0

`(yαx (s), α(s)) ds+ Φ(yαx (T ))

∣∣∣∣ α ∈ Aad, y
α
x (s) ∈ K ∀s ∈ [0, T ], and yαx (T ) ∈ C

}
, (5)

with the convention that inf ∅ = +∞. In general, when K 6= Rd or C 6= Rd, it may happen that the set of

feasible trajectories is empty, and in this case the function ϑ may take an infinite value. Indeed, unless some

controllability assumptions are satisfied, we may have no control input α that can act on the system and force

it to comply with the state constraints [20, 12]. So, in general, it is not an easy task to know apriori if the

value ϑ(x) is finite or not. The approach which we will use thereafter is based on an idea introduced in [2]. It

provides the value ϑ(x) and an optimal trajectory associated to (5) (if any). When the value ϑ(x) is infinite

(i.e., when the set of feasible trajectories is empty), our approach computes trajectories which minimize the

cost and remain as close as possible to the sets of constraints.

Let us consider two Lipschitz continuous functions g and Ψ verifying the following property:

∀y ∈ Rd, g(y) ≤ 0 ⇐⇒ y ∈ K and Ψ(y) ≤ 0 ⇐⇒ y ∈ C. (6)

In the sequel, we denote by Lg and LΨ the Lipschitz constants of g and Ψ respectively. Since K and C are

closed sets, the existence of Lipschitz functions satisfying (6) is guaranteed. For instance, g and Ψ can be
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chosen, respectively, as the signed distance to K and the signed distance to C:

dK(x) :=

dist(x, ∂K) if x 6∈ K

−dist(x, ∂K) if x ∈ K
and dC(x) :=

dist(x, ∂C) if x 6∈ C

−dist(x, ∂C) if x ∈ C

The auxiliary control problem is defined, for (x, z) ∈ Rd × R, as follows (with a ∨ b ∨ c := max(a, b, c)):

w(x, z) := inf
α∈Aad

{[∫ T

0

`(yαx (s), α(s)) ds+ Φ(yαx (T ))− z
]∨

max
s∈[0,T ]

g(yαx (s))
∨

Ψ(yαx (T ))

}
. (7)

Let us emphasize on that the auxiliary control problem is free of state constraints. The cost function in

(7) is called the improvement function. Similar auxiliary problems have been introduced and analyzed in

the context of finite-dimensional optimization problems in [17, 19] (see also [3]). For continuous time control

problems, the properties of the auxiliary problem have been established in [2, 4]. Among other things, it

holds that a couple (ȳ, ū) is an optimal solution for (5) if and only if it is also an optimal solution of (7) with

z = ϑ(x). Moreover, the value of ϑ(x) can be recovered from w(x, ·) (see [2, 4] for a precise statement).

3. Discrete time setting

First, for N ≥ 1, consider a uniform partition of [0, T ] with N + 1 time steps: tk = k∆t, k = 0, . . . , N ,

where ∆t = T
N is the step size. We introduce a discrete dynamics defined as follows (by Heun scheme):

F (x, a) := x+
∆t

2

(
f(x, a) + f(x+ ∆tf(x, a), a)

)
.

For a sequence of actions a = (ak)0≤k≤N−1 ∈ AN , we consider the discrete time dynamical system:

y0 = x,

yk+1 = F (yk, ak) k = 0, ..., N − 1.

(8)

For every x ∈ Rd and every sequence a = (ak)k ∈ AN , equation (8) admits a unique solution that will be

denoted by yx,a = (yx,ak )Nk=0. This trajectory is said feasible if:

yx,ak ∈ K, for any k = 0, ..., N and yx,aN ∈ C.

Consider also an instantaneous cost function ρ that approximates the integral of ` over an interval [tk, tk+1],
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for k = 0, ..., N − 1, by a quadrature rule, as follows:

ρ(x, a) :=
∆t

2

(
`(x, a) + `(F (x, a), a)

)
.

One can easily check that Under assumption (A1) and (A2), the functions F and ρ are Lipschitz continuous:

‖F (x, a)− F (x′, a′)‖ ≤ LF,x‖x− x′‖+ LF,a‖a− a′‖,

|ρ(x, a)− ρ(x′, a′)| ≤ Lρ,x‖x− x′‖+ Lρ,a‖a− a′‖,

for every x ∈ Rd and a ∈ A, where

LF,x := 1 + ∆tLf,x

(
1 +

∆t

2
Lf,x

)
, LF,a := ∆tLf,a

(
1 +

∆t

2
Lf,xLf,a

)
, and (9a)

Lρ,x :=
∆t

2
L`,x

(
1 + LF,x

)
, Lρ,a := ∆t

(
L`,a +

1

2
L`,xLF,a

)
. (9b)

Note that other approximations of the dynamics and of the integral term would lead to similar estimates

as in (9). The approximations presented in this section are the ones that will be used in the numerical

simulations of Section 5.

Now, we define the state-constrained optimal control problem as follows:

V (x) := inf
a=(ak)k∈AN

{
N−1∑
k=0

ρ(yx,ak , ak) + Φ(yx,aN ) | yx,ak ∈ K, ∀k = 0, ..., N and yx,aN ∈ C

}
. (10)

Then, for the discrete auxiliary control problem, we introduce the cost functional J defined by

J(x, z, a) :=
(N−1∑
k=0

ρ(yx,ak , ak) + Φ(yx,aN )− z
)∨(

max
0≤k≤N

g(yx,ak )
)∨

Ψ(yx,aN ) (11)

(for (x, z, a = (ak)) ∈ Rd × R×AN ) and the corresponding value is defined as follows, for (x, z) ∈ Rd × R:

W (x, z) := inf
a=(ak)k∈AN

J(x, z, a). (12)

It is worth to mention that W (x, z) converges to w(0, x, z) as N →∞ (i.e. ∆t→ 0), and the sequence of

discrete-time optimal trajectories (for N ∈ N) provide convergent approximations of optimal trajectories of

the continuous problem (a precise statement and its proof can be found in [4]).

By using similar arguments as in [4, 5], one can prove the folowing result:
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Proposition 3.1. We have:

V (x) = inf{z |W (x, z) ≤ 0}. (13)

Furthermore, a pair (ȳ, ā) is optimal for problem (10) if and only if (ȳ, ā) is optimal for problem (12) with

z = V (x).

Remark 3.2. A classic approach to take into account the constraints in (10) consists in approaching V (x)

by a penalized problem as follows:
Vε(x) := inf

a=(ak)k∈AN
Jε(x, a),

with Jε(x, a) :=
N−1∑
k=0

ρ(yx,ak , ak) + Φ(yx,aN ) +
1

ε

( N∑
k=0

g(yx,ak )+ + Ψ(yx,aN )+
)
. The advantage of the penalized

problem is that it does not increase the dimension of the state variable. However, the Lipschitz constant of

the penalized criterion Jε involves a term in 1
ε which tends to infinity when the penalization parameter ε goes

to 0. As it will be shown in the paper, the Lipschitz constants are used in the elaboration of the optimistic

algorithms and in their complexity analysis. Let us emphasize on that the auxiliary problem involves a cost

function whose Lipschitz constant does not explode, which makes this problem more suitable than the classical

penalization approach for using optimistic methods and taking into account the state constraints.

Now, let us state a preliminary result that will be useful in the rest of the paper.

Proposition 3.3. For any (x, z) ∈ Rd×R and a = (ak)k, ā = (āk)k ∈ AN , the following estimate is satisfied:

|J(x, z, a)− J(x, z, ā)| ≤
(N−1∑
k=0

βk‖ak − āk‖
)∨(N−1∑

k=0

γk‖ak − āk‖
)
, (14)

where βk := Lρ,xLF,a
LN−k−1
F,x − 1

LF,x − 1
+ Lρ,a + LΦLF,aL

N−k−1
F,x , and γk :=

(
Lg
∨
LΨ

)
LF,aL

N−k−1
F,x .

A quite similar estimate of the difference of performances is established, in [10, 9], for the case of an infinite

horizon sum with a positive discount factor and under a boundedness assumption on the instantaneous reward.

Here, the cost functional J is defined, in finite horizon, as a maximum of several terms, and without discount

factor.

Proof. Denote by y = (yk)k the discrete trajectory associated to the input a, and by ȳ = (ȳk)k the discrete

trajectory associated to ā. Both trajectories start from the initial position x. By Lipschitz continuity of the
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dynamics F , straightforward calculations give:

‖yk − ȳk‖ ≤ LF,a
k−1∑
j=0

Lk−1−j
F,x ‖aj − āj‖, 0 ≤ k ≤ N. (15)

Now, by using the Lipschitz regularity of the cost functions, we obtain:

|J(x, z, a)− J(x, z, ā)| ≤
(N−1∑
k=0

Lρ,x‖yk − ȳk‖+

N−1∑
k=0

Lρ,a‖ak − āk‖+ LΦ‖yN − ȳN‖
)

∨(
Lg max

0≤k≤N
‖yk − ȳk‖

)∨(
LΨ‖yN − ȳN‖

)
. (16)

From (15), we get:

N−1∑
k=0

‖yk − ȳk‖ ≤ LF,a
N−1∑
k=0

k−1∑
j=0

Lk−1−j
F,x ‖aj − āj‖ ≤ LF,a

N−1∑
k=0

LN−k−1
F,x − 1

LF,x − 1
‖ak − āk‖,

and for any k = 0, ..., N − 1, we have also: ‖yk − ȳk‖ ≤ LF,a
∑N−1
j=0 LN−j−1

F,x ‖aj − āj‖. Therefore,

(
Lg max

0≤k≤N
‖yk − ȳk‖

)∨(
LΨ‖yN − ȳN‖

)
≤
(
Lg
∨
LΨ

)
LF,a

N−1∑
k=0

LN−k−1
F,x ‖ak − āk‖.

Combining the above inequalities gives the desired result (14).

Corollary 3.4 (Upper bound). There exists a constant C > 0, independent of N , such that for any (x, z) ∈

Rd × R and a = (ak)k, ak = (āk)k ∈ AN , we have:

|J(x, z, a)− J(x, z, ā)| ≤ C∆t

N−1∑
k=0

(
1

LF,x
)k‖ak − āk‖. (17)

Proof. From (9), we know that LF,x = 1+∆tL with L := Lf,x(1+ ∆t
2 Lf,x) > 0. Thus, for every 0 ≤ k ≤ N−1:

LN−k−1
F,x − 1

LF,x − 1
≤

LN−1
F,x

LF,x − 1
(LF,x)−k ≤ eN∆tL

∆tL
(LF,x)−k.

Using the definitions of Lρ,x and LF,a (see (9)), we obtain:

Lρ,xLF,a
LN−k−1
F,x − 1

LF,x − 1
≤ C1,1∆t

( 1

LF,x

)k
,
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with C1,1 := eTL

2L
L`,x(1 + LF,x)Lf,a(1 + T

2 Lf,xLf,a), a constant independent of N . Again from (9), we get:

Lρ,a =
( 1

LF,x

)k
Lρ,a(LF,x)k ≤

( 1

LF,x

)k
Lρ,ae

k∆tL ≤ C1,2∆t
( 1

LF,x

)k
,

with C1,2 := eTL
(
L`,a + 1

2L`,xLF,a
)

is a constant independent of N . With similar argument, we also obtain:

LΦLF,aL
N−k−1 ≤ C1,3∆t

( 1

LF,x

)k
with C1,3 := LΦe

TLLf,a

(
1 +

T

2
Lf,xLf,a

)
.

By setting C1 = C1,1 + C1,2 + C1,3, we conclude that: βk ≤ C1∆t
( 1

LF,x

)k
. Similar arguments lead to an

upper bound of γk as follows:

γk = C2∆t
( 1

LF,x

)k
, where C2 :=

(
Lg
∨
LΨ

)
eTLLf,a

(
1 +

T

2
Lf,xLf,a

)
.

In conclusion, we obtain the claim with C := C1

∨
C2.

4. Optimistic planning

For sake of simplicity and without loss of generality, we suppose that the control is of dimension q = 1

and we denote by D its maximal diameter (∀a, a′ ∈ A, ‖a − a′‖ ≤ D). Let us emphasize that the approach

can be generalized to control variables with multiple dimensions.

4.1. Optimistic planning approach

Planning algorithms are based on the principles of optimistic optimisation (see [11]). In order to minimize

the objective function J over the space AN , we refine, in an iterative way the search space into smaller subsets.

A search space, called node and denoted by Ai with i ∈ N, is a Cartesian product of sub-intervals of

A i.e. Ai := Ai,0 × Ai,1 × ... × Ai,N−1 ⊆ AN , where Ai,k represents the control interval at time step k, for

k = 0...N − 1. The collection of nodes will be organized into a tree Υ that will be constructed progressively

by expanding the tree nodes. Expanding a node Ai, with i ∈ N, consists in choosing an interval Ai,k, for

k = 0...N − 1, and splitting it uniformly to M sub-intervals where M > 1 is a parameter of the algorithm.

In figure 1, we represent a simple example of a tree construction to explain. At the beginning of the process,

the tree contains only its root A0 := [0, 1]N , from which we generate M=3 children nodes A1 = [0, 1
3 ]×AN−1,

A2 = [ 1
3 ,

2
3 ] × AN−1 and A3 = [2

3 , 1] × AN−1, after splitting its first interval. Then, suppose that A1 is

the second node to be refined by splitting its second interval. Hence, we get A4 = [0, 1
3 ] × [0, 1

3 ] × AN−2,

9



A0

A1 A2 A3

A4 A5 A6

A7 A8 A9

0

1

2

3

p (depth)

Figure 1: Illustrative example of refinement of AN with M = 3 after splitting 3 nodes A0, A1 and A6.

A5 = [0, 1
3 ]× [ 1

3 ,
2
3 ]×AN−2 and A6 = [0, 1

3 ]× [ 2
3 , 1]×AN−2. Finally, we choose A6 and we split its first interval

[0, 1
3 ] to generate A7 = [0, 1

9 ] × [ 2
3 , 1] × AN−2, A8 = [ 1

9 ,
2
9 ] × [ 2

3 , 1] × AN−2 and A9 = [ 2
9 ,

1
3 ] × [ 2

3 , 1] × AN−2.

The order of expanded nodes and the intervals that have to be split will be made precise later. For now, we

introduce some useful notations related to the tree Υ:

• We associate, for any node Ai ∈ Υ, a sample sequence of controls ai := (ai,k)N−1
k=0 ∈ Ai such that ai,k

corresponds to the midpoint of the interval Ai,k for any k = 0, ..., N − 1.

• For any node Ai ∈ Υ corresponds a split function si(·) such that si(k) indicates the number of splits

needed to obtain the interval Ai,k for k = 0, ..., N − 1. For example, in figure 1, s0(·) ≡ 0 for the root

A0. As for A7, we have s7(0) = 2, s7(1) = 1 and s7(k) = 0 for k ≥ 2.

• Denote di,k, for k = 0, ..., N − 1, the diameter of the interval Ai,k of some node Ai ∈ Υ. In particular,

di,k =
D

Msi(k)
.

• The depth of a node Ai, denoted pi, is the total number of splits effectuated to obtain this node:

pi :=

N−1∑
k=0

si(k). (18)

By Depth(Υ), we designate the maximum depth in the tree Υ.

• A node Ai is a tree leaf if it has not been expanded. The set of the tree leaves is denoted by Λ.

• Finally, we denote by Λp the set of leaves of Υ at a depth equal to p ∈ N: Λp :=
{
Ai ∈ Υ s.t. pi = p

}
.
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Remark 4.1. By selecting controls at the intervals centers and by taking M odd, we guarantee that after

expanding a node Ai we generate at least one node Aj with J(x, z, aj) ≤ J(x, z, ai). Indeed, the middle child

Aj contains the same control sequence as Ai hence J(x, z, aj) = J(x, z, ai).

Proposition 4.2. By the tree construction, there exists at least a leaf node Ai ∈ Λ containing an optimal

control sequence and verifying:

J(x, z, ai)− σi ≤W (x, z) ≤ J(x, z, ai), (19)

where ai is the sample control sequence in Ai and

σi :=
1

2

(N−1∑
k=0

βkdi,k

)∨(N−1∑
k=0

γkdi,k

)
, (20)

with βk and γk are given in proposition 3.3.

Proof. Since the set of leaves covers, at any level, the entire space AN , there exists at least a leaf node

Ai ∈ Λ that contains an optimal control sequence a∗i = (a∗i,k)k ∈ Ai. From Proposition 3.3 and since

W (x, z) = J(x, z, a∗i ), we have:

|J(x, z, ai)−W (x, z)| ≤
(N−1∑
k=0

βk‖ai,k − a∗i,k‖
)∨(N−1∑

k=0

γk‖ai,k − a∗i,k‖
)
.

On the other hand, since ai = (ai,k)k is chosen at the center of the interval Ai, we obtain :

∀k = 1, · · · , N ‖ai,k − a∗i,k‖ ≤
di,k
2
, and |J(x, z, ai)−W (x, z)| ≤ σi.

In the optimistic planning algorithms, at each iteration, one or several optimistic nodes are chosen and

split to get from each node M children (M > 1 is a fixed parameter of the algorithm). The choice of the

optimistic nodes is based on some criterion that we explain hereafter.

To expand a node Ai, we choose an interval from Ai,0 ×Ai,1 × ...×Ai,N−1 and we partition it uniformly

to M sub-intervals. If we choose to split the interval Ai,k, for some k = 0, ..., N − 1, then we will generate

M nodes with an error term σ+
i (k) defined by:

σ+
i (k) :=

( N−1∑
j=0,j 6=k

βjdi,j + βk
di,k
M

)∨( N−1∑
j=0,j 6=k

γjdi,j + γk
di,k
M

)
.
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Henceforth, in order to minimize the error σ+
i (k), the best choice of the interval to split, κ∗i , is given by:

κ∗i ∈ argmin
0≤k≤N−1

σ+
i (k). (21)

The following result gives an upper bound on the error term σi, of any node Ai ∈ Υ. This result will be

used later in the convergence analysis of OP and SOP algorithms. The proof is given in Appendix 6.

Theorem 4.3. Assume that M > LF,x > 1 and let N ≥ 2. Let τ :=
⌈

logM
log(LF,x)

⌉
. Consider a node Ai at

some depth pi = p. For p large enough, the error σi (defined in (20)) is bounded as follows:

σi ≤ δp := c1(N) ∆tM−
p
N , (22)

where c1(N) := C 1

1−M1/τ

LF,x

Mq(N), q(N) := 2− (N − 1) τ−2
2τ(τ−1) , and C ≥ 0 independent of N and p.

Notice that, by definition, we have τ ≥ 2, and L−1
F,xM

1/τ ≤ 1. Hence (22) is meaningful only when the

strict inequality L−1
F,xM

1/τ < 1 holds. Moreover, q(N) ≤ 2, hence c1(N) is bounded independently of N .

We introduce some additional definitions that will be useful for the presentation of the algorithms and

for their analysis. For a given depth p ∈ N, we define the set of nodes that will be expanded by optimistic

planning algorithms:

Υ∗p := {Ai ∈ Υ at depth p | J(x, z, ai)− δp ≤W (x, z)},

where δp is defined as in (22). The set containing all expanded nodes : Υ∗ :=
⋃
q≥0 Υ∗q is in general smaller

than the whole tree Υ.

Definition 4.4. For a given depth p ∈ N, we define the asymptotic branching factor m, as the smallest real

m ∈ [1,M ] such that

∃R ≥ 1, ∀p ≥ 0, |Υ∗p| ≤ Rmp. (23)

Remark 4.5. The asymptotic branching factor m lies in [1,M ] because at any depth p, there is at least one

node in Υ∗p (the one containing the optimal solution) and at most Mp. The factor m is a measure of the

complexity of the optimistic algorithm. Indeed, the nodes that will be expanded are contained in Υ∗p, whose

size is bounded by Rmp. A problem with low resolution complexity will correspond to a small value of m.

The complexity constant R (in front of the main growth factor mp) will be used in the convergence analysis

of the algorithms later on.
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4.2. Optimistic Planning (OP) Algorithm

In this section, we will present the rules for refining the search of an optimal control strategy. In the first

algorithm, at each iteration, the node Ai∗ minimizing the lower bound (J(x, z, ai)− σi) will be selected and

split to M children. More precisely, we identify an interval Ai∗,κ∗
i∗

whose partition in M sub-intervals will

produce the lowest error σi∗(κ∗i∗).

Algorithm 1: Optimistic Planning (OP)

Require: The number of intervals N , the split factor M , the maximal number of expanded nodes Imax

1: Initialize Υ with a root A0 := AN and n = 0 (n := number of expanded nodes).
2: while n < Imax do
3: Select an optimistic node to expand: Ai∗ ∈ argmin

Ai∈Λ
(J(x, z, ai)− σi).

4: Select κ∗i∗ , defined in (21), the interval to split for the node Ai∗ .
5: Update Υ by expanding Ai∗ along κ∗i∗ and adding its M children.
6: Update n = n+ 1.
7: end while
8: return Control sequence ai∗ = (ai∗,k)k ∈ AN of the node Ai∗ ∈ argmin

Ai∈Λ
J(x, z, ai) and

J∗(x, z) := J(x, z, ai∗).

In this algorithm, the number of expanded nodes corresponds to the number of iterations, since at each

iteration only one node is expanded. The number Imax represents a maximum available computational

resource.

Lemma 4.6. (See [9, Proposition 3]) The OP algorithm expands only nodes satisfying J(x, z, ai) − σi ≤

W (x, z) (thus only nodes in Υ∗). Furthermore, the returned value J(x, z, ai∗) satisfies 0 ≤ J(x, z, ai∗) −

W (x, z) ≤ σmin where σmin corresponds to the smallest computed value σi among all the expanded nodes.

From Theorem 4.3 and Lemma 4.6, we derive the following result whose proof is given in Appendix 6.

Theorem 4.7. Assume that M > LF,x > 1 and let N ≥ 2. Let ai∗ and J(x, z, ai∗) be the output of the OP

algorithm, and let n ≥ 1 be the corresponding number of expanded nodes. For n large enough, the following

error bound holds:

0 ≤ J(x, z, ai∗)−W (x, z) ≤ EOP(N,n) :=

 c2(N)n−
log(M)
N log(m) if m > 1,

c2(N)(log(n))−
log(M)
NR if m = 1,

(24)

where (m,R) satisfy (23), c2(N) := c1(N)M
1
N−

log(
(m−1)
R

)

N log(m) (for m > 1), or c2(N) := c1(N)M
1
N (for m = 1),

and where c1(N) is the same constant as in Theorem 4.3.
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As already mentioned, c1(N) is bounded independently of N , and so is the constant c2(N). From

Theorem 4.7 we deduce that the error, between the optimal cost computed by OP algorithm and the (global)

optimal value, converges to zero as n→∞ (for a fixed number of time steps N).

Remark 4.8. The bound EOP in Theorem 4.7 improves slightly the error estimates given in [9]. Indeed, in

[9, Theorem 6], when m > 1, the error is bounded by O(γC
√

log(n)) for some γ ∈ (0, 1) (discount factor) and

some constant C > 0, while in Theorem 4.7, EOP is of order O(βlog(n)), for some constant β ∈ (0, 1), which

is therefore asymptotically lower.

4.3. Simultaneous Optimistic Planning (SOP) Algorithm

The SOP algorithm expands at each iteration several nodes which are supposed to be optimistic.

Algorithm 2: Simultaneous Optimistic Planning (SOP)

Require: The number of intervals N , the split factor M , a maximal number of expanded nodes Imax and a
maximal depth function pmax(.) ≥ 1.

1: Initialize Υ with root A0 := AN and set n = 0 (n := number of expanded nodes).
2: while n < Imax do
3: p = min

Ai∈Λ
pi : the minimal depth among the tree leaves of Υ.

4: while p ≤ pmax(n) do
5: Select an optimistic node at depth p: Ai∗ ∈ argmin

Ai∈Λp

J(x, z, ai).

6: Select κ∗i∗ , as defined in (21), the interval to split for the node Ai∗ .
7: Update Υ by expanding Ai∗ along κ∗i∗ and adding its M children at depth p+ 1.
8: Update p← p+ 1 and n← n+ 1
9: end while

10: end while
11: return Control sequence a∗ := (ai∗,k)k ∈ AN of the node Ai∗ = argmin

Ai∈Λ
J(x, z, ai) and

J∗(x, z) := J(x, z, a∗).

In Algorithm 2, pmax(n) denotes a maximal depth that the tree should not exceed, at iteration n. As in

Algorithm 1, Imax represents a maximum available computational resource.

The following result gives a lower bound on the depth of the optimal node generated by the SOP algorithm.

This is a direct consequence of [18, Lemma 4.1]. For convenience of the reader, a sketch of the proof is given

in Appendix 6.

Lemma 4.9. Let pmax(n) ≥ 1. Let p(n) ≥ 1 be the smallest integer p ≥ 1 such that:

pmax(n)

p∑
q=0

Rmq ≥ n (25)
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and let p∗n := min{p(n)− 1, pmax(n)}. Then the SOP algorithm, after n iterations, has expanded an optimal

node at depth p∗n and the solution obtained has an error bounded by δp∗n (recall that δp is defined in (22)).

The SOP algorithm gives a sub-optimal solution with an upper bound estimate given in the following

theorem whose proof is postponed to Appendix 6.

Theorem 4.10. Consider the SOP algorithm with pmax(n) := nη for some given η ∈]0, 1[. Let n be a given

number of expanded nodes in the SOP algorithm and let J∗(x, z) be the corresponding returned value. The

following upper bound holds as n→∞:

0 ≤ J∗(x, z)−W (x, z) ≤ ESOP(N,n) :=

c3(N) ∆t n−
(1−η)
log(m)

log(M)
N if m > 1 and η ∈]0, 1[

c3(N) ∆tM−
n1−η
R if m = 1 and η ∈ [ 1

2 , 1[,

with c3(N) := c1(N)M
log(R)
N log(m)

+ 2
N if m > 1 and c3(N) := c1(N)M−

2
N if m = 1. In particular, the error of

the SOP algorithm converges to zero as n→∞ (for a fixed number of time steps N).

Remark 4.11. The SOP estimate ESOP, given in Theorem 4.10, improves the estimate presented in [10,

Theorem 11]. Firstly, one can choose pmax(n) :=
√
n for all possible values of the branching factor m ∈ [1,M ]

(which is not the case of [10, Theorem 11]). Secondly, in the case when m > 1, we obtain an error of

O(βlog(n)) for some constant β ∈ (0, 1). This error is therefore asymptotically lower than the error of [10,

Theorem 11], that is of order O(β′
√

log(n)
) for some β′ ∈ (0, 1). In the case m = 1, our error can be written

O(βn
1/2

) for some β ∈ (0, 1), while in [10, Theorem 11] the bound is of order O(β′
n1/6

) for some β′ ∈ (0, 1)

(and pmax = n1/3).

4.4. Simultaneous Optimistic Planning with Multiple Steps (SOPMS) Algorithm

We start by introducing algorithm 3 (SOP-tree-update) which is a generic elementary algorithm that

describes how some given tree Υ′ should be updated in a similar way to SOP.

The SOPMS algorithm uses the elementary algorithm SOP-tree-update in order to optimize the objective

function from an initial state x ∈ Rd and an auxiliary variable z ∈ R. In this algorithm, we will need the

definition of the following cost function Jk, starting from a time step k, for any k = 0, ..., N − 1, as follows:

Jk(y, z, a) :=
(N−1∑
i=k

ρ(yai , ai) + Φ(yaN )− z
)∨(

max
k≤i≤N

g(yai )
)∨

Ψ(yaN ),
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Algorithm 3: SOP-tree-update(Υ′, I, pmax(·), Jk(y, z, ·))
Require: A tree Υ′, a maximal number of expanded nodes I and a maximal depth function pmax(·).

1: Initialize n = 0 (n := number of expanded nodes).
2: while n < I do
3: p = min

Ai∈Λ
pi : the minimal depth among the tree leaves.

4: while p ≤ pmax(n) do
5: Select an optimistic node at depth p: Ai∗ ∈ argmin

Ai∈Λp

Jk(x, z, ai).

6: Select κ∗i∗ , defined in (21), the interval to split for the node Ai∗ .
7: Update Υ′ by expanding Ai∗ along κ∗i∗ and adding its M children at depth p+ 1.
8: Update p← p+ 1 and n← n+ 1
9: end while

10: end while
11: return Control sequence ai∗ of the node Ai∗ = argmin

Ai∈Λ
Jk(y, z, ai) and J∗k := Jk(y, z, ai∗).

where y ∈ Rd, z ∈ R, a := (ai)i ∈ AN−k and (yai )i is the discrete trajectory starting from y and associated

to the control sequence (ai)i.

Algorithm 4: Simultaneous Optimistic Planning with Multiple Steps (SOPMS)

Require: The number of intervals N , the split factor M , a maximal number of expanded nodes Imax, a
local initial number of expanded nodes Ieval,0, a maximal depth function pmax(·), a tolerance ε > 0

1: Initialize k ← 0, y0 = x and n← 0 (n := total number of expanded nodes)
2: while k ≤ N − 1 do
3: Initialize Υk with controls ak := (aki )k≤i≤N−1 ∈ AN−k, root A0 :=

∏N−1
i=k Ai, and Wk := Jk(yk, z, a

k)
(see Remark 4.12 for the definition of Ai)

4: ` := 0
5: loop
6: Ieval := 2`Ieval,0
7: (a∗,W temp

k )← SOP-tree-update(Υk, Ieval, pmax(·), Jk(yk, z, ·)) : expand nodes of Υk

8: update n (n← n+ Ieval)

9: if |W
temp
k −Wk

Wk
| ≤ ε and ` ≥ 1 then

10: Accept the first component a∗k ∈ A of the control input a∗, set yk+1 = F (yk, a
∗
k)

11: k ← k + 1, and go to 2
12: end if
13: Wk ←W temp

k

14: `← `+ 1
15: if n ≥ Imax then
16: Accept the control sequence (a∗k, a

∗
k+1, ..., a

∗
N−1) ∈ AN−k and go to 20

17: end if
18: end loop
19: end while
20: return Control sequence (a∗k)k ∈ AN , value J∗(x, z) = J(x, z, a∗), budget n.
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Remark 4.12. (Initialisation step) In the initialization step of SOPMS algorithm (line 3), when k = 0,

the initial control interval sequence is A0 := [0, 1]N . Then, for k ≥ 1, the initial control (aj)j≥k is taken as

the computed control at iteration k− 1 (aj := a∗j for j ≥ k) and we choose the corresponding initial intervals

as the intervals centered in ai and of maximal possible diameter, contained in [0, 1] (that is, A0 :=
∏N−1
i=k Ai,

with Ai := [ai − ri, ai + ri] and ri := min(ai, 1− ai)).

At each time step k = 0, ..., N − 1, the SOPMS algorithm optimizes the cost functional Jk over control

sequences in a subset of AN−k. When the cost functional cannot be improved anymore (line 9), up to a relative

threshold ε, the optimization procedure is stopped for the current time step, the first control component (as

well as the first position) is accepted and we move forward to the next time step. The remaining control

sequence is utilized as a starting point for the next iteration.

We do not have a convergence proof for the SOPMS algorithm. However, because of the presence of a

tolerance parameter used to stop the successive computations, we will numerically observe a reduced number

of expanded nodes n (compared to SOP algorithm) and hence a reduced complexity of the overall algorithm,

leading to good precision up to a very small residual error and for a reduced budget (see Section 5.1).

Notice that by choosing Ieval,0 = Imax, SOPMS becomes equivalent to SOP and provides the same error

estimate.

4.5. Resolution procedure for a state-constrained problem

We describe here the procedure to get an approximation of the optimal value V (x), and an approximated

optimal trajectory for the state-constrained problem (10) starting from an initial state x. Let us first remark

that the function z →W (x, z) is a non-increasing function. By using the properties of the functions F , ρ, Φ,

g, and Ψ, one can get two bounds Zmin and Zmax, such that: V (x) = inf{z ∈ [Zmin, Zmax] | W (x, z) ≤ 0}.

The computation of an approximation of V (x) will be performed by a dichotomy algorithm combined to

an optimistic method for evaluating W (x, z) up to a prescribed precision ε > 0. First, notice the the value

Zmin can always be chosen such that W (x, Zmin) > ε . We assume that Zmax can also be chosen such that

W (x, Zmax) ≤ ε (if this is not the case, it means that there is no admissible trajectory that satisfies the

constraints and V (x) = +∞).

Remark 4.13. In Algorithm 5 (line 3), we need to compute J(x, c, ac) up to a precision ε. To fulfill this

requirement, a sufficiently large computational budget should be allowed in the optimistic algorithm in order

to obtain a control strategy ac such that the error J(x, c, ac)−W (x, c) is lower than ε. In practice, this budget

can be large, and difficult to evaluate from the theoretical estimates obtained in Theorems 4.7 and 4.10. In the
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Algorithm 5: dichotomy algorithm combined with OP (resp. SOP/SOPMS) method

Require: A threshold ε > 0, Zmin < Zmax such that W (x, Zmin) > ε, W (x, Zmax) ≤ ε
1: b` ← Zmin, br ← Zmax

2: while br − b` > ε do
3: c← (b` + br)/2; Compute a strategy ac by OP (or SOP/SOPMS) such that J(x, c, ac)−W (x, c) ≤ ε

(see Remark 4.13);
4: if J(x, c, ac) > ε, set b` := c;
5: if J(x, c, ac) ≤ ε, set br := c;
6: end while
7: return zε = br, the value J(x, zε, aε) along with its corresponding optimal control sequence aε := (aεk)k

and optimal trajectory yε := (yεk)k.

sequel, we will assume that the computation budget is large enough and we will study the asymptotic behavior

of the method when the threshold parameter ε converges to zero.

Let us first introduce the following problem with relaxed constraints:

V ε(x) := inf
a∈AN

{N−1∑
k=0

ρ(yx,ak , ak) + Φ(yx,aN ) | max
(

Ψ(yx,aN ), max
0≤k≤N

g(yx,ak )
)
≤ ε
}
. (26)

Lemma 4.14. Assume that the dichotomy algorithm is combined with OP (resp. SOP). Assume that the

computation budget is large enough so that EOP(N,n) ≤ ε (resp. ESOP(N,n) ≤ ε). Then the output z = zε of

the dichotomy algorithm satisfies

−ε < W (x, zε) ≤ ε, V ε(x) ≤ zε + ε, and V (x) ≥ zε − ε.

Proof. Assume that the dichotomy algorithm is combined with OP method and the calculations are performed

with EOP(N,n) ≤ ε. The output zε = br of the algorithm satisfies W (x, zε) ≤ J(x, zε, aε) = J(x, zε, aε) ≤ ε.

Moreover at the last iteration of the algorithm, we have J(x, b`, a
b
`) > ε which leads to W (x, b`) ≥ J(x, b`, a

b
`)−

EOP > 0. Since W (x, ·) is 1-Lipschitz, we obtain that W (x, zε) ≥W (x, b`)− |zε − b`| > −ε.

Now, W (x, zε) ≤ ε implies that:

N−1∑
k=0

ρ(yεk, a
ε
k) + Φ(yεN )− zε ≤ ε and max

(
Ψ(yεN ), max

0≤k≤N
g(yεk)

)
≤ ε.

Hence the trajectory yε is feasible for problem V ε(x), and V ε(x) ≤ zε + ε. Finally, since W (x, b`) > 0 and

because the application z 7−→ W (x, z) is non-increasing, we deduce that b` < V (x). This inequality along
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with the fact that br − b` ≤ ε lead to V (x) > b` ≥ br − ε = zε − ε.

In the following, O(x) denotes the set of optimal solutions associated to the exact value V (x). We define

also the distance to set O(x) by: d(y,O(x)) := inf{ max
0≤k≤N

‖yk − ȳk‖, ȳ ∈ O(x)}.

Theorem 4.15. Let x ∈ Rd such that O(x) 6= ∅. Let (yε, aε, zε) be the outcome of Algorithm 5 for ε > 0.

Then,

(i) lim
ε→0

d(yε,O(x)) = 0.

(ii) lim
ε→0

zε = lim
ε→0

V ε(x) = V (x);

Proof. (i) Assume that lim sup
ε→0

d(yε,O(x)) > 0. Then, by compactness of A and (A1), there exists a

subsequence (εn), z̄ ∈ R and a trajectory ȳ such that zεn converges to z̄, yεn converges to ȳ and d(ȳ,O(x)) =

lim
εn→0

d(yεn ,O(x)) > 0. However, from the inequality W (x, zεn) ≤ εn, we get max
(

Ψ(yεnN ), max
0≤k≤N

g(yεnk )
)
≤ εn.

Therefore, by passing to the limit we obtain max
(

Ψ(ȳN ), max
0≤k≤N

g(ȳk)
)

= 0, which proves that ȳ is an

admissible trajectory. Moreover, W (x, z̄) = lim
εn→0

W (x, zεn) ≤ 0. Then V (x) ≤ z̄. On the other hand, we have

V (x) ≥ lim
εn→0

(zεn − εn) = z̄. Therefore, V (x) = z̄ and ȳ ∈ O, which contradicts the fact that d(ȳ,O(x)) > 0.

We conclude that the claim (i) holds.

(ii) From the previous Lemma, we have: V ε − ε ≤ zε ≤ V (x) + ε. By classical compactness arguments of

AN , we conclude the desired result.

5. Numerical simulations

Computations for Examples 1, 2 and 4 where realized with a c++ gnu 6.5.0 on a 2.2 GHz Intel i7 64 bits

computer (with 16 GB RAM). Computations for Example 3 where realized using c++ gnu on a 2.4 GHz

Intel XEON E5-2695 CPU 64 bits computer (with 128 GB RAM).

5.1. Example 1: a 2D example without state constraints

We first consider a simple example with no state constraints. Here, the dynamics f is defined by:

f((x1, x2), a) =

 −x2

a

 , for (x1, x2) ∈ R2, a ∈ A := [−1, 1].

The time horizon is set to T = 1, and the distributed and final cost functions are defined by `(x, a) = 0 and

Φ(x) = ‖x‖. In this context, the structure of the exact solutions of the continuous and discrete problems
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are known2. Table 1 gives some reference values for the exact value ϑ(x) of the time-continuous problem

(second column) for three initial positions x = (1, 0), x = (1.5, 0) and x = (2, 0). The values V (x) of the

corresponding discretized problem are also reported, for different values of N , in the third column of Table 1.

x ϑ(x) V (x)
N = 10 N = 20 N = 40

(2.0, 0) 1.638580 1.639542 1.639149 1.638626
(1.5, 0) 1.159678 1.160946 1.160262 1.159701
(1.0, 0) 0.687630 0.689017 0.688202 0.687676

Table 1: Some reference values (rounded to 6 decimal places) for the continuous and discretized problems.

Figure 2: (Example 1) Trajectories obtained by the SOP algorithm for N = 20, Imax = 104, from different initial positions.

We use the optimistic algorithms to compute an approximation J∗(x) of the optimal value V (x), for

different values of N . In these simulations, the parameters used are Ieval,0 := 10 and ε := 10−5 for SOPMS,

and the function pmax(n) := 5
√
n for SOP. This choice of pmax(n) comes from the analysis of Remark 4.11.

Note that for SOPMS algorithm, the number of expanded nodes, n, may differ from the budget Imax (while

for OP and SOP we have always n = Imax). The optimal trajectories of the discretized problem, with

N = 20, are displayed in Figure 2 and compared to the solutions computed by SOP with Imax = 104. From

this figure, one can see that the computed solutions are very close to the exact ones. Besides, Figure 3 shows

the error |J∗(x)− V (x)| with respect to the number of expanded nodes n (left graphics) and with respect to

the CPU time (right graphics), for algorithms OP, SOP and SOPMS, in the case when N = 20. Figure 3

confirms that the SOP algorithm is much more efficient than OP in term of accuracy and CPU time. We

2For the continuous problem, with an initial position x0 = (x01, 0), the optimal control law satisfies: a(t) = 1 on [0, t∗[, and
a(t) = −1 on ]t∗, T ], where the switching time t = t∗ is a root of the equation ((2t−T )− t)( 1

2
(T −2t)2− t2 +x01)+(2t−T ) = 0.

The optimal control sequence (a∗k)k of the discrete problem has the following structure: a∗k = 1 for k < k,
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notice also that SOPMS algorithm has very interesting performances and in particular in term of CPU time.
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Figure 3: (Example 1) Error versus budget - number of expaned nodes - n (left) and versus CPU time (right) for OP, SOP and
SOPMS algorithms, with N = 20 time steps, for initial point x0 = (2, 0) (top), x0 = (1.5, 0) (middle), x0 = (1, 0) (bottom).

Tables 2, 3 and 4 give further information on the results of OP, SOP and SOPMS methods respectively. In

particular, the computed optimal values, the error and the CPU time are given as the budget Imax increases

(exponentially), for the points x = (1, 0) and x = (2, 0) (the results for x = (1.5, 0) are similar to the case

of x = (2, 0) and have been omitted). We chose not to report the errors and the optimal values when the

computational time (CPU) exceeds 100s.
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x = (1, 0) x = (2, 0)
N Imax J∗(x) J∗(x)− V (x) CPU(s) J∗(x) J∗(x)− V (x) CPU(s)

10 400 0.792857 1.03e-01 0.011 1.739936 1.00e-01 0.016
1600 0.750902 6.18e-02 0.086 1.701032 6.14e-02 0.086
6400 0.732020 4.30e-02 1.751 1.681600 4.20e-02 1.797

25600 0.729926 4.09e-02 92.594 1.677283 3.77e-02 97.685
102400 - - ≥100.000 - - ≥100.000

20 400 0.820738 1.32e-01 0.013 1.765899 1.26e-01 0.014
1600 0.819215 1.31e-01 0.098 1.759675 1.20e-01 0.096
6400 0.817693 1.29e-01 1.859 1.759675 1.20e-01 1.809

25600 - - ≥100.000 - - ≥100.000
102400 - - ≥100.000 - - ≥100.000

40 400 0.853756 1.66e-01 0.017 1.822498 1.83e-01 0.014
1600 0.840536 1.52e-01 0.167 1.806458 1.67e-01 0.112
6400 0.830636 1.43e-01 3.610 1.786826 1.48e-01 1.950

25600 - - ≥100.000 - - ≥100.000
102400 - - ≥100.000 - - ≥100.000

Table 2: (Example 1) Values and errors for the OP algorithm with different parameters N and Imax, for x = (1, 0) and x = (2, 0).

Table 2 shows that, as expected, the convergence of OP method is very slow, and even an accuracy of

order 10−2 requires huge computational resources, especially when N is large. On the other hand, the CPU

time results given in Tables 2 & 3 show that SOP is faster than OP for a same Imax value. Indeed, each

iteration of OP selects the node to expand among all the tree leaves, while an SOP iteration selects the nodes

only among the leaves of a given depth of the tree. A first glance to Table 4 shows that SOPMS algorithm

costs less CPU time than SOP (recall that for this simulation, the tolerance used in SOPMS is ε = 10−5).

The SOP algorithm constructs a tree of (M − 1)Imax + 1 leaves with control and trajectory sequences of

lengths N and N + 1 respectively. For any k ≥ 1, SOPMS uses a tree of fewer leaves compared to SOP,

with control and trajectory sequences of lengths N − k and N − k + 1 respectively. Moreover, we observe

that SOPMS uses a reduced total number of nodes n << Imax (while for SOP, the total number of nodes

coincides with Imax) which results in reduced CPU times.

In conclusion, in this example, SOPMS performs in general better than SOP and OP. In the case of the

initial point x = (1, 0), which happens to be numerically more difficult for OP or SOP, the SOP algorithm

is limited to a precision of order 10−3, for N = 40 while SOPMS goes beyond this limitation and reaches an

accuracy of about 10−10 in less than 1s.
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x = (1, 0) x = (2, 0)
N Imax J∗(x) J∗(x)− V (x) CPU(s) J∗(x) J∗(x)− V (x) CPU(s)

10 400 0.689020 3.85e-06 0.009 1.639547 4.31e-06 0.026
1600 0.689017 6.23e-11 0.068 1.639543 7.30e-11 0.060
6400 0.689017 7.77e-16 0.588 1.639543 0.00e-16 0.627

25600 0.689017 5.55e-16 17.393 1.639543 0.00e-16 18.596
102400 - - ≥100.000 - - ≥100.000

20 400 0.692103 3.90e-03 0.034 1.640247 1.09e-03 0.037
1600 0.689831 1.62e-03 0.050 1.639154 4.51e-06 0.089
6400 0.688259 5.72e-05 0.598 1.639149 7.65e-11 0.662

25600 0.688206 3.78e-06 17.058 1.639149 1.55e-15 17.704
102400 - - ≥100.000 - - ≥100.000

40 400 0.707336 1.96e-02 0.022 1.653411 1.47e-02 0.019
1600 0.692945 5.26e-03 0.070 1.639752 1.12e-03 0.073
6400 0.691294 3.61e-03 0.765 1.638630 4.62e-06 0.798

25600 0.690882 3.20e-03 16.385 1.638626 7.83e-11 17.713
102400 - - ≥100.000 - - ≥100.000

Table 3: (Example 1) Values and errors for the SOP algorithm with different parameters N and Imax, for x = (1, 0) and
x = (2, 0).

x = (1, 0) x = (2, 0)
N Imax J∗(x) J∗(x)− V (x) n CPU(s) J∗(x) J∗(x)− V (x) n CPU(s)

10 400 0.689020 3.67e-06 440 0.008 1.639547 4.31e-06 440 0.024
1600 0.689017 5.12e-10 630 0.007 1.639543 2.40e-10 630 0.012
6400 0.689017 5.12e-10 630 0.006 1.639543 2.40e-10 630 0.006

25600 0.689017 5.12e-10 630 0.006 1.639543 2.40e-10 630 0.006
102400 0.689017 5.12e-10 630 0.006 1.639543 2.40e-10 630 0.006

20 400 0.691085 2.88e-03 440 0.010 1.640268 1.11e-03 440 0.011
1600 0.688204 2.47e-06 1147 0.023 1.639153 3.91e-06 1127 0.030
6400 0.688202 9.27e-09 1352 0.031 1.639149 6.54e-10 1332 0.034

25600 0.688202 9.27e-09 1352 0.030 1.639149 6.54e-10 1332 0.030
102400 0.688202 9.27e-09 1352 0.030 1.639149 6.54e-10 1332 0.028

40 400 0.707266 1.95e-02 440 0.019 1.653411 1.47e-02 440 0.026
1600 0.692419 4.74e-03 1729 0.125 1.638652 2.66e-05 1676 0.051
6400 0.687676 4.84e-07 3292 0.170 1.638626 4.92e-07 1930 0.070

25600 0.687676 5.02e-11 4512 0.308 1.638626 1.13e-10 2748 0.135
102400 0.687676 3.01e-12 5352 0.459 1.638626 1.13e-10 2748 0.135

Table 4: (Example 1) Values and errors for the SOPMS algorithm with different parameters N and Imax, for x = (1, 0) and
x = (2, 0) (the tolerance parameter is set to ε = 10−5). The value of n corresponds to the total budget used by the algorithm.
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5.2. Example 2: Zermelo problem with state constraints

Consider the Zermelo problem where a boat tries to reach a circular target C at time T = 1 with minimal

fuel consumption. The dynamics is given by:ẏ1(s) = u(s) cos(θ(s)) + c− bx2(s)2,

ẏ2(s) = u(s) sin(θ(s)),

where the controls are the speed u(s) and the angle of orientation θ(s) of the boat (such that (u(s), θ(s)) ∈

A := [0, umax]× [0, 2π], for a.e. s ∈ [0, T ]), and the term c− bx2
2 represents the current drift along the x1-axis

(with b := 0.5 and c := 2). The target C is centered at (1.5, 0) and of radius r0 = 0.1. We consider also

two rectangular obstacles with horizontal and vertical half lengths (rx, ry) (see Figure 4). The first obstacle

is centered at (−0.5, 0.5) with (rx, ry) = (0.4, 0.4), and the second obstacle is centered at (−1,−1.5) with

(rx, ry) = (0.2, 1). To take into account the obstacle avoidance and the achievement of the target, we define

the functions g and Ψ as follows:

g(x) :=
(

0.4− ‖x− (−0.5, 0.5)‖∞
)∨

min
(
0.2− |x1 + 1|, 1− |x2 + 1.5|

)
and Ψ(x) := ‖x−(1.5, 0)‖∞−r0.

The cost to minimize is Q(x, α) :=
∫ T

0
u(s)ds, where x is the initial position of the boat and α(·) :=

(u(·), θ(·)) is the control law. For a given N , the discrete control problem becomes:

V (x) = inf
{ 1

N

N−1∑
k=0

uk with a = ((uk, θk))k ∈ AN , g(yak) ≤ 0 for k = 0, · · · , N, and Ψ(yaN ) ≤ 0
}
,

where (yak)k is the discrete state variable, corresponding to the control policy a = ((uk, θk))k ∈ AN , and

starting at the initial position x. Henceforth, the discrete auxiliary value function is defined as:

W (x, z) = inf
(ak)k∈AN

{( 1

N

N−1∑
k=0

uk − z
)∨(

max
0≤k≤N

g(yak)
)∨

Ψ(yaN )
}
.

For this example, we use Algorithm 5 combined with SOP or SOPMS approach to compute, for any given

ε > 0, an approximation zε of V (x) and an approximation value of W (x, zε). For all simulations in this

example, the parameters used are pmax(n) := 5
√
n for SOP, Ieval,0 = 10 and tolerance 10−5 for SOPMS, and

the dichotomy approach is initialized with Zmin = 0 and Zmax = 2.5.

Figure 4 shows optimal trajectories obtained from three different initial positions x1 = (−2.5,−1), x2 =
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(−2, 0.5) and x3 = (−1.5, 1.5). These trajectories are computed by dichotomy algorithm combined with. We

remark that the computed trajectories verify the constraints, by avoiding the obstacles, and reach the target

at the final time step (for N = 10 in figure 4(left) and N = 40 in in figure 4(right).

Figure 4: (Example 2): Trajectories obtained by dichotomy with SOP in order to reach the target (in green) and to avoid the
obstacles (in red), from different initial positions, with N = 10 (left) and N = 40 (right).

Now, we fix N = 10 and we analyze the sensitivity of the dichotomy approach with respect to the tolerance

ε and the total budget Imax. For this, some simulations are performed for two different initial positions, with

values of ε ranging from 10−1 to 10−6 and with Imax = 3200, 6400 or 12800.

x = (−2.5,−1) x = (−1.5, 1.5)
Imax ε zε W (x, zε) CPU(s) zε W (x, zε) CPU(s)

3200 10−2 2.28515625 -1.47e-03 5.26 1.96289062 -1.35e-03 5.35
10−3 2.28210449 -9.20e-05 7.29 1.95983887 -1.10e-03 8.00
10−4 2.28202820 -8.20e-05 8.78 1.95968628 -1.00e-03 10.46
10−5 2.28202820 -8.20e-05 10.23 1.95966721 -1.01e-03 12.20
10−6 2.28198826 -7.59e-05 12.16 1.95966721 -1.01e-03 14.46

6400 10−2 2.28515625 -1.55e-03 44.52 1.96289062 -2.38e-03 51.74
10−3 2.28210449 -1.45e-04 62.91 1.95983887 -1.23e-03 69.65
10−4 2.28195190 -7.92e-06 75.62 1.95968628 -1.24e-03 82.57
10−5 2.28195190 -7.92e-06 87.40 1.95966721 -1.23e-03 95.81
10−6 2.28194714 -1.16e-05 103.70 1.95966661 -1.23e-03 115.16

12800 10−2 2.28515625 -2.04e-03 322.89 1.95312500 -3.18e-04 291.91
10−3 2.28210449 -1.46e-04 456.10 1.95312500 -3.18e-04 403.99
10−4 2.28195190 -5.36e-05 557.97 1.95312500 -3.18e-04 485.43
10−5 2.28193283 -3.49e-05 644.22 1.95310593 -3.12e-04 566.87
10−6 2.28193283 -3.49e-05 760.31 1.95310593 -3.12e-04 677.94

Table 5: (Example 2) Approximation of V (x) by Algorithm 5 (dichotomy) combined with SOP, for x = (−2.5,−1) and
x = (−1.5, 1.5) and with different values of ε and Imax.
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The numerical results are reported in Table 5 (with SOP) and Table 6 (with SOPMS). Columns 3-5

correspond to simulations for x1 = (−2.5,−1), and columns 6-8 correspond to x3 = (−1.5, 1.5). For each

initial point and for a set of threshold parameters ε (see algorithm 5), we give the corresponding computed

value zε (an approximation of V (x)), the computed approximation of the auxiliary value W (x, zε), and the

CPU time.

x = (−2.5,−1) x = (−1.5, 1.5)
Imax ε zε W (x, zε) CPU(s) zε W (x, zε) CPU(s)

3200 10−2 2.28515625 -1.75e-03 1.27 1.96289062 -1.52e-03 1.26
10−3 2.28210449 -1.40e-04 2.13 1.95983887 -1.26e-03 3.12
10−4 2.28202820 -1.10e-04 2.48 1.95968628 -1.27e-03 4.68
10−5 2.28199959 -1.07e-04 3.29 1.95968628 -1.27e-03 5.93
10−6 2.28199244 -1.06e-04 4.95 1.95968628 -1.27e-03 8.04

6400 10−2 2.28515625 -1.75e-03 2.39 1.96289062 -1.52e-03 1.87
10−3 2.28210449 -1.40e-04 3.67 1.95983887 -1.26e-03 6.69
10−4 2.28202820 -1.10e-04 4.16 1.95968628 -1.27e-03 12.38
10−5 2.28199959 -1.07e-04 5.53 1.95968628 -1.27e-03 15.06
10−6 2.28199244 -1.06e-04 8.93 1.95968628 -1.27e-03 20.06

12800 10−2 2.28515625 -1.75e-03 2.50 1.96289062 -1.52e-03 2.56
10−3 2.28210449 -1.40e-04 4.29 1.95983887 -1.26e-03 13.66
10−4 2.28202820 -1.10e-04 4.92 1.95968628 -1.27e-03 27.73
10−5 2.28199959 -1.07e-04 7.35 1.95968628 -1.27e-03 35.36
10−6 2.28199244 -1.06e-04 15.17 1.95968628 -1.27e-03 48.39

Table 6: (Example 2) Approximation of V (x) by Algorithm 5 (dichotomy) combined with SOPMS, for x = (−2.5,−1) and
x = (−1.5, 1.5) and with different values of ε and Imax.

From Tables 5 and 6 we first notice that auxiliary values W (x, zε) are all negative, which indicates that

the computed optimal trajectories are admissible (i.e., the constraints of the optimal control problem are

satisfied). Table 5 and 6 show also that, in general, the approximation zε of V (x) decreases when ε decreases.

Moreover, for a given tolerance ε, the value of zε decreases when the number of nodes Imax increases.

Besides Tables 5 and 6 show that the dichotomy algorithm performs faster when combined with SOPMS

than when it is combined with SOP (roughly a gain from order 2 to 10, depending of the initial point and

the threshold ε), up to a certain given precision.

5.3. Example 3: Optimal control of a heat equation

In this example, taken from [1], we want to illustrate the performances of our approach for solving a

control problem of a partial differential equation. The discrete version of the problem leads to a control
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problem in a high dimensional state space. Consider the following heat equation:


∂y
∂t (s, x) = σ ∂

2y
∂x2 (s, x) + y0(x)α(s), for (s, x) ∈ [0, T ]×]0, 1[,

y(s, 0) = y(s, 1) = 0, for s ∈ [0, T ],

y(0, x) = y0(x), for x ∈ [0, 1],

(27)

where σ = 0.1, the control α(·) takes values in A := [−1, 1], T = 1 and y0(x) = −x2 + x, for x ∈ [0, 1].

Our purpose is to minimize, by using the control law α(·), the temperature yα(t, x), solution of (27), for

t ∈ [0, T ] and x ∈ [0, 1]. For this reason, we consider the following cost functional of Bolza type, with γ > 0:

Q(y0, α) =

∫ T

0

(∫ 1

0

(yα(s, x))2dx+ γa2(s)
)
ds+

∫ 1

0

(yα(T, x))2dx. (28)

An approximation of the state equation (27) can be performed by a classical implicit scheme. Consider a

time grid with N = 20 time steps, tk = k∆t for k = 0, ..., N , where ∆t = T
N and a space grid with d = 103

points on ]0, 1[, xj = j∆x for j = 0, ..., d + 1 and where the space step is given by ∆x = 1
d+1 . Hence, the

implicit scheme approximating (27) is given by:


yik+1−y

j
k

∆t = σ
yj+1
k+1−2yjk+1+yj−1

k+1

∆x2 + y0(xj)ak, for 0 ≤ k ≤ N − 1, 1 ≤ j ≤ d,

y0
k = yd+1

k = 0
(29)

where yjk is an approximation of y(tk, xj), and a = (ak)1≤k≤N is a piece-wise constant control law. Equation

(29) can be rewritten as follows:

Yk+1 = F (Yk, ak) (30)

with Yk := (y(tk, xj))1≤j≤d ∈ Rd. Furthermore, the cost function Q can be approximated by:

J (Y0, a) =

N−1∑
k=0

ρ(Yk, ak) + Φ(YN ),

where the instantaneous cost ρ and the terminal cost Φ are defined, for Y ∈ Rd and a ∈ A, by:

ρ(Y, a) =
∆t

2

(
‖Y ‖2 + ‖F (Y, a)‖2 + 2γa2

)
and Φ(Y ) = ‖Y ‖2.

The uncontrolled solution, presented in the left of figure 5, corresponds to a numerical solution of (27)
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Figure 5: (Example 3) Uncontrolled solution (left) and optimal solution with SOP (right), for Imax = 104, γ = 0.01 and d = 103.

while taking the control law a(·) ≡ 0. The approximation of the optimal solution obtained by SOP is

displayed in Figure 5 (right). Furthermore, the solutions obtained by SOP and SOPMS are better than the

one computed with OP. This observation can be confirmed by a comparison between the solutions norms

and the cost values computed with different planning algorithms as presented in figure 6. Indeed in the

figure 6(middle), we can see that the optimal cost computed by SOP is identical to the one computed by

SOPMS, and is lower to the optimal value computed by OP.

Figure 6: (Example 3) Controls computed by OP, SOP and SOPMS algorithms (left), time comparison of cost functions (middle),
norms of the solutions (right), for Imax = 104, γ = 0.01 and d = 103.

Finally, we consider a state constraint: ya(t, x) ≥ 1
3y0(x) for every t ∈ [0, T ] and x ∈ [0, 1]. The corre-

sponding constrained solution, obtained by using the dichotomy algorithm combined with SOP, is represented

in figure 7.
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Figure 7: (Example 3) Uncontrolled solution (left), unconstrained and controlled solution obtained by SOP (middle) and
constrained and controlled solution obtained by dichotomy combined with SOP for d = 103, γ = 0.01 and Imax = 104.

5.4. Example 4: Windshear problem

We consider the abort landing problem of an aircraft in presence of wind disturbances [16, 6, 7]. We

follow the formulation of the problem as in [4] (where an Hamilton-Jacobi approach is used). Here, we use

an optimistic planning algorithm to compute the optimal solution. The flight of the aircraft is modeled in a

vertical plane over a flat earth, assuming that all forces act on the center of gravity of the aircraft and lie in

the same plane of symmetry. The aircraft’s motion is described by (see [16, 7, 4] for more details):



ẋ(s) = u(s) cos(γ(s)) + ωx(x(s))

ḣ(s) = u(s) sin(γ(s)) + ωh(x(s), h(s))

u̇(s) = FT (u(s))
m

cos(θ(s) + δ)− FD(u(s),θ(s))
m

− g sin(γ(s))− ω̇x(x(s)) cos(γ(s))− ω̇h(x(s), h(s)) sin(γ(s))

γ̇(s) = 1
u(s)

(
βFT (u(s))

m
sin(θ(s) + δ) + FL(u(s),θ(s))

m
− g cos(γ(s)) + ω̇x(x(s)) sin(γ(s))− ω̇h(x(s), h(s)) cos(γ(s))

)
θ̇(s) = α(s),

(31)

where x is the horizontal distance, h denotes the altitude, u is the aircraft velocity, γ is the relative path

inclination, θ is the angle of attack, δ > 0 is a parameter of the model, α the control variable is the angular

velocity. Moreover, ωx and ωh are respectively supposed to be known horizontal and vertical components

of the wind velocity vector, ω̇x and ω̇h are their derivatives, FT , FL and FD denote respectively the thrust,

lift and drag forces whose expressions can be found in [4, 6, 7]. We represent the state variables by a vector
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y ∈ R5 given by y := (x, h, u, γ, θ)>, hence the dynamical system (31) can be written as ẏ(s) = f(y(s), α(s)).

The sets of control, A, and of state constraints, K, are of the form:

A := [amin, amax] and K := R4 × [θmin, θmax],

with amin = −amax = −3 deg s−1, θmin = −180 deg and θmax = 17.2 deg.

The aim of the control problem is to maximize the minimal altitude that can be reached during an interval

of time [0, T ], where T := 40. The maximum running cost function Φ is defined as Φ(y) := h∗−h, where h is

the aircraft altitude and h∗ := 1000 is a reference altitude (all the parameters of this example are similar to

those in [4]). In order to solve this problem, we discretize uniformly [0, T ] with N sub-intervals and consider

the discrete time control problem:

V (y0) = inf
a=(ak)k∈AN

{
max

k=1,··· ,N
Φ(yak) | yak ∈ K, for all k = 1, · · · , N

}
.

where (yak)k is the discrete trajectory corresponding to the control sequence a = (ak)k ∈ AN , starting from

the initial state y0. The corresponding auxiliary problem is of the form:

W (y0, z) = inf
(ak)∈AN

max
0≤k≤N

{(
Φ(yak)− z

)∨
g(yak)

}
,

with the function g, is defined, for y = (x, h, u, γ, θ) ∈ R5, by: g(y) = max(θmin− θ, θ− θmax). The numerical

simulations for this example are performed by Algorithm 5 combined with SOP. The parameter pmax in

SOPis chosen as pmax(n) =
√
n. The dichotomy approach is initialized with Zmin = 0 and Zmax = 1000, and

the tolerance parameter is ε = 10−5.

We fix N = 40. Figure 8 shows the numerical results obtained for two different initial configurations

y0 = (0, 600, 239.7,−2.249 deg, 7.373 deg) and y1 = (0, 650, 239.7,−3.400 deg, 7.373 deg).

Table 7 presents the numerical results obtained with different values of the budget allowed in SOPap-

proach. In particular, column 3 presents the values zε obtained by dichotomy as approximations of V (y0) or

V (y1). Column 4 gives the minimal altitude of the aircraft. Table 7 confirms that the performances of the

computed trajectories are improved when Imax increases.
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Figure 8: (Example 4) Trajectories obtained by the dichotomy combined with SOP for N = 40, Imax = 12800 and from initial
configurations y0 and y1.

Initial Imax zε h∗min CPU
configuration (ft) (ft) (s)

y0 3200 555.496 404.504 8.21
6400 499.893 500.107 22.65
12800 480.721 519.279 75.91
25600 480.721 519.279 342.13

y1 3200 524.147 475.853 11.88
6400 480.957 519.043 16.34
12800 480.919 519.081 74.43
25600 479.675 520.325 259.55

Table 7: (Example 4) Performance of the dichotomy combined with SOP for different values of N and Imax and from two
different initial configurations.
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6. Appendix A: Proofs of convergence results for OP and SOP algorithms

6.1. Proof of Theorem 4.3.

Consider a given node Ai of the tree Υ at some depth pi. By Corollary 3.4, using the diameters di,k =

DM−s(k), γ := 1
LF,x

< 1, and estimate (4.1), we obtain the bound

σi ≤
CD

2
∆t

N−1∑
k=0

γkM−s(k)

for some constant C ≥ 0 independent of N (the same constant C as in Corollary 3.4). By using similar

arguments in [9] (see also [10]), the following results hold:

• the split function s(·), indicating the number of splits at cell k, is decreasing, and s(·) decreases of at

most 1 (s(k)− 1 ≤ s(k + 1) ≤ s(k), ∀k)

• denoting τ0, τ1,...,τn the lengths of the ranges where s is constant (here considering that τn = 0 for p

large enough), it holds τ0 ≤ τ , and τj ∈ {τ − 1, τ}, ∀j ≥ 1.

From this point, our analysis departs slightly from [9]. The previous results enable us to bound s(k) as

follows:

s(k) ≥ s(k) := r − 1− (k − (N − 1))

τ
(32)

and

s(k) ≤ s(k) := r + 1− (k − (N − 1))

τ − 1
. (33)

where r = s(N − 1) (see Fig. 9).

Hence

N−1∑
k=0

γkM−s(k) ≤
N−1∑
k=0

γkM−(r−1+N−1
τ )+ k

τ

≤ M−(r−1+N−1
τ ) 1

1− γM 1
τ

(34)
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s(0)
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Figure 9: Example of split function s(·) (black dots) and the upper and lower bounds s(·) and s(·).

It remains to find a lower bound for r when p is large. By using (33), we have

p =

N−1∑
k=0

s(k) ≤
N−1∑
k=0

s(k) ≤ N(r + 1) +
N(N − 1)

2(τ − 1)
.

Therefore, we obtain that r ≥ p
N − 1− N−1

2(τ−1) , and with the bound (34), we conclude that:

C

2
∆t

N−1∑
k=0

γkM−s(k) ≤ C

2
∆t

1

1− γM 1
τ

MqNM−
p
N

where qN = 2 + N−1
2(τ−1) −

N−1
τ = 2− (N − 1) τ−2

2τ(τ−1) . The proof is then completed.

6.2. Proof of Theorem 4.7.

Let n ≤ Imax be the number of iterations and let p = p(n) be the corresponding depth. Suppose m > 1,

where m is the asympototic branching factor. We have

n = |Υ∗| = |
p⋃
q=0

Υ∗q | =
p∑
q=0

|Υ∗q | ≤
p∑
q=0

Rmq ≤ R
mp+1 − 1

m− 1
≤ R

mp+1

m− 1

(recall from the definitions that Υ∗q contains at most Rmq cells), therefore

p+ 1 ≥
log( (m−1)n

R )

log(m)
.
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By using the estimate of Theorem 4.3, we deduce that for some cell i,

δi ≤ c1(N)M−
p
N ≤ c1(N)M

1
N−

log(
(m−1)n

R
)

N log(m) = c2(N)n−
log(M)
N log(m) .

where c2(N) := c1(N)M
1
N−

log(
(m−1)
R

)

N log(m) (for m > 1), which leads to the desired estimate.

For the case m = 1, we have p+ 1 ≥ n
R and δi ≤ c2(N)M−

n
NR with c2(N) := c1(N)M

1
N .

6.3. Sketch of proof for Lemma 4.9.

By [18, Lemma 4.1], we know that if 0 ≤ p ≤ pmax(n) and

n ≥ pmax(n)

p∑
q=0

|Υ∗q |, (35)

then p ≤ p̄n where p̄n is the depth of the deepest expanded node in the branch containing an optimal

sequence. (Roughly speaking, the r.h.s of (35) is an upper bound of the number of nodes, in the worst case

situation, needed to be expanded by the algorithm in order to go through all nodes of

p⋃
q=0

Υ∗q .)

Then we reproduce the same arguments as in the first part of the proof of [18, Theorem 4.2]: since p(n)

is the smallest depth verifying (25) (and using the bound |Υ∗q | ≤ Rmq), the reverse inequality is verified by

p = p(n)− 1, with n ≥ pmax(n)

p(n)−1∑
q=0

Rmq. If p(n)− 1 ≤ pmax(n), this implies that the SOP algorithm has

expanded at least one optimal node at depth p(n)− 1 ≤ p̄n. Otherwise if p(n)− 1 > pmax(n) and since SOP

algorithm does not expand nodes beyond depth pmax(n), this implies that p̄n = pmax(n). We deduce in all

cases that p∗n = min(p(n)− 1, pmax(n)) ≤ p̄n, and, therefore, an error bound δp̄n ≤ δp∗n .

6.4. Proof of Theorem 4.10.

Let us first consider the case m > 1. Let pmax(n) := nη, for some η ∈ [0, 1[. Recall that p(n) satisfies (25),

therefore p(n)− 1 satisfies the reversed inequality, that is:

R
mp(n) − 1

m− 1
=

p(n)−1∑
q=0

Rmq ≤ n

pmax(n)
= n1−η,

which implies that:

p(n) ≤
log(1 + (m−1)

R n1−η)

log(m)

n→∞
=

log( (m−1)
R n1−η)

log(m)
+ o(1)

n→∞∼ (1− η)

log(m)
log(n). (36)
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Since pmax(n) = nη, we deduce from the last inequality that for n large enough, p(n) ≤ pmax(n). Hence, in

the algorithm, p∗n := min(p(n) − 1, pmax(n)) = p(n) − 1 (p∗n is the depth of the deepest expanded optimal

node). On the other hand, by the definition of p(n), we have also

R
mp(n)+1 − 1

m− 1
=

p(n)∑
q=0

Rmq ≥ n

pmax(n)
= n1−η,

and therefore

p(n) ≥
log( (m−1)

R n1−η)

log(m)
− 1

≥ − log(R)

log(m)
− 1 +

(1− η)

log(m)
log(n).

Since Ji∗ −W (x, z) ≤ δp∗ = c1(N) ∆tM−
p∗
N , using the lower bound found for p∗ = p∗n = p(n)− 1, we obtain

δp∗n ≤ c3(N) ∆tM−
(1−η)
log(m)

log(n)
N = c3(N) ∆t n−

(1−η)
log(m)

log(M)
N

where c3(N) := c1(N)M
log(R)
N log(m)

+ 2
N which concludes to the desired estimate. Since R ≥ 1 and c1(N) is

bounded independently of N , we deduce that c3(N) is also bounded independently of N .

In the case m = 1 and pmax(n) = nη, by the definition (25),

Rp(n) =

p(n)−1∑
q=0

Rmq <
n

pmax(n)
= n1−η, (37)

and also

R(p(n) + 1) =

p(n)∑
q=0

Rmq ≥ n

pmax(n)
= n1−η. (38)

Choosing η ∈ [ 1
2 , 1[, by (37), we deduce p∗n ≤ pmax(n), hence p∗n = p(n)− 1. Therefore by (38),

δp∗n ≤ c1(N) ∆tM−
p(n)−1
N ≤ c1(N) ∆tM−

2
NM−

n1−η
R .
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