Dyadic Motor Behavior During Co-manipulation: A Study on Humans
Waldez Gomes, Pauline Maurice, Serena Ivaldi

To cite this version:
Waldez Gomes, Pauline Maurice, Serena Ivaldi. Dyadic Motor Behavior During Co-manipulation: A Study on Humans. 2018. hal-03283057

HAL Id: hal-03283057
https://hal.science/hal-03283057
Preprint submitted on 9 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Introduction

Human-Robot Collaboration
- Control a robot to act efficiently with a human during a task that requires co-manipulation;
- Human and robot co-manipulating a shared object

- Good collaboration is not only fast and/or accurate, but it is also legible
- Good collaboration feels natural!

Methods

Co-manipulation by a Human Dyad

Task
- Collaborative extraction and insertion of a pipe in a tube
- Contact between the pipe and the tube should be avoided

Experiment
- 10 dyads
- 3 randomly assigned behaviors:
 - Participant 1 leader, Participant 2 follower
 - Participant 2 leader, Participant 1 follower
 - No pre-assigned leader behavior
- 5 trials per condition
- Practice trials between conditions

Sensors and Data
- Qualisys optical motion capture: 6 markers on each participant's right arm, 1 marker on the pipe
- Arm kinematics
- Pipe 3D trajectory
- Wireless EMG Delsys Trigno on 3 pairs of antagonistic muscles: forearm, arm, shoulder
- Muscle activation
- Index of Co-Contraction (ICC)
- Contact sensors on each tube (Quantitative measurement of accuracy)

Goal

- Planning and execution are a responsibility of all agents
- The task requires coordination and synchronization
- Is there a Leader, or a Follower?
- So we look into natural motor behavior in human-human dyads!

Index of Co-Contraction
- The ICC is an indirect measure of the arm stiffness, calculated from a pair of forearm antagonist muscles EMG signals:

\[
ICC = \min (u_{\text{agonist}}, u_{\text{antagonist}})
\]

Future Work

- Rigorous analysis of the trajectories
- Define manipulability metrics for a dyad, and apply them to all dyads
- Use the stiffness modulation from the human arm to modulate the stiffness of the robot in a human-robot collaboration

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 731540 (An.Dy)